Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis
Shoubin Zhan, Ping Yang, Shengkai Zhou, Ye Xu, Rui Xu, Gaoli Liang, Chenyu Zhang, Xi Chen, Liuqing Yang, Fangfang Jin, Yanbo Wang
Serum mitochondrial tsRNA serves as a novel biomarker for hepatocarcinoma diagnosis
Hepatocellular carcinoma (HCC), which makes up the majority of liver cancer, is induced by the infection of hepatitis B/C virus. Biomarkers are needed to facilitate the early detection of HCC, which is often diagnosed too late for effective therapy. The tRNA-derived small RNAs (tsRNAs) play vital roles in tumorigenesis and are stable in circulation. However, the diagnostic values and biological functions of circulating tsRNAs, especially for HCC, are still unknown. In this study, we first utilized RNA sequencing followed by quantitative reverse-transcription PCR to analyze tsRNA signatures in HCC serum. We identified tRF-Gln-TTG-006, which was remarkably upregulated in HCC serum (training cohort: 24 HCC patients vs. 24 healthy controls). In the validation stage, we found that tRF-Gln-TTG-006 signature could distinguish HCC cases from healthy subjects with high sensitivity (80.4%) and specificity (79.4%) even in the early stage (Stage I: sensitivity, 79.0%; specificity, 74.8%; 155 healthy controls vs. 153 HCC patients from two cohorts). Moreover, in vitro studies indicated that circulating tRF-Gln-TTG-006 was released from tumor cells, and its biological function was predicted by bioinformatics assay and validated by colony formation and apoptosis assays. In summary, our study demonstrated that serum tsRNA signature may serve as a novel biomarker of HCC.
tsRNA / biomarker / hepatocarcinoma
[1] |
SungH, FerlayJ, SiegelRL, LaversanneM, SoerjomataramI, JemalA, BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71( 3): 209– 249
CrossRef
Google scholar
|
[2] |
KimTH, KimSY, TangA, LeeJM. Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma: 2018 update. Clin Mol Hepatol 2019; 25( 3): 245– 263
CrossRef
Google scholar
|
[3] |
LlovetJM, KelleyRK, VillanuevaA, SingalAG, PikarskyE, RoayaieS, LencioniR, KoikeK, Zucman-RossiJ, FinnRS. Hepatocellular carcinoma. Nat Rev Dis Primers 2021; 7( 1): 6
CrossRef
Google scholar
|
[4] |
ZhangY, LiuD, ChenX, LiJ, LiL, BianZ, SunF, LuJ, YinY, CaiX, SunQ, WangK, BaY, WangQ, WangD, YangJ, LiuP, XuT, YanQ, ZhangJ, ZenK, ZhangCY. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39( 1): 133– 144
CrossRef
Google scholar
|
[5] |
ChenX, BaY, MaL, CaiX, YinY, WangK, GuoJ, ZhangY, ChenJ, GuoX, LiQ, LiX, WangW, ZhangY, WangJ, JiangX, XiangY, XuC, ZhengP, ZhangJ, LiR, ZhangH, ShangX, GongT, NingG, WangJ, ZenK, ZhangJ, ZhangCY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18( 10): 997– 1006
CrossRef
Google scholar
|
[6] |
WangY, LiangH, JinF, YanX, XuG, HuH, LiangG, ZhanS, HuX, ZhaoQ, LiuY, JiangZY, ZhangCY, ChenX, ZenK. Injured liver-released miRNA-122 elicits acute pulmonary inflammation via activating alveolar macrophage TLR7 signaling pathway. Proc Natl Acad Sci USA 2019; 116( 13): 6162– 6171
CrossRef
Google scholar
|
[7] |
DawsonSJ, TsuiDWY, MurtazaM, BiggsH, RuedaOM, ChinSF, DunningMJ, GaleD, ForshewT, Mahler-AraujoB, RajanS, HumphrayS, BecqJ, HalsallD, WallisM, BentleyD, CaldasC, RosenfeldN. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med 2013; 368( 13): 1199– 1209
CrossRef
Google scholar
|
[8] |
ForshewT, MurtazaM, ParkinsonC, GaleD, TsuiDW, KaperF, DawsonSJ, PiskorzAM, Jimenez-LinanM, BentleyD, HadfieldJ, MayAP, CaldasC, BrentonJD, RosenfeldN. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med 2012; 4( 136): 136ra68
CrossRef
Google scholar
|
[9] |
ColeC, SobalaA, LuC, ThatcherSR, BowmanA, BrownJW, GreenPJ, BartonGJ, HutvagnerG. Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 2009; 15( 12): 2147– 2160
CrossRef
Google scholar
|
[10] |
PengH, ShiJ, ZhangY, ZhangH, LiaoS, LiW, LeiL, HanC, NingL, CaoY, ZhouQ, ChenQ, DuanE. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 2012; 22( 11): 1609– 1612
CrossRef
Google scholar
|
[11] |
JinF, GuoZ. Emerging role of a novel small non-coding regulatory RNA: tRNA-derived small RNA. ExRNA 2019; 1 : 39
CrossRef
Google scholar
|
[12] |
KumarP, KuscuC, DuttaA. Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 2016; 41( 8): 679– 689
CrossRef
Google scholar
|
[13] |
IvanovP, EmaraMM, VillenJ, GygiSP, AndersonP. Angiogenin-induced tRNA fragments inhibit translation initiation. Mol Cell 2011; 43( 4): 613– 623
CrossRef
Google scholar
|
[14] |
ThompsonDM, ParkerR. The RNase Rny1p cleaves tRNAs and promotes cell death during oxidative stress in Saccharomyces cerevisiae. J Cell Biol 2009; 185( 1): 43– 50
CrossRef
Google scholar
|
[15] |
HondaS, LoherP, ShigematsuM, PalazzoJP, SuzukiR, ImotoI, RigoutsosI, KirinoY. Sex hormone-dependent tRNA halves enhance cell proliferation in breast and prostate cancers. Proc Natl Acad Sci USA 2015; 112( 29): E3816– E3825
CrossRef
Google scholar
|
[16] |
MauteRL, SchneiderC, SumazinP, HolmesA, CalifanoA, BassoK, Dalla-FaveraR. tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci USA 2013; 110( 4): 1404– 1409
CrossRef
Google scholar
|
[17] |
BalattiV, PekarskyY, CroceCM. Role of the tRNA-derived small RNAs in cancer: new potential biomarkers and target for therapy. Adv Cancer Res 2017; 135 : 173– 187
CrossRef
Google scholar
|
[18] |
PekarskyY, BalattiV, PalamarchukA, RizzottoL, VenezianoD, NigitaG, RassentiLZ, PassHI, KippsTJ, LiuCG, CroceCM. Dysregulation of a family of short noncoding RNAs, tsRNAs, in human cancer. Proc Natl Acad Sci USA 2016; 113( 18): 5071– 5076
CrossRef
Google scholar
|
[19] |
BalattiV, RizzottoL, MillerC, PalamarchukA, FaddaP, PandolfoR, RassentiLZ, HertleinE, RuppertAS, LozanskiA, LozanskiG, KippsTJ, ByrdJC, CroceCM, PekarskyY. TCL1 targeting miR-3676 is codeleted with tumor protein p53 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2015; 112( 7): 2169– 2174
CrossRef
Google scholar
|
[20] |
JinF, YangL, WangW, YuanN, ZhanS, YangP, ChenX, MaT, WangY. A novel class of tsRNA signatures as biomarkers for diagnosis and prognosis of pancreatic cancer. Mol Cancer 2021; 20 : 95
CrossRef
Google scholar
|
[21] |
GoodarziH, LiuX, NguyenHCB, ZhangS, FishL, TavazoieSF. Endogenous tRNA-derived fragments suppress breast cancer progression via YBX1 displacement. Cell 2015; 161( 4): 790– 802
CrossRef
Google scholar
|
[22] |
ZhangY, ZhangY, ShiJ, ZhangH, CaoZ, GaoX, RenW, NingY, NingL, CaoY, ChenY, JiW, ChenZJ, ChenQ, DuanE. Identification and characterization of an ancient class of small RNAs enriched in serum associating with active infection. J Mol Cell Biol 2014; 6( 2): 172– 174
CrossRef
Google scholar
|
[23] |
WangJ, MaG, LiM, HanX, XuJ, LiangM, MaoX, ChenX, XiaT, LiuX, WangS. Plasma tRNA fragments derived from 5′ ends as novel diagnostic biomarkers for early-stage breast cancer. Mol Ther Nucleic Acids 2020; 21 : 954– 964
CrossRef
Google scholar
|
[24] |
GuX, WangL, CoatesPJ, BoldrupL, FåhraeusR, WilmsT, SgaramellaN, NylanderK. Transfer-RNA-derived fragments are potential prognostic factors in patients with squamous cell carcinoma of the head and neck. Genes (Basel) 2020; 11( 11): 1344
CrossRef
Google scholar
|
[25] |
YuM, LiuZ, LiuY, ZhouX, SunF, LiuY, LiL, HuaS, ZhaoY, GaoH, ZhuZ, NaM, ZhangQ, YangR, ZhangJ, YaoY, ChenX. PTP1B markedly promotes breast cancer progression and is regulated by miR-193a-3p. FEBS J 2019; 286( 6): 1136– 1153
CrossRef
Google scholar
|
[26] |
KrügerJ, RehmsmeierM. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 2006; 34(Web Server issue): W451− 454 doi: 10.1093/nar/gkl243
Pubmed
|
[27] |
XieC, Mao X, HuangJ, DingY, WuJ, Dong S, KongL, GaoG, Li CY, WeiL. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39(Web Server issue): W316– 322 doi: 10.1093/nar/gkr483
Pubmed
|
[28] |
HurK, ToiyamaY, OkugawaY, IdeS, ImaokaH, BolandCR, GoelA. Circulating microRNA-203 predicts prognosis and metastasis in human colorectal cancer. Gut 2017; 66( 4): 654– 665
CrossRef
Google scholar
|
[29] |
YamadaA, HorimatsuT, OkugawaY, NishidaN, HonjoH, IdaH, KouT, KusakaT, SasakiY, YagiM, HigurashiT, YukawaN, AmanumaY, KikuchiO, MutoM, UenoY, NakajimaA, ChibaT, BolandCR, GoelA. Serum miR-21, miR-29a, and miR-125b are promising biomarkers for the early detection of colorectal neoplasia. Clin Cancer Res 2015; 21( 18): 4234– 4242
CrossRef
Google scholar
|
[30] |
KuscuC, KumarP, KiranM, SuZ, MalikA, DuttaA. tRNA fragments (tRFs) guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner. RNA 2018; 24( 8): 1093– 1105
CrossRef
Google scholar
|
[31] |
PliatsikaV, LoherP, MageeR, TelonisAG, LondinE, ShigematsuM, KirinoY, RigoutsosI. MINTbase v2.0: a comprehensive database for tRNA-derived fragments that includes nuclear and mitochondrial fragments from all The Cancer Genome Atlas projects. Nucleic Acids Res 2018; 46( D1): D152– D159
CrossRef
Google scholar
|
[32] |
RehmsmeierM, SteffenP, HochsmannM, GiegerichR. Fast and effective prediction of microRNA/target duplexes. RNA 2004; 10( 10): 1507– 1517
CrossRef
Google scholar
|
[33] |
HynesRO. The extracellular matrix: not just pretty fibrils. Science 2009; 326( 5957): 1216– 1219
CrossRef
Google scholar
|
[34] |
SeikiM. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett 2003; 194( 1): 1– 11
CrossRef
Google scholar
|
[35] |
Brandão-CostaRM, Helal-NetoE, VieiraAM, Barcellos-de-SouzaP, Morgado-DiazJ, Barja-FidalgoC. Extracellular matrix derived from high metastatic human breast cancer triggers epithelial-mesenchymal transition in epithelial breast cancer cells through αvβ3 integrin. Int J Mol Sci 2020; 21( 8): 2995
CrossRef
Google scholar
|
[36] |
MaL, YoungJ, PrabhalaH, PanE, MestdaghP, MuthD, Teruya-FeldsteinJ, ReinhardtF, OnderTT, ValastyanS, WestermannF, SpelemanF, VandesompeleJ, WeinbergRA. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12( 3): 247– 256
CrossRef
Google scholar
|
[37] |
RubinsteinMR, WangX, LiuW, HaoY, CaiG, HanYW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 2013; 14( 2): 195– 206
CrossRef
Google scholar
|
[38] |
SchmalhoferO, BrabletzS, BrabletzT. E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer. Cancer Metastasis Rev 2009; 28(1−2): 151− 166 doi:10.1007/s10555-008-9179-y
Pubmed
|
[39] |
RenD, LinB, ZhangX, PengY, YeZ, MaY, LiangY, CaoL, LiX, LiR, SunL, LiuQ, WuJ, ZhouK, ZengJ. Maintenance of cancer stemness by miR-196b-5p contributes to chemoresistance of colorectal cancer cells via activating STAT3 signaling pathway. Oncotarget 2017; 8( 30): 49807– 49823
CrossRef
Google scholar
|
[40] |
CalvisiDF, LaduS, GordenA, FarinaM, ConnerEA, LeeJS, FactorVM, ThorgeirssonSS. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130( 4): 1117– 1128
CrossRef
Google scholar
|
[41] |
ShuaiK, LiuB. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol 2003; 3( 11): 900– 911
CrossRef
Google scholar
|
[42] |
YangJD, HainautP, GoresGJ, AmadouA, PlymothA, RobertsLR. A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nat Rev Gastroenterol Hepatol 2019; 16( 10): 589– 604
CrossRef
Google scholar
|
[43] |
TrevisaniF, D’IntinoPE, Morselli-LabateAM, MazzellaG, AccogliE, CaraceniP, DomenicaliM, DeNotariis S, RodaE, BernardiM. Serum alpha-fetoprotein for diagnosis of hepatocellular carcinoma in patients with chronic liver disease: influence of HBsAg and anti-HCV status. J Hepatol 2001; 34( 4): 570– 575
CrossRef
Google scholar
|
[44] |
ColliA, FraquelliM, CasazzaG, MassironiS, ColucciA, ConteD, DucaP. Accuracy of ultrasonography, spiral CT, magnetic resonance, and alpha-fetoprotein in diagnosing hepatocellular carcinoma: a systematic review. Am J Gastroenterol 2006; 101( 3): 513– 523
CrossRef
Google scholar
|
[45] |
LokAS, SterlingRK, EverhartJE, WrightEC, HoefsJC, DiBisceglie AM, MorganTR, KimHY, LeeWM, BonkovskyHL, DienstagJL; HALT-C Trial Group. Des-γ-carboxy prothrombin and α-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. Gastroenterology 2010; 138( 2): 493– 502
CrossRef
Google scholar
|
[46] |
HayesJ, PeruzziPP, LawlerS. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 2014; 20( 8): 460– 469
CrossRef
Google scholar
|
[47] |
SchwarzenbachH, HoonDSB, PantelK. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11( 6): 426– 437
CrossRef
Google scholar
|
[48] |
GiordanoS, ColumbanoA. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology 2013; 57(2): 840− 847 doi:10.1002/hep.26095
Pubmed
|
[49] |
FornariF, FerracinM, TrerèD, MilazzoM, MarinelliS, GalassiM, VenerandiL, PollutriD, PatriziC, BorghiA, FoschiFG, StefaniniGF, NegriniM, BolondiL, GramantieriL. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, identify cirrhotic patients with HCC. PLoS One 2015; 10( 10): e0141448
CrossRef
Google scholar
|
[50] |
BhattacharyaS, SteeleR, ShrivastavaS, ChakrabortyS, Di BisceglieAM, RayRB. Serum miR-30e and miR-223 as novel noninvasive biomarkers for hepatocellular carcinoma. Am J Pathol 2016; 186( 2): 242– 247
CrossRef
Google scholar
|
[51] |
CaiJ, ChenL, ZhangZ, ZhangX, LuX, LiuW, ShiG, GeY, GaoP, YangY, KeA, XiaoL, DongR, ZhuY, YangX, WangJ, ZhuT, YangD, HuangX, SuiC, QiuS, ShenF, SunH, ZhouW, ZhouJ, NieJ, ZengC, StroupEK, ZhangX, ChiuBCH, LauWY, HeC, WangH, ZhangW, FanJ. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut 2019; 68( 12): 2195– 2205
CrossRef
Google scholar
|
[52] |
WenL, LiJ, GuoH, LiuX, ZhengS, ZhangD, ZhuW, QuJ, GuoL, DuD, JinX, ZhangY, GaoY, ShenJ, GeH, TangF, HuangY, PengJ. Genome-scale detection of hypermethylated CpG islands in circulating cell-free DNA of hepatocellular carcinoma patients. Cell Res 2015; 25( 11): 1250– 1264
CrossRef
Google scholar
|
[53] |
ShiJ, ZhangY, ZhouT, ChenQ. tsRNAs: the Swiss army knife for translational regulation. Trends Biochem Sci 2019; 44( 3): 185– 189
CrossRef
Google scholar
|
[54] |
LeeYS, ShibataY, MalhotraA, DuttaA. A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 2009; 23( 22): 2639– 2649
CrossRef
Google scholar
|
[55] |
ThompsonDM, ParkerR. Stressing out over tRNA cleavage. Cell 2009; 138( 2): 215– 219
CrossRef
Google scholar
|
[56] |
FuH, FengJ, LiuQ, SunF, TieY, ZhuJ, XingR, SunZ, ZhengX. Stress induces tRNA cleavage by angiogenin in mammalian cells. FEBS Lett 2009; 583( 2): 437– 442
CrossRef
Google scholar
|
[57] |
YinY, CaiX, ChenX, LiangH, ZhangY, LiJ, WangZ, ChenX, ZhangW, YokoyamaS, WangC, LiL, LiL, HouD, DongL, XuT, HiroiT, YangF, JiH, ZhangJ, ZenK, ZhangCY. Tumor-secreted miR-214 induces regulatory T cells: a major link between immune evasion and tumor growth. Cell Res 2014; 24( 10): 1164– 1180
CrossRef
Google scholar
|
[58] |
BlackburnSD, ShinH, HainingWN, ZouT, WorkmanCJ, PolleyA, BettsMR, FreemanGJ, VignaliDAA, WherryEJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10( 1): 29– 37
CrossRef
Google scholar
|
[59] |
KusmartsevS, NefedovaY, YoderD, GabrilovichDI. Antigen-specific inhibition of CD8+ T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species. J Immunol 2004; 172( 2): 989– 999
CrossRef
Google scholar
|
/
〈 | 〉 |