PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19

Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, Yun Tan

PDF(2771 KB)
PDF(2771 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (2) : 251-262. DOI: 10.1007/s11684-021-0915-9
RESEARCH ARTICLE
RESEARCH ARTICLE

PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19

Author information +
History +

Abstract

Pathogenic microbes can induce cellular dysfunction, immune response, and cause infectious disease and other diseases including cancers. However, the cellular distributions of pathogens and their impact on host cells remain rarely explored due to the limited methods. Taking advantage of single-cell RNA-sequencing (scRNA-seq) analysis, we can assess the transcriptomic features at the single-cell level. Still, the tools used to interpret pathogens (such as viruses, bacteria, and fungi) at the single-cell level remain to be explored. Here, we introduced PathogenTrack, a python-based computational pipeline that uses unmapped scRNA-seq data to identify intracellular pathogens at the single-cell level. In addition, we established an R package named Yeskit to import, integrate, analyze, and interpret pathogen abundance and transcriptomic features in host cells. Robustness of these tools has been tested on various real and simulated scRNA-seq datasets. PathogenTrack is competitive to the state-of-the-art tools such as Viral-Track, and the first tools for identifying bacteria at the single-cell level. Using the raw data of bronchoalveolar lavage fluid samples (BALF) from COVID-19 patients in the SRA database, we found the SARS-CoV-2 virus exists in multiple cell types including epithelial cells and macrophages. SARS-CoV-2-positive neutrophils showed increased expression of genes related to type I interferon pathway and antigen presenting module. Additionally, we observed the Haemophilus parahaemolyticus in some macrophage and epithelial cells, indicating a co-infection of the bacterium in some severe cases of COVID-19. The PathogenTrack pipeline and the Yeskit package are publicly available at GitHub.

Keywords

scRNA-seq / intracellular pathogen / microbe / COVID-19 / SARS-CoV-2

Cite this article

Download citation ▾
Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, Yun Tan. PathogenTrack and Yeskit: tools for identifying intracellular pathogens from single-cell RNA-sequencing datasets as illustrated by application to COVID-19. Front. Med., 2022, 16(2): 251‒262 https://doi.org/10.1007/s11684-021-0915-9

References

[1]
Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH. Massively parallel digital transcriptional profiling of single cells. Nat Commun 2017; 8(1): 14049
CrossRef Pubmed Google scholar
[2]
Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C, Daza R, Qiu X, Lee C, Furlan SN, Steemers FJ, Adey A, Waterston RH, Trapnell C, Shendure J. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017; 357(6352): 661–667
CrossRef Pubmed Google scholar
[3]
Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine JC, Geurts P, Aerts J, van den Oord J, Atak ZK, Wouters J, Aerts S. SCENIC: single-cell regulatory network inference and clustering. Nat Methods 2017; 14(11): 1083–1086
CrossRef Pubmed Google scholar
[4]
Papalexi E, Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat Rev Immunol 2018; 18(1): 35–45
CrossRef Pubmed Google scholar
[5]
Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, Modak M, Carotta S, Haslinger C, Kind D, Peet GW, Zhong G, Lu S, Zhu W, Mao Y, Xiao M, Bergmann M, Hu X, Kerkar SP, Vogt AB, Pflanz S, Liu K, Peng J, Ren X, Zhang Z. Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell 2019; 179(4): 829–845.e20
CrossRef Pubmed Google scholar
[6]
Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, Myung P, Plikus MV, Nie Q. Inference and analysis of cell−cell communication using CellChat. Nat Commun 2021; 12(1): 1088
CrossRef Pubmed Google scholar
[7]
Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp Mol Med 2018; 50(8): 1–14
CrossRef Pubmed Google scholar
[8]
Westermann AJ, Barquist L, Vogel J. Resolving host-pathogen interactions by dual RNA-seq. PLoS Pathog 2017; 13(2): e1006033
CrossRef Pubmed Google scholar
[9]
Bost P, Giladi A, Liu Y, Bendjelal Y, Xu G, David E, Blecher-Gonen R, Cohen M, Medaglia C, Li H, Deczkowska A, Zhang S, Schwikowski B, Zhang Z, Amit I. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 2020; 181(7): 1475–1488.e12
CrossRef Pubmed Google scholar
[10]
Srivastava A, Malik L, Smith T, Sudbery I, Patro R. Alevin efficiently estimates accurate gene abundances from dscRNA-seq data. Genome Biol 2019; 20(1): 65
CrossRef Pubmed Google scholar
[11]
Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017; 27(3): 491–499
CrossRef Pubmed Google scholar
[12]
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018; 34(17): i884–i890
CrossRef Pubmed Google scholar
[13]
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
CrossRef Pubmed Google scholar
[14]
Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol 2019; 20(1): 257
CrossRef Pubmed Google scholar
[15]
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell 2019; 177(7): 1888–1902.e21
CrossRef Pubmed Google scholar
[16]
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 2019; 16(12): 1289–1296
CrossRef Pubmed Google scholar
[17]
Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, Chen J. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol 2020; 21(1): 12
CrossRef Pubmed Google scholar
[18]
Alexa A, Rahnenführer J. Gene set enrichment analysis with topGO. Bioconductor Improv 2009; 27: 1–26
[19]
Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011; 27(12): 1739–1740
CrossRef Pubmed Google scholar
[20]
Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome Biol 2017; 18(1): 174
CrossRef Pubmed Google scholar
[21]
Sarkar H, Srivastava A, Patro R. Minnow: a principled framework for rapid simulation of dscRNA-seq data at the read level. Bioinformatics 2019; 35(14): i136–i144
CrossRef Pubmed Google scholar
[22]
Li WV, Li JJ. A statistical simulator scDesign for rational scRNA-seq experimental design. Bioinformatics 2019; 35(14): i41–i50
CrossRef Pubmed Google scholar
[23]
Zhang X, Xu C, Yosef N. Simulating multiple faceted variability in single cell RNA sequencing. Nat Commun 2019; 10(1): 2611
CrossRef Pubmed Google scholar
[24]
Dibaeinia P, Sinha S. SERGIO: a single-cell expression simulator guided by gene regulatory networks. Cell Syst 2020; 11(3): 252–271.e11
CrossRef Pubmed Google scholar
[25]
Tian J, Wang J, Roeder K. ESCO: single cell expression simulation incorporating gene co-expression. Bioinformatics 2021; 37(16): 2374–2381
CrossRef Pubmed Google scholar
[26]
Frazee AC, Jaffe AE, Langmead B, Leek JT. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics 2015; 31(17): 2778–2784
CrossRef Pubmed Google scholar
[27]
Hie B, Cho H, DeMeo B, Bryson B, Berger B. Geometric sketching compactly summarizes the single-cell transcriptomic landscape. Cell Syst 2019; 8(6): 483–493.e7
CrossRef Pubmed Google scholar
[28]
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, Liu L, Amit I, Zhang S, Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med 2020; 26(6): 842–844
CrossRef Pubmed Google scholar
[29]
Le Floch AS, Cassir N, Hraiech S, Guervilly C, Papazian L, Rolain JM. Haemophilus parahaemolyticus septic shock after aspiration pneumonia, France. Emerg Infect Dis 2013; 19(10): 1694–1695
CrossRef Pubmed Google scholar
[30]
Zhang P, Yang M, Zhang Y, Xiao S, Lai X, Tan A, Du S, Li S. Dissecting the single-cell transcriptome network underlying gastric premalignant lesions and early gastric cancer. Cell Rep 2019; 27(6): 1934–1947.e5
CrossRef Pubmed Google scholar
[31]
Wang C, Xie J, Zhao L, Fei X, Zhang H, Tan Y, Nie X, Zhou L, Liu Z, Ren Y, Yuan L, Zhang Y, Zhang J, Liang L, Chen X, Liu X, Wang P, Han X, Weng X, Chen Y, Yu T, Zhang X, Cai J, Chen R, Shi ZL, Bian XW. Alveolar macrophage dysfunction and cytokine storm in the pathogenesis of two severe COVID-19 patients. EBioMedicine 2020; 57: 102833
CrossRef Pubmed Google scholar
[32]
Tan Y, Zhang W, Zhu Z, Qiao N, Ling Y, Guo M, Yin T, Fang H, Xu X, Lu G, Zhang P, Yang S, Fu Z, Liang D, Xie Y, Zhang R, Jiang L, Yu S, Lu J, Jiang F, Chen J, Xiao C, Wang S, Chen S, Bian XW, Lu H, Liu F, Chen S. Integrating longitudinal clinical laboratory tests with targeted proteomic and transcriptomic analyses reveal the landscape of host responses in COVID-19. Cell Discov 2021; 7(1): 42
CrossRef Pubmed Google scholar
[33]
Rodriguez RM, Hernandez BY, Menor M, Deng Y, Khadka VS. The landscape of bacterial presence in tumor and adjacent normal tissue across 9 major cancer types using TCGA exome sequencing. Comput Struct Biotechnol J 2020; 18: 631–641
CrossRef Pubmed Google scholar
[34]
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, Kosciolek T, Janssen S, Metcalf J, Song SJ, Kanbar J, Miller-Montgomery S, Heaton R, Mckay R, Patel SP, Swafford AD, Knight R. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020; 579(7800): 567–574
CrossRef Pubmed Google scholar
[35]
Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, Weiser R, Mallel G, Gigi E, Meltser A, Douglas GM, Kamer I, Gopalakrishnan V, Dadosh T, Levin-Zaidman S, Avnet S, Atlan T, Cooper ZA, Arora R, Cogdill AP, Khan MAW, Ologun G, Bussi Y, Weinberger A, Lotan-Pompan M, Golani O, Perry G, Rokah M, Bahar-Shany K, Rozeman EA, Blank CU, Ronai A, Shaoul R, Amit A, Dorfman T, Kremer R, Cohen ZR, Harnof S, Siegal T, Yehuda-Shnaidman E, Gal-Yam EN, Shapira H, Baldini N, Langille MGI, Ben-Nun A, Kaufman B, Nissan A, Golan T, Dadiani M, Levanon K, Bar J, Yust-Katz S, Barshack I, Peeper DS, Raz DJ, Segal E, Wargo JA, Sandbank J, Shental N, Straussman R. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 2020; 368(6494): 973–980
CrossRef Pubmed Google scholar
[36]
Gareau MG, Sherman PM, Walker WA. Probiotics and the gut microbiota in intestinal health and disease. Nat Rev Gastroenterol Hepatol 2010; 7(9): 503–514
CrossRef Pubmed Google scholar
[37]
Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012; 13(4): 260–270
CrossRef Pubmed Google scholar
[38]
Sommer F, Anderson JM, Bharti R, Raes J, Rosenstiel P. The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol 2017; 15(10): 630–638
CrossRef Pubmed Google scholar
[39]
Sanders ME, Merenstein DJ, Reid G, Gibson GR, Rastall RA. Probiotics and prebiotics in intestinal health and disease: from biology to the clinic. Nat Rev Gastroenterol Hepatol 2019; 16(10): 605–616
CrossRef Pubmed Google scholar
[40]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30(6): 492–506
CrossRef Pubmed Google scholar
[41]
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009; 9(5): 313–323
CrossRef Pubmed Google scholar

Acknowledgements

We thank the support from Prof. Gang Lv and the ASTRA computing platform in the National Research Center for Translational Medicine (Shanghai) and the Pi computing platform in the Center for High Performance Computing at Shanghai Jiao Tong University. This work was supported by grants from National Natural Science Foundation of China (Nos. 8210010124 and 81890994), Double First-Class Project (No. WF510162602), National Key R&D Program of China (No. 2019YFA0905902), Natural Science Foundation of Shanghai (Nos. 21ZR1480900 and 21YF1427900), Shanghai Jiao Tong University (No. YG2021-QN19), and the Shanghai Guangci Translational Medical Research Development Foundation.

Compliance with ethics guidelines

Wei Zhang, Xiaoguang Xu, Ziyu Fu, Jian Chen, Saijuan Chen, and Yun Tan declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. This article does not contain any studies with human or animal subjects.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-021-0915-9 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2771 KB)

Accesses

Citations

Detail

Sections
Recommended

/