Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma
Yan Zhang, Baoyuan Zhang, Yongyun Li, Yuting Dai, Jiaoyang Li, Donghe Li, Zhizhou Xia, Jianming Zhang, Ping Liu, Ming Chen, Bo Jiao, Ruibao Ren
Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma
More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.
uveal melanoma / mutant GNAQ/11 / palmitoylation / BCL2 / combination target therapy
[1] |
Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell 2017; 170( 1): 17– 33
CrossRef
Pubmed
Google scholar
|
[2] |
Dorsam RT, Gutkind JS. G-protein-coupled receptors and cancer. Nat Rev Cancer 2007; 7( 2): 79– 94
CrossRef
Pubmed
Google scholar
|
[3] |
O’Hayre M, Vázquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 2013; 13( 6): 412– 424
CrossRef
Pubmed
Google scholar
|
[4] |
Jager MJ, Shields CL, Cebulla CM, Abdel-Rahman MH, Grossniklaus HE, Stern MH, Carvajal RD, Belfort RN, Jia R, Shields JA, Damato BE. Uveal melanoma. Nat Rev Dis Primers 2020; 6( 1): 24
CrossRef
Pubmed
Google scholar
|
[5] |
Jovanovic P, Mihajlovic M, Djordjevic-Jocic J, Vlajkovic S, Cekic S, Stefanovic V. Ocular melanoma: an overview of the current status. Int J Clin Exp Pathol 2013; 6( 7): 1230– 1244
Pubmed
|
[6] |
Seth R, Messersmith H, Kaur V, Kirkwood JM, Kudchadkar R, McQuade JL, Provenzano A, Swami U, Weber J, Alluri KC, Agarwala S, Ascierto PA, Atkins MB, Davis N, Ernstoff MS, Faries MB, Gold JS, Guild S, Gyorki DE, Khushalani NI, Meyers MO, Robert C, Santinami M, Sehdev A, Sondak VK, Spurrier G, Tsai KK, van Akkooi A, Funchain P. Systemic therapy for melanoma: ASCO Guideline. J Clin Oncol 2020; 38( 33): 3947– 3970
CrossRef
Pubmed
Google scholar
|
[7] |
Hu Q, Shokat KM. Disease-causing mutations in the G protein Gαs subvert the roles of GDP and GTP. Cell 2018; 173( 5): 1254– 1264.e11
CrossRef
Pubmed
Google scholar
|
[8] |
Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, Coupland SE, Roose JP, Bastian BC. RasGRP3 mediates MAPK pathway activation in GNAQ mutant uveal melanoma. Cancer Cell 2017; 31( 5): 685– 696.e6
CrossRef
Pubmed
Google scholar
|
[9] |
Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, Obenauf AC, Wackernagel W, Green G, Bouvier N, Sozen MM, Baimukanova G, Roy R, Heguy A, Dolgalev I, Khanin R, Busam K, Speicher MR, O’Brien J, Bastian BC. Mutations in GNA11 in uveal melanoma. N Engl J Med 2010; 363( 23): 2191– 2199
CrossRef
Pubmed
Google scholar
|
[10] |
Feng X, Arang N, Rigiracciolo DC, Lee JS, Yeerna H, Wang Z, Lubrano S, Kishore A, Pachter JA, König GM, Maggiolini M, Kostenis E, Schlaepfer DD, Tamayo P, Chen Q, Ruppin E, Gutkind JS. A platform of synthetic lethal gene interaction networks reveals that the GNAQ uveal melanoma oncogene controls the Hippo pathway through FAK. Cancer Cell 2019; 35( 3): 457– 472.e5
CrossRef
Pubmed
Google scholar
|
[11] |
Feng X, Degese MS, Iglesias-Bartolome R, Vaque JP, Molinolo AA, Rodrigues M, Zaidi MR, Ksander BR, Merlino G, Sodhi A, Chen Q, Gutkind JS. Hippo-independent activation of YAP by the GNAQ uveal melanoma oncogene through a trio-regulated rho GTPase signaling circuitry. Cancer Cell 2014; 25( 6): 831– 845
CrossRef
Pubmed
Google scholar
|
[12] |
Yu FX, Luo J, Mo JS, Liu G, Kim YC, Meng Z, Zhao L, Peyman G, Ouyang H, Jiang W, Zhao J, Chen X, Zhang L, Wang CY, Bastian BC, Zhang K, Guan KL. Mutant Gq/11 promote uveal melanoma tumorigenesis by activating YAP. Cancer Cell 2014; 25( 6): 822– 830
CrossRef
Pubmed
Google scholar
|
[13] |
Vader MJC, Madigan MC, Versluis M, Suleiman HM, Gezgin G, Gruis NA, Out-Luiting JJ, Bergman W, Verdijk RM, Jager MJ, van der Velden PA. GNAQ and GNA11 mutations and downstream YAP activation in choroidal nevi. Br J Cancer 2017; 117( 6): 884– 887
CrossRef
Pubmed
Google scholar
|
[14] |
Chua V, Lapadula D, Randolph C, Benovic JL, Wedegaertner PB, Aplin AE. Dysregulated GPCR signaling and therapeutic options in uveal melanoma. Mol Cancer Res 2017; 15( 5): 501– 506
CrossRef
Pubmed
Google scholar
|
[15] |
Steeb T, Wessely A, Ruzicka T, Heppt MV, Berking C. How to MEK the best of uveal melanoma: a systematic review on the efficacy and safety of MEK inhibitors in metastatic or unresectable uveal melanoma. Eur J Cancer 2018; 103 : 41– 51
CrossRef
Pubmed
Google scholar
|
[16] |
Annala S, Feng X, Shridhar N, Eryilmaz F, Patt J, Yang J, Pfeil EM, Cervantes-Villagrana RD, Inoue A, Häberlein F, Slodczyk T, Reher R, Kehraus S, Monteleone S, Schrage R, Heycke N, Rick U, Engel S, Pfeifer A, Kolb P, König G, Bünemann M, Tüting T, Vázquez-Prado J, Gutkind JS, Gaffal E, Kostenis E. Direct targeting of Gαq and Gα11 oncoproteins in cancer cells. Sci Signal 2019; 12( 573): eaau5948
CrossRef
Pubmed
Google scholar
|
[17] |
Singh AD, Turell ME, Topham AK. Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology 2011; 118( 9): 1881– 1885
CrossRef
Pubmed
Google scholar
|
[18] |
Arnold JJ, Blinder KJ, Bressler NM, Bressler SB, Burdan A, Haynes L, Lim JI, Miller JW, Potter MJ, Reaves A, Rosenfeld PJ, Sickenberg M, Slakter JS, Soubrane G, Strong HA, Stur M; Treatment of Age-Related Macular Degeneration with Photodynamic Therapy Study Group; Verteporfin in Photodynamic Therapy Study Group. Acute severe visual acuity decrease after photodynamic therapy with verteporfin: case reports from randomized clinical trials—TAP and VIP report no. 3. Am J Ophthalmol 2004; 137( 4): 683– 696
CrossRef
Pubmed
Google scholar
|
[19] |
Khalili JS, Yu X, Wang J, Hayes BC, Davies MA, Lizee G, Esmaeli B, Woodman SE. Combination small molecule MEK and PI3K inhibition enhances uveal melanoma cell death in a mutant GNAQ- and GNA11-dependent manner. Clin Cancer Res 2012; 18( 16): 4345– 4355
CrossRef
Pubmed
Google scholar
|
[20] |
Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, Bastian BC. Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 2014; 33( 39): 4724– 4734
CrossRef
Pubmed
Google scholar
|
[21] |
Paradis JS, Acosta M, Saddawi-Konefka R, Kishore A, Gomes F, Arang N, Tiago M, Coma S, Lubrano S, Wu X, Ford K, Day CP, Merlino G, Mali P, Pachter JA, Sato T, Aplin AE, Gutkind JS. Synthetic lethal screens reveal cotargeting FAK and MEK as a multimodal precision therapy for GNAQ-driven uveal melanoma. Clin Cancer Res 2021; 27( 11): 3190– 3200
CrossRef
Pubmed
Google scholar
|
[22] |
Sagoo MS, Harbour JW, Stebbing J, Bowcock AM. Combined PKC and MEK inhibition for treating metastatic uveal melanoma. Oncogene 2014; 33( 39): 4722– 4723
CrossRef
Pubmed
Google scholar
|
[23] |
Takasaki J, Saito T, Taniguchi M, Kawasaki T, Moritani Y, Hayashi K, Kobori M. A novel Gαq/11-selective inhibitor. J Biol Chem 2004; 279( 46): 47438– 47445
CrossRef
Pubmed
Google scholar
|
[24] |
Nishimura A, Kitano K, Takasaki J, Taniguchi M, Mizuno N, Tago K, Hakoshima T, Itoh H. Structural basis for the specific inhibition of heterotrimeric Gq protein by a small molecule. Proc Natl Acad Sci USA 2010; 107( 31): 13666– 13671
CrossRef
Pubmed
Google scholar
|
[25] |
Zaima K, Deguchi J, Matsuno Y, Kaneda T, Hirasawa Y, Morita H. Vasorelaxant effect of FR900359 from Ardisia crenata on rat aortic artery. J Nat Med 2013; 67( 1): 196– 201
CrossRef
Pubmed
Google scholar
|
[26] |
Schrage R, Schmitz AL, Gaffal E, Annala S, Kehraus S, Wenzel D, Büllesbach KM, Bald T, Inoue A, Shinjo Y, Galandrin S, Shridhar N, Hesse M, Grundmann M, Merten N, Charpentier TH, Martz M, Butcher AJ, Slodczyk T, Armando S, Effern M, Namkung Y, Jenkins L, Horn V, Stößel A, Dargatz H, Tietze D, Imhof D, Galés C, Drewke C, Müller CE, Hölzel M, Milligan G, Tobin AB, Gomeza J, Dohlman HG, Sondek J, Harden TK, Bouvier M, Laporte SA, Aoki J, Fleischmann BK, Mohr K, König GM, Tüting T, Kostenis E. The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 2015; 6( 1): 10156
CrossRef
Pubmed
Google scholar
|
[27] |
Ahearn IM, Haigis K, Bar-Sagi D, Philips MR. Regulating the regulator: post-translational modification of RAS. Nat Rev Mol Cell Biol 2012; 13 : 39– 51
CrossRef
Pubmed
Google scholar
|
[28] |
Linder ME, Middleton P, Hepler JR, Taussig R, Gilman AG, Mumby SM. Lipid modifications of G proteins: alpha subunits are palmitoylated. Proc Natl Acad Sci USA 1993; 90( 8): 3675– 3679
CrossRef
Pubmed
Google scholar
|
[29] |
De I, Sadhukhan S. Emerging roles of DHHC-mediated protein S-palmitoylation in physiological and pathophysiological context. Eur J Cell Biol 2018; 97( 5): 319– 338
CrossRef
Pubmed
Google scholar
|
[30] |
Greaves J, Chamberlain LH. DHHC palmitoyl transferases: substrate interactions and (patho)physiology. Trends Biochem Sci 2011; 36( 5): 245– 253
CrossRef
Pubmed
Google scholar
|
[31] |
Cuiffo B, Ren R. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood 2010; 115( 17): 3598– 3605
CrossRef
Pubmed
Google scholar
|
[32] |
Liu P, Jiao B, Zhang R, Zhao H, Zhang C, Wu M, Li D, Zhao X, Qiu Q, Li J, Ren R. Palmitoylacyltransferase Zdhhc9 inactivation mitigates leukemogenic potential of oncogenic Nras. Leukemia 2016; 30( 5): 1225– 1228
CrossRef
Pubmed
Google scholar
|
[33] |
Xia Z, Zhang X, Liu P, Zhang R, Huang Z, Li D, Xiao X, Wu M, Ning N, Zhang Q, Zhang J, Liu M, Jiao B, Ren R. GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death Dis 2021; 12( 1): 54
CrossRef
Pubmed
Google scholar
|
[34] |
Duncan JA, Gilman AG. Autoacylation of G protein alpha subunits. J Biol Chem 1996; 271( 38): 23594– 23600
CrossRef
Pubmed
Google scholar
|
[35] |
Grassie MA, McCallum JF, Guzzi F, Magee AI, Milligan G, Parenti M. The palmitoylation status of the G-protein G(o)1 alpha regulates its activity of interaction with the plasma membrane. Biochem J 1994; 302( 3): 913– 920
CrossRef
Pubmed
Google scholar
|
[36] |
Sikarwar AS, Hinton M, Santhosh KT, Chelikani P, Dakshinamurti S. Palmitoylation of Gαq determines its association with the thromboxane receptor in hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 2014; 50( 1): 135– 143
Pubmed
|
[37] |
Evanko DS, Thiyagarajan MM, Siderovski DP, Wedegaertner PB. Gβγ isoforms selectively rescue plasma membrane localization and palmitoylation of mutant Gαs and Gαq. J Biol Chem 2001; 276( 26): 23945– 23953
CrossRef
Pubmed
Google scholar
|
[38] |
Tsutsumi R, Fukata Y, Noritake J, Iwanaga T, Perez F, Fukata M. Identification of G protein alpha subunit-palmitoylating enzyme. Mol Cell Biol 2009; 29( 2): 435– 447
CrossRef
Pubmed
Google scholar
|
[39] |
Wu M, Huang J, Zhang J, Benes C, Jiao B, Ren R. N-Arachidonoyl dopamine inhibits NRAS neoplastic transformation by suppressing its plasma membrane translocation. Mol Cancer Ther 2017; 16( 1): 57– 67
CrossRef
Pubmed
Google scholar
|
[40] |
Ning N, Yu Y, Wu M, Zhang R, Zhang T, Zhu C, Huang L, Yun CH, Benes CH, Zhang J, Deng X, Chen Q, Ren R. A novel microtubule inhibitor overcomes multidrug resistance in tumors. Cancer Res 2018; 78( 20): 5949– 5957
CrossRef
Pubmed
Google scholar
|
[41] |
He F, Yu J, Yang J, Wang S, Zhuang A, Shi H, Gu X, Xu X, Chai P, Jia R. m6A RNA hypermethylation-induced BACE2 boosts intracellular calcium release and accelerates tumorigenesis of ocular melanoma. Mol Ther 2021; 29( 6): 2121– 2133
CrossRef
Pubmed
Google scholar
|
[42] |
Slater K, Heeran AB, Garcia-Mulero S, Kalirai H, Sanz-Pamplona R, Rahman A, Al-Attar N, Helmi M, O’Connell F, Bosch R, Portela A, Villanueva A, Gallagher WM, Jensen LD, Piulats JM, Coupland SE, O’Sullivan J, Kennedy BN. High cysteinyl leukotriene receptor 1 expression correlates with poor survival of uveal melanoma patients and cognate antagonist drugs modulate the growth, cancer secretome, and metabolism of uveal melanoma cells. Cancers (Basel) 2020; 12( 10): 2950
CrossRef
Pubmed
Google scholar
|
[43] |
Tan S, Yang H, Xue S, Qiao J, Salarian M, Hekmatyar K, Meng Y, Mukkavilli R, Pu F, Odubade OY, Harris W, Hai Y, Yushak ML, Morales-Tirado VM, Mittal P, Sun PZ, Lawson D, Grossniklaus HE, Yang JJ. Chemokine receptor 4 targeted protein MRI contrast agent for early detection of liver metastases. Sci Adv 2020; 6( 6): eaav7504
CrossRef
Pubmed
Google scholar
|
[44] |
Jager MJ, Magner JAB, Ksander BR, Dubovy SR. Uveal melanoma cell lines: where do they come from? (An American Ophthalmological Society Thesis). Trans Am Ophthalmol Soc 2016; 114 : T5
Pubmed
|
[45] |
Yu X, Ambrosini G, Roszik J, Eterovic AK, Stempke-Hale K, Seftor EA, Chattopadhyay C, Grimm E, Carvajal RD, Hendrix MJ, Hodi FS, Schwartz GK, Woodman SE. Genetic analysis of the ‘uveal melanoma’ C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line. Pigment Cell Melanoma Res 2015; 28( 3): 357– 359
CrossRef
Pubmed
Google scholar
|
[46] |
Li Y, He J, Qiu C, Shang Q, Qian G, Fan X, Ge S, Jia R. The oncolytic virus H101 combined with GNAQ siRNA-mediated knockdown reduces uveal melanoma cell viability. J Cell Biochem 2019; 120( 4): 5766– 5776
CrossRef
Pubmed
Google scholar
|
[47] |
Wu X, Zhu M, Fletcher JA, Giobbie-Hurder A, Hodi FS. The protein kinase C inhibitor enzastaurin exhibits antitumor activity against uveal melanoma. PLoS One 2012; 7( 1): e29622
CrossRef
Pubmed
Google scholar
|
[48] |
O’Hayre M, Degese MS, Gutkind JS. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr Opin Cell Biol 2014; 27 : 126– 135
CrossRef
Pubmed
Google scholar
|
[49] |
Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011; 11( 11): 761– 774
CrossRef
Pubmed
Google scholar
|
[50] |
Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 2016; 17( 2): 110– 122
CrossRef
Pubmed
Google scholar
|
[51] |
Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 2007; 8( 1): 74– 84
CrossRef
Pubmed
Google scholar
|
[52] |
Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, Rogers A, Zhu W, Richards JR, Winter JM, Zhu J, Dunn C, Bajji A, Shenderovich M, Mueller AL, Woodman SE, Harbour JW, Thomas KR, Odelberg SJ, Ostanin K, Li DY. ARF6 is an actionable node that orchestrates oncogenic GNAQ signaling in uveal melanoma. Cancer Cell 2016; 29( 6): 889– 904
CrossRef
Pubmed
Google scholar
|
[53] |
Yu FX, Zhang K, Guan KL. YAP as oncotarget in uveal melanoma. Oncoscience 2014; 1( 7): 480– 481
CrossRef
Pubmed
Google scholar
|
[54] |
Onken MD, Makepeace CM, Kaltenbronn KM, Kanai SM, Todd TD, Wang S, Broekelmann TJ, Rao PK, Cooper JA, Blumer KJ. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Sci Signal 2018; 11( 546): eaao6852
CrossRef
Pubmed
Google scholar
|
[55] |
Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, Lu H, Fang C, Zhang Y, Liang L, Zhou X, Wang C, Xue Y, Cui Y, Xu J. Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng 2019; 3( 4): 306– 317
CrossRef
Pubmed
Google scholar
|
[56] |
Lu Y, Yan JS, Xia L, Qin K, Yin QQ, Xu HT, Gao MQ, Qu XN, Sun YT, Chen GQ. 2-Bromopalmitate targets retinoic acid receptor alpha and overcomes all-trans retinoic acid resistance of acute promyelocytic leukemia. Haematologica 2019; 104( 1): 102– 112
CrossRef
Pubmed
Google scholar
|
[57] |
Némati F, de Montrion C, Lang G, Kraus-Berthier L, Carita G, Sastre-Garau X, Berniard A, Vallerand D, Geneste O, de Plater L, Pierré A, Lockhart B, Desjardins L, Piperno-Neumann S, Depil S, Decaudin D. Targeting Bcl-2/Bcl-XL induces antitumor activity in uveal melanoma patient-derived xenografts. PLoS One 2014; 9( 1): e80836
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |