Accurate quantification of 3′-terminal 2′-O-methylated small RNAs by utilizing oxidative deep sequencing and stem-loop RT-qPCR

Yan Kong , Huanhuan Hu , Yangyang Shan , Zhen Zhou , Ke Zen , Yulu Sun , Rong Yang , Zheng Fu , Xi Chen

Front. Med. ›› 2022, Vol. 16 ›› Issue (2) : 240 -250.

PDF (4265KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (2) : 240 -250. DOI: 10.1007/s11684-021-0909-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Accurate quantification of 3′-terminal 2′-O-methylated small RNAs by utilizing oxidative deep sequencing and stem-loop RT-qPCR

Author information +
History +
PDF (4265KB)

Abstract

The continuing discoveries of novel classes of RNA modifications in various organisms have raised the need for improving sensitive, convenient, and reliable methods for quantifying RNA modifications. In particular, a subset of small RNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), are modified at their 3′-terminal nucleotides via 2′-O-methylation. However, quantifying the levels of these small RNAs is difficult because 2′-O-methylation at the RNA 3′-terminus inhibits the activity of polyadenylate polymerase and T4 RNA ligase. These two enzymes are indispensable for RNA labeling or ligation in conventional miRNA quantification assays. In this study, we profiled 3′-terminal 2′-O-methyl plant miRNAs in the livers of rice-fed mice by oxidative deep sequencing and detected increasing amounts of plant miRNAs with prolonged oxidation treatment. We further compared the efficiency of stem-loop and poly(A)-tailed RT-qPCR in quantifying plant miRNAs in animal tissues and identified stem-loop RT-qPCR as the only suitable approach. Likewise, stem-loop RT-qPCR was superior to poly(A)-tailed RT-qPCR in quantifying 3′-terminal 2′-O-methyl piRNAs in human seminal plasma. In summary, this study established a standard procedure for quantifying the levels of 3′-terminal 2′-O-methyl miRNAs in plants and piRNAs. Accurate measurement of the 3′-terminal 2′-O-methylation of small RNAs has profound implications for understanding their pathophysiologic roles in biological systems.

Keywords

small RNAs / 2′-O-methylation / sequencing / RT-qPCR

Cite this article

Download citation ▾
Yan Kong, Huanhuan Hu, Yangyang Shan, Zhen Zhou, Ke Zen, Yulu Sun, Rong Yang, Zheng Fu, Xi Chen. Accurate quantification of 3′-terminal 2′-O-methylated small RNAs by utilizing oxidative deep sequencing and stem-loop RT-qPCR. Front. Med., 2022, 16(2): 240-250 DOI:10.1007/s11684-021-0909-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LimbachPA, CrainPF, McCloskeyJA. Summary: the modified nucleosides of RNA. Nucleic Acids Res 1994; 22( 12): 2183– 2196

[2]

MotorinY, HelmM. RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2011; 2( 5): 611– 631

[3]

MachnickaMA, MilanowskaK, Osman OglouO, PurtaE, KurkowskaM, OlchowikA, JanuszewskiW, KalinowskiS, Dunin-HorkawiczS, RotherKM, HelmM, BujnickiJM, GrosjeanH. MODOMICS: a database of RNA modification pathways—2013 update. Nucleic Acids Res 2013; 41(Database issue D1): D262− D267

[4]

KirinoY, MourelatosZ. 2′-O-methyl modification in mouse piRNAs and its methylase. Nucleic Acids Symp Ser (Oxf) 2007( 51): 417– 418

[5]

ShenY, ZhengKX, DuanD, JiangL, LiJ. Label-free microRNA profiling not biased by 3' end 2'-O-methylation. Anal Chem 2012; 84( 15): 6361– 6365

[6]

XieZ, KhannaK, RuanS. Expression of microRNAs and its regulation in plants. Semin Cell Dev Biol 2010; 21( 8): 790– 797

[7]

BartelDP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116( 2): 281– 297

[8]

YuB, YangZ, LiJ, MinakhinaS, YangM, PadgettRW, StewardR, ChenX. Methylation as a crucial step in plant microRNA biogenesis. Science 2005; 307( 5711): 932– 935

[9]

VaginVV, SigovaA, LiC, SeitzH, GvozdevV, ZamorePD. A distinct small RNA pathway silences selfish genetic elements in the germline. Science 2006; 313( 5785): 320– 324

[10]

KwonC, TakH, RhoM, ChangHR, KimYH, KimKT, BalchC, LeeEK, NamS. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells. Biochem Biophys Res Commun 2014; 446( 1): 218– 223

[11]

SiomiMC, SatoK, PezicD, AravinAA. PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 2011; 12( 4): 246– 258

[12]

HorwichMD, LiC, MatrangaC, VaginV, FarleyG, WangP, ZamorePD. The Drosophila RNA methyltransferase, DmHen1, modifies germline piRNAs and single-stranded siRNAs in RISC. Curr Biol 2007; 17( 14): 1265– 1272

[13]

KammingaLM, LuteijnMJ, den BroederMJ, RedlS, KaaijLJT, RooversEF, LadurnerP, BerezikovE, KettingRF. Hen1 is required for oocyte development and piRNA stability in zebrafish. EMBO J 2010; 29( 21): 3688– 3700

[14]

KirinoY, MourelatosZ. The mouse homolog of HEN1 is a potential methylase for Piwi-interacting RNAs. RNA 2007; 13( 9): 1397– 1401

[15]

SaitoK, SakaguchiY, SuzukiT, SuzukiT, SiomiH, SiomiMC. Pimet, the Drosophila homolog of HEN1, mediates 2′-O-methylation of Piwi-interacting RNAs at their 3′ ends. Genes Dev 2007; 21( 13): 1603– 1608

[16]

ChenX. Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 2009; 25( 1): 21– 44

[17]

AhlquistP. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 2002; 296( 5571): 1270– 1273

[18]

KirinoY, MourelatosZ. Mouse Piwi-interacting RNAs are 2′-O-methylated at their 3′ termini. Nat Struct Mol Biol 2007; 14( 4): 347– 348

[19]

KurthHM, MochizukiK. 2′-O-methylation stabilizes Piwi-associated small RNAs and ensures DNA elimination in Tetrahymena. RNA 2009; 15( 4): 675– 685

[20]

AmeresSL, HorwichMD, HungJH, XuJ, GhildiyalM, WengZ, ZamorePD. Target RNA-directed trimming and tailing of small silencing RNAs. Science 2010; 328( 5985): 1534– 1539

[21]

AschenbrennerJ, MarxA. Direct and site-specific quantification of RNA 2′-O-methylation by PCR with an engineered DNA polymerase. Nucleic Acids Res 2016; 44( 8): 3495– 3502

[22]

MunafóDB, RobbGB. Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 2010; 16( 12): 2537– 2552

[23]

HongY, WangC, FuZ, LiangH, ZhangS, LuM, SunW, YeC, ZhangCY, ZenK, ShiL, ZhangC, ChenX. Systematic characterization of seminal plasma piRNAs as molecular biomarkers for male infertility. Sci Rep 2016; 6( 1): 24229

[24]

ZhangL, HouD, ChenX, LiD, ZhuL, ZhangY, LiJ, BianZ, LiangX, CaiX, YinY, WangC, ZhangT, ZhuD, ZhangD, XuJ, ChenQ, BaY, LiuJ, WangQ, ChenJ, WangJ, WangM, ZhangQ, ZhangJ, ZenK, ZhangCY. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res 2012; 22( 1): 107– 126

[25]

ZhuK, LiuM, FuZ, ZhouZ, KongY, LiangH, LinZ, LuoJ, ZhengH, WanP, ZhangJ, ZenK, ChenJ, HuF, ZhangCY, RenJ, ChenX. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet 2017; 13( 8): e1006946

[26]

ZhouZ, LiX, LiuJ, DongL, ChenQ, LiuJ, KongH, ZhangQ, QiX, HouD, ZhangL, ZhangG, LiuY, ZhangY, LiJ, WangJ, ChenX, WangH, ZhangJ, ChenH, ZenK, ZhangCY. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 2015; 25( 1): 39– 49

[27]

ChinAR, FongMY, SomloG, WuJ, SwiderskiP, WuX, WangSE. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res 2016; 26( 2): 217– 228

[28]

LiangG, ZhuY, SunB, ShaoY, JingA, WangJ, XiaoZ. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr 2014; 2( 4): 380– 388

[29]

MlotshwaS, PrussGJ, MacArthurJL, EndresMW, DavisC, HofsethLJ, PeñaMM, VanceV. A novel chemopreventive strategy based on therapeutic microRNAs produced in plants. Cell Res 2015; 25( 4): 521– 524

[30]

YangJ, FarmerLM, AgyekumA A A, Elbaz-YounesI, HirschiKD. Detection of an abundant plant-based small RNA in healthy consumers. PLoS One 2015; 10( 9): e0137516

[31]

YangJ, FarmerLM, AgyekumA A A, HirschiKD. Detection of dietary plant-based small RNAs in animals. Cell Res 2015; 25( 4): 517– 520

[32]

DickinsonB, ZhangY, PetrickJS, HeckG, IvashutaS, MarshallWS. Lack of detectable oral bioavailability of plant microRNAs after feeding in mice. Nat Biotechnol 2013; 31( 11): 965– 967

[33]

MasoodM, EverettCP, ChanSY, SnowJW. Negligible uptake and transfer of diet-derived pollen microRNAs in adult honey bees. RNA Biol 2016; 13( 1): 109– 118

[34]

TosarJP, RoviraC, NayaH, CayotaA. Mining of public sequencing databases supports a non-dietary origin for putative foreign miRNAs: underestimated effects of contamination in NGS. RNA 2014; 20( 6): 754– 757

[35]

MicóV, MartínR, LasunciónMA, OrdovásJM, DaimielL. Unsuccessful detection of plant microrNAs in beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil. Plant Foods Hum Nutr 2016; 71( 1): 102– 108

[36]

JiL, ChenX. Regulation of small RNA stability: methylation and beyond. Cell Res 2012; 22( 4): 624– 636

[37]

OharaT, SakaguchiY, SuzukiT, UedaH, MiyauchiK, SuzukiT. The 3′ termini of mouse Piwi-interacting RNAs are 2′-O-methylated. Nat Struct Mol Biol 2007; 14( 4): 349– 350

[38]

ChenX, BaY, MaL, CaiX, YinY, WangK, GuoJ, ZhangY, ChenJ, GuoX, LiQ, LiX, WangW, ZhangY, WangJ, JiangX, XiangY, XuC, ZhengP, ZhangJ, LiR, ZhangH, ShangX, GongT, NingG, WangJ, ZenK, ZhangJ, ZhangCY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18( 10): 997– 1006

[39]

HaldipurB, ArankalleV. Circulating miR-122 levels in self-recovering hepatitis E patients. ExRNA 2019; 1 : 2

[40]

WangN, QuS, SunW, ZengZ, LiangH, ZhangCY, ChenX, ZenK. Direct quantification of 3′ terminal 2′-O-methylation of small RNAs by RT-qPCR. RNA 2018; 24( 11): 1520– 1529

[41]

ZhaoC, SunX, LiL. Biogenesis and function of extracellular miRNAs. ExRNA 2019; 1 : 38

[42]

JiangX, HouD, WeiZ, ZhengS, ZhangY, LiJ. Extracellular and intracellular microRNAs in pancreatic cancer: from early diagnosis to reducing chemoresistance. ExRNA 2019; 1 : 17

[43]

PereraBPU, TsaiZT, ColwellML, JonesTR, GoodrichJM, WangK, SartorMA, FaulkC, DolinoyDC. Somatic expression of piRNA and associated machinery in the mouse identifies short, tissue-specific piRNA. Epigenetics 2019; 14( 5): 504– 521

[44]

TangW, TuS, LeeHC, WengZ, MelloCC. The ribonuclease PARN-1 trims piRNA 3′ ends to promote transcriptome surveillance in C. elegans. Cell 2016; 164( 5): 974– 984

[45]

SellittoA, GelesK, D’AgostinoY, ConteM, AlexandrovaE, RoccoD, NassaG, GiuratoG, TaralloR, WeiszA, RizzoF. Molecular and functional characterization of the somatic PIWIL1/piRNA pathway in colorectal cancer cells. Cells 2019; 8( 11): 1390

[46]

TangF, HayashiK, KanedaM, LaoK, SuraniMA. A sensitive multiplex assay for piRNA expression. Biochem Biophys Res Commun 2008; 369( 4): 1190– 1194

[47]

HondaS, LoherP, MorichikaK, ShigematsuM, KawamuraT, KirinoY, RigoutsosI, KirinoY. Increasing cell density globally enhances the biogenesis of Piwi-interacting RNAs in Bombyx mori germ cells. Sci Rep 2017; 7( 1): 4110

[48]

KangW, Bang-BerthelsenCH, HolmA, HoubenAJS, MüllerAH, ThymannT, PociotF, EstivillX, FriedländerMR. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts. RNA 2017; 23( 4): 433– 445

[49]

TóthKF, PezicD, StuweE, WebsterA. The piRNA pathway guards the germline genome against transposable elements. Adv Exp Med Biol 2016; 886 : 51– 77

[50]

ZhaoK, ChengS, MiaoN, XuP, LuX, ZhangY, WangM, OuyangX, YuanX, LiuW, LuX, ZhouP, GuJ, ZhangY, QiuD, JinZ, SuC, PengC, WangJH, DongMQ, WanY, MaJ, ChengH, HuangY, YuY. A Pandas complex adapted for piRNA-guided transcriptional silencing and heterochromatin formation. Nat Cell Biol 2019; 21( 10): 1261– 1272

[51]

SunT, HanX. The disease-related biological functions of PIWI-interacting RNAs (piRNAs) and underlying molecular mechanisms. ExRNA 2019; 1 : 21

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4265KB)

Supplementary files

FMD-21063-OF-CX_suppl_1

6449

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/