Microorganism-derived biological macromolecules for tissue engineering

Naser Amini , Peiman Brouki Milan , Vahid Hosseinpour Sarmadi , Bahareh Derakhshanmehr , Ahmad Hivechi , Fateme Khodaei , Masoud Hamidi , Sara Ashraf , Ghazaleh Larijani , Alireza Rezapour

Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 358 -377.

PDF (7221KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 358 -377. DOI: 10.1007/s11684-021-0903-0
REVIEW
REVIEW

Microorganism-derived biological macromolecules for tissue engineering

Author information +
History +
PDF (7221KB)

Abstract

According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.

Keywords

biological macromolecules / regenerative medicine / tissue engineering / exopolysaccharide / carbohydrate

Cite this article

Download citation ▾
Naser Amini, Peiman Brouki Milan, Vahid Hosseinpour Sarmadi, Bahareh Derakhshanmehr, Ahmad Hivechi, Fateme Khodaei, Masoud Hamidi, Sara Ashraf, Ghazaleh Larijani, Alireza Rezapour. Microorganism-derived biological macromolecules for tissue engineering. Front. Med., 2022, 16(3): 358-377 DOI:10.1007/s11684-021-0903-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StaudtC, HornH, HempelDC, NeuTR. Volumetric measurements of bacterial cells and extracellular polymeric substance glycoconjugates in biofilms. Biotechnol Bioeng 2004; 88( 5): 585– 592

[2]

NwodoUU, GreenE, OkohAI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 2012; 13( 11): 14002– 14015

[3]

SchmidJ, SieberV, RehmB. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6 : 496

[4]

GeeseyG. Microbial exopolymers: ecological and economic considerations. Am Soc Microbiol News 1982; 48 : 9– 14

[5]

PalA, PaulAK. Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 2008; 48( 1): 49– 64

[6]

SutherlandIW. Biotechnology of Microbial Exopolysaccharides. Cambridge, UK: Cambridge University Press, 1990

[7]

RoperMC, GreveLC, LabavitchJM, KirkpatrickBC. Detection and visualization of an exopolysaccharide produced by Xylella fastidiosa in vitro and in planta. Appl Environ Microbiol 2007; 73( 22): 7252– 7258

[8]

AbsalonC, Van DellenK, WatnickPI. A communal bacterial adhesin anchors biofilm and bystander cells to surfaces. PLoS Pathog 2011; 7( 8): e1002210

[9]

NadellCD, BasslerBL. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc Natl Acad Sci USA 2011; 108( 34): 14181– 14185

[10]

MandalAK, SenIK, MaityP, ChattopadhyayS, ChakrabortyR, RoyS, IslamSS. Structural elucidation and biological studies of a novel exopolysaccaride from Klebsiella pneumoniae PB12. Int J Biol Macromol 2015; 79 : 413– 422

[11]

FreitasF, AlvesVD, ReisMA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 2011; 29( 8): 388– 398

[12]

OteroA, VincenziniM. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 2003; 102( 2): 143– 152

[13]

SutherlandIW. Novel and established applications of microbial polysaccharides. Trends Biotechnol 1998; 16( 1): 41– 46

[14]

RehmBH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 2010; 8( 8): 578– 592

[15]

IslamST, LamJS. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 2014; 60( 11): 697– 716

[16]

MoronaR, PurinsL, TociljA, MatteA, CyglerM. Sequence-structure relationships in polysaccharide co-polymerase (PCP) proteins. Trends Biochem Sci 2009; 34( 2): 78– 84

[17]

CuthbertsonL, MainprizeIL, NaismithJH, WhitfieldC. Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 2009; 73( 1): 155– 177

[18]

BakerP, WhitfieldGB, HillPJ, LittleDJ, PestrakMJ, RobinsonH, WozniakDJ, HowellPL. Characterization of the Pseudomonas aeruginosa glycoside hydrolase PslG reveals that its levels are critical for Psl polysaccharide biosynthesis and biofilm formation. J Biol Chem 2015; 290( 47): 28374– 28387

[19]

SchmidJ, SieberV. Enzymatic transformations involved in the biosynthesis of microbial exo-polysaccharides based on the assembly of repeat units. ChemBioChem 2015; 16( 8): 1141– 1147

[20]

WhitneyJC, HowellPL. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 2013; 21( 2): 63– 72

[21]

WillisLM, WhitfieldC. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 2013; 378 : 35– 44

[22]

WillisLM, StupakJ, RichardsMR, LowaryTL, LiJ, WhitfieldC. Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proc Natl Acad Sci U S A 2013; 110( 19): 7868– 7873

[23]

SchmidJ. Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr Opin Biotechnol 2018; 53 : 130– 136

[24]

ComteS, GuibaudG, BauduM. Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties: Part I. Comparison of the efficiency of eight EPS extraction methods. Enzyme Microb Technol 2006; 38( 1-2): 237– 245

[25]

LiuH, FangHH. Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 2002; 95( 3): 249– 256

[26]

ShengGP, YuHQ, YuZ. Extraction of extracellular polymeric substances from the photosynthetic bacterium Rhodopseudomonas acidophila. Appl Microbiol Biotechnol 2005; 67( 1): 125– 130

[27]

NouhaK, KumarRS, BalasubramanianS, TyagiRD. Critical review of EPS production, synthesis and composition for sludge flocculation. J Environ Sci (China) 2018; 66 : 225– 245

[28]

FlemmingHC, WingenderJ. The biofilm matrix. Nat Rev Microbiol 2010; 8( 9): 623– 633

[29]

SpäthR, FlemmingHC, WuertzS. Sorption properties of biofilms. Water Sci Technol 1998; 37( 4-5): 207– 210

[30]

SutherlandI. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology (Reading) 2001; 147( 1): 3– 9

[31]

SutherlandIW. Exopolysaccharides in biofilms, flocs and related structures. Water Sci Technol 2001; 43( 6): 77– 86

[32]

ParkC, NovakJT. Characterization of activated sludge exocellular polymers using several cation-associated extraction methods. Water Res 2007; 41( 8): 1679– 1688

[33]

JoshiPM, JuwarkarAA. In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 2009; 43( 15): 5884– 5889

[34]

HaJ, GélabertA, SpormannAM, BrownGE Jr. Role of extracellular polymeric substances in metal ion complexation on Shewanella oneidensis: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study. Geochim Cosmochim Acta 2010; 74( 1): 1– 15

[35]

ZhangD, WangJ, PanX. Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater 2006; 138( 3): 589– 593

[36]

PriesterJH, OlsonSG, WebbSM, NeuMP, HersmanLE, HoldenPA. Enhanced exopolymer production and chromium stabilization in Pseudomonas putida unsaturated biofilms. Appl Environ Microbiol 2006; 72( 3): 1988– 1996

[37]

ShengGP, YuHQ, LiXY. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 2010; 28( 6): 882– 894

[38]

HayID, Ur RehmanZ, MoradaliMF, WangY, RehmBH. Microbial alginate production, modification and its applications. Microb Biotechnol 2013; 6( 6): 637– 650

[39]

SinghRS, SainiGK, KennedyJF. Pullulan: microbial sources, production and applications. Carbohydr Polym 2008; 73( 4): 515– 531

[40]

Díaz-MontesE. Dextran: sources, structures, and properties. Polysaccharides 2021; 2( 3): 554– 565

[41]

SzeJH, BrownlieJC, LoveCA. Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 2016; 6 : 67

[42]

ShodaM, SuganoY. Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 2005; 10( 1): 1– 8

[43]

SarwatF, Ul QaderSA, AmanA, AhmedN. Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 2008; 4( 6): 379– 386

[44]

MonsanP, BozonnetS, AlbenneC, JouclaG, WillemotRM, Remaud-SiméonM. Homopolysaccharides from lactic acid bacteria. Int Dairy J 2001; 11( 9): 675– 685

[45]

DolsM, Remaud-SimeonM, WillemotRM, VignonM, MonsanP. Characterization of the different dextransucrase activities excreted in glucose, fructose, or sucrose medium by Leuconostoc mesenteroides NRRL B-1299. Appl Environ Microbiol 1998; 64( 4): 1298– 1302

[46]

HisamatsuM, AmemuraA, MatsuoT, MatsudaH, HaradaT. Cyclic (1→2)-β-D-glucan and the octasaccharide repeating-unit of succinoglycan produced by Agrobacterium. Microbiology 1982; 128( 8): 1873– 1879

[47]

SaitoH, MisakiA, HaradaT. A comparison of the structure of curdlan and pachyman. Agric Biol Chem 1968; 32( 10): 1261– 1269

[48]

DhiyaC, BennyIS, GunasekarV, PonnusamiV. A review on development of fermentative production of curdlan. Int J Chemtech Res 2014; 6 : 2769– 2773

[49]

LeathersTD. Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 2003; 62( 5-6): 468– 473

[50]

U.S. Congress, Office of Technology Assessment. Biopolymers: Making Materials Nature’s Way-Background Paper. OTA-BP-E-102. Washington, DC: U.S. Government Printing Office, 1993

[51]

CzajaW, KrystynowiczA, BieleckiS, BrownRM Jr. Microbial cellulose—the natural power to heal wounds. Biomaterials 2006; 27( 2): 145– 151

[52]

DixonB AbbotP VergerP PascalG DiNoviM. Pullulan. In: Safety Evaluation of Certain Food Additives. Geneva: World Health Organization, 2004: 45– 62

[53]

MeyerK, PalmerJW. The polysaccharide of the vitreous humor. J Biol Chem 1934; 107( 3): 629– 634

[54]

KoganG, SoltésL, SternR, GemeinerP. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 2007; 29( 1): 17– 25

[55]

CowmanMK, MatsuokaS. Experimental approaches to hyaluronan structure. Carbohydr Res 2005; 340( 5): 791– 809

[56]

RossP, MayerR, BenzimanM. Cellulose biosynthesis and function in bacteria. Microbiol Rev 1991; 55( 1): 35– 58

[57]

JonesD. Crystalline modifications of cellulose. Part V. A crystallographic study of ordered molecular arrangements. J Polym Sci e 1960; 42( 139): 173– 188

[58]

BakhshinejadB, SadeghizadehM. Bacteriophages and development of nanomaterials for neural regeneration. Neural Regen Res 2014; 9( 22): 1955– 1958

[59]

YooSY, KobayashiM, LeePP, LeeSW. Early osteogenic differentiation of mouse preosteoblasts induced by collagen-derived DGEA-peptide on nanofibrous phage tissue matrices. Biomacromolecules 2011; 12( 4): 987– 996

[60]

HoffmanAS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012; 64 : 18– 23

[61]

PatelS, KasojuN, BoraU, GoyalA. Structural analysis and biomedical applications of dextran produced by a new isolate Pediococcus pentosaceus screened from biodiversity hot spot Assam. Bioresour Technol 2010; 101( 17): 6852– 6855

[62]

KankeM, TanabeE, KatayamaH, KodaY, YoshitomiH. Application of curdlan to controlled drug delivery. III. Drug release from sustained release suppositories in vitro. Biol Pharm Bull 1995; 18( 8): 1154– 1158

[63]

KankeM, KodaK, KodaY, KatayamaH. Application of curdlan to controlled drug delivery. I. The preparation and evaluation of theophylline-containing curdlan tablets. Pharm Res 1992; 9( 3): 414– 418

[64]

BohnJA, BeMillerJN. (1→3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships. Carbohydr Polym 1995; 28( 1): 3– 14

[65]

WilliamsPA. Renewable Resources for Functional Polymers and Biomaterials: Polysaccharides, Proteins and Polyesters. Cambridge, UK: Royal Society of Chemistry, 2011

[66]

RekhaM, SharmaCP. Pullulan as a promising biomaterial for biomedical applications: a perspective. Trends Biomater Artif Organs 2007; 20 : 116– 121

[67]

DanesePN, PrattLA, KolterR. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000; 182( 12): 3593– 3596

[68]

Prigent-CombaretC, VidalO, DorelC, LejeuneP. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J Bacteriol 1999; 181( 19): 5993– 6002

[69]

ChristensenGD, SimpsonWA, BisnoAL, BeacheyEH. Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect Immun 1982; 37( 1): 318– 326

[70]

ChristensenTE, SaxtrupO, HansenTI, KristensenBH, BeckBL, PlesnerT, KroghIM, AndersenV, StrandgaardS. Familial myoglobinuria. A study of muscle and kidney pathophysiology in three brothers. Dan Med Bull 1983; 30( 2): 112– 115

[71]

DavenportDS, MassanariRM, PfallerMA, BaleMJ, StreedSA, HierholzerWJ Jr. Usefulness of a test for slime production as a marker for clinically significant infections with coagulase-negative staphylococci. J Infect Dis 1986; 153( 2): 332– 339

[72]

DruryJL, MooneyDJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 2003; 24( 24): 4337– 4351

[73]

GuptaP, VermaniK, GargS. Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 2002; 7( 10): 569– 579

[74]

LutolfMP, Lauer-FieldsJL, SchmoekelHG, MettersAT, WeberFE, FieldsGB, HubbellJA. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA 2003; 100( 9): 5413– 5418

[75]

PeppasNA, HiltJZ, KhademhosseiniA, LangerR. Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 2006; 18( 11): 1345– 1360

[76]

Rezapour-LactoeeA, YeganehH, GharibiR, MilanPB. Enhanced healing of a full-thickness wound by a thermoresponsive dressing utilized for simultaneous transfer and protection of adipose-derived mesenchymal stem cells sheet. J Mater Sci Mater Med 2020; 31( 11): 101

[77]

CutiongcoMF, TanMH, NgMY, Le VisageC, YimEK. Composite pullulan−dextran polysaccharide scaffold with interfacial polyelectrolyte complexation fibers: a platform with enhanced cell interaction and spatial distribution. Acta Biomater 2014; 10( 10): 4410– 4418

[78]

NwodoUU, GreenE, OkohAI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 2012; 13( 11): 14002– 14015

[79]

UnnithanAR, SasikalaAR, MurugesanP, GurusamyM, WuD, ParkCH, KimCS. Electrospun polyurethane-dextran nanofiber mats loaded with estradiol for post-menopausal wound dressing. Int J Biol Macromol 2015; 77 : 1– 8

[80]

LévesqueSG, LimRM, ShoichetMS. Macroporous interconnected dextran scaffolds of controlled porosity for tissue-engineering applications. Biomaterials 2005; 26( 35): 7436– 7446

[81]

LackS, DulongV, PictonL, Le CerfD, CondamineE. High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate: a proposal for the reaction mechanism. Carbohydr Res 2007; 342( 7): 943– 953

[82]

Le VisageC, GournayO, BenguiratN, HamidiS, ChaussumierL, MougenotN, FlandersJA, IsnardR, MichelJB, HatemS, LetourneurD, NorolF. Mesenchymal stem cell delivery into rat infarcted myocardium using a porous polysaccharide-based scaffold: a quantitative comparison with endocardial injection. Tissue Eng Part A 2012; 18( 1-2): 35– 44

[83]

AmedeeJ LetourneurD Le VisageC DerkaouiSM FricainJC CatrosS. Porous polysaccharide scaffold comprising nano-hydroxyapatite and use for bone formation. Google Patents; 2017, Universite Victor Segalen Bordeaux 2 Institut National de la Sante et de la RechercheMedicale INSERM Universite Paris Diderot Paris 7. US20130224277A1

[84]

BanerjeeS, SzepesM, DibbertN, Rios-CamachoJC, KirschningA, GruhI, DrägerG. Dextran-based scaffolds for in-situ hydrogelation: use for next generation of bioartificial cardiac tissues. Carbohydr Polym 2021; 262 : 117924

[85]

NaghiehS, SarkerMD, AbelsethE, ChenX. Indirect 3D bioprinting and characterization of alginate scaffolds for potential nerve tissue engineering applications. J Mech Behav Biomed Mater 2019; 93 : 183– 193

[86]

HivechiA, MilanPB, ModabberiK, AmoupourM, EbrahimzadehK, GholipourAR, SedighiF, AminiN, BahramiSH, RezapourA, HamidiM, DelattreC. Synthesis and characterization of exopolysaccharide encapsulated PCL/gelatin skin substitute for full-thickness wound regeneration. Polymers (Basel) 2021; 13( 6): 854

[87]

CzajaWK, YoungDJ, KaweckiM, BrownRM Jr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 2007; 8( 1): 1– 12

[88]

MilanPB AminiN AmoupourM AmadikuchaksaraeiA RezapourA SefatF KargozarS AshtariKh MozafariM. Scaffolds for regeneration of dermo-epidermal skin tissue. Handbook of Tissue Engineering Scaffolds. Volume 2. Elsevier Science, 2019: 193– 209

[89]

SinghRS, KaurN, RanaV, KennedyJF. Pullulan: a novel molecule for biomedical applications. Carbohydr Polym 2017; 171 : 102– 121

[90]

SamoilaI, DinescuS, PircalabioruGG, MarutescuL, FundueanuG, AfloriM, ConstantinM. Pullulan/poly(vinyl alcohol) composite hydrogels for adipose tissue engineering. Materials (Basel) 2019; 12( 19): 3220

[91]

KulkarniN KumarL SorgA. Fast dissolving orally consumable films. Google Patents; 2011, Johnson and Johnson Consumer Inc. US20030206942A1

[92]

ChenF, YuS, LiuB, NiY, YuC, SuY, ZhuX, YuX, ZhouY, YanD. An injectable enzymatically crosslinked carboxymethylated pullulan/chondroitin sulfate hydrogel for cartilage tissue engineering. Sci Rep 2016; 6( 1): 20014

[93]

JinHE, LeeSW. Engineering of M13 bacteriophage for development of tissue engineering materials. Methods Mol Biol 2018; 1776 : 487– 502

[94]

WangJ, WangL, YangM, ZhuY, TomsiaA, MaoC. Untangling the effects of peptide sequences and nanotopographies in a biomimetic niche for directed differentiation of iPSCs by assemblies of genetically engineered viral nanofibers. Nano Lett 2014; 14( 12): 6850– 6856

[95]

ShinYC, LeeJH, JinL, KimMJ, KimC, HongSW, OhJW, HanDW. Cell-adhesive matrices composed of RGD peptide-displaying M13 bacteriophage/poly(lactic-co-glycolic acid) nanofibers beneficial to myoblast differentiation. J Nanosci Nanotechnol 2015; 15( 10): 7907– 7912

[96]

Szot-KarpińskaK, GolecP, LeśniewskiA, PałysB, MarkenF, Niedziółka-Jönsson J, WęgrzynG, Łoś M. Modified filamentous bacteriophage as a scaffold for carbon nanofiber. Bioconjug Chem 2016; 27( 12): 2900– 2910

[97]

AschtgenMS, BrennanCA, NikolakakisK, CohenS, McFall-NgaiM, RubyEG. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 2019; 5( 1): 32

[98]

LiD, ZhuY, YangT, YangM, MaoC. Bacterial flagella as an osteogenic differentiation nano-promoter. Nanoscale Horiz 2019; 4( 6): 1286– 1292

[99]

LiD, ZhuY, YangT, YangM, MaoC. Genetically engineered flagella form collagen-like ordered structures for inducing stem cell differentiation. iScience 2019; 17 : 277– 287

[100]

ChenY, LongX, LinW, DuB, YinH, LanW, ZhaoD, LiZ, LiJ, LuoF, TanH. Bioactive 3D porous cobalt-doped alginate/waterborne polyurethane scaffolds with a coral reef-like rough surface for nerve tissue engineering application. J Mater Chem B Mater Biol Med 2021; 9( 2): 322– 335

[101]

SajeshKM, JayakumarR, NairSV, ChennazhiKP. Biocompatible conducting chitosan/polypyrrole-alginate composite scaffold for bone tissue engineering. Int J Biol Macromol 2013; 62 : 465– 471

[102]

YangB, YaoF, YeL, HaoT, ZhangY, ZhangL, DongD, FangW, WangY, ZhangX, WangC, LiJ. A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells. Biomater Sci 2020; 8( 11): 3173– 3185

[103]

YuanH, ZhengX, LiuW, ZhangH, ShaoJ, YaoJ, MaoC, HuiJ, FanD. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloids Surf B Biointerfaces 2020; 192 : 111041

[104]

RashtchianM, HivechiA, BahramiSH, MilanPB, SimorghS. Fabricating alginate/poly(caprolactone) nanofibers with enhanced bio-mechanical properties via cellulose nanocrystal incorporation. Carbohydr Polym 2020; 233 : 115873

[105]

TamimiM, RajabiS, Pezeshki-ModaressM. Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. Int J Biol Macromol 2020; 164 : 389– 402

[106]

GhaffariR, Salimi-KenariH, FahimipourF, RabieeSM, AdeliH, DashtimoghadamE. Fabrication and characterization of dextran/nanocrystalline β-tricalcium phosphate nanocomposite hydrogel scaffolds. Int J Biol Macromol 2020; 148 : 434– 448

[107]

Innocenti MaliniR, LesageJ, ToncelliC, FortunatoG, RossiRM, SpanoF. Crosslinking dextran electrospun nanofibers via borate chemistry: proof of concept for wound patches. Eur Polym J 2019; 110 : 276– 282

[108]

MoydeenAM, Ali PadushaMS, AboelfetohEF, Al-DeyabSS, El-NewehyMH. Fabrication of electrospun poly(vinyl alcohol)/dextran nanofibers via emulsion process as drug delivery system: kinetics and in vitro release study. Int J Biol Macromol 2018; 116 : 1250– 1259

[109]

DongY, ZhaoS, LuW, ChenN, ZhuD, LiY. Preparation and characterization of enzymatically cross-linked gelatin/cellulose nanocrystal composite hydrogels. RSC Advances 2021; 11( 18): 10794– 10803

[110]

ZhaoS, EmeryO, WohlhauserA, KoebelMM, AdlhartC, MalfaitWJ. Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites. Mater Des 2018; 160 : 294– 302

[111]

NosoudiN, OommenAJ, StultzS, JordanM, AldabelS, HohneC, MosserJ, ArchackiB, TurnerA, TurnerP. Electrospinning live cells using gelatin and pullulan. Bioengineering (Basel) 2020; 7( 1): 21

[112]

BarreraJA, TrotsyukAA, MaanZN, BonhamCA, LarsonMR, MittermillerPA, HennD, ChenK, MaysCJ, MittalS, Mermin-BunnellAM, SivarajD, JingS, RodriguesM, KwonSH, NoishikiC, PadmanabhanJ, JiangY, NiuS, InayathullahM, RajadasJ, JanuszykM, GurtnerGC. Adipose-derived stromal cells seeded in pullulan-collagen hydrogels improve healing in murine burns. Tissue Eng Part A 2021; 27( 11-12): 844– 856

[113]

DellaGiustina G, GandinA, BrigoL, PancieraT, GiulittiS, SgarbossaP, D’AlessandroD, TrombiL, DantiS, BrusatinG. Polysaccharide hydrogels for multiscale 3D printing of pullulan scaffolds. Mater Des 2019; 165 : 107566

[114]

DalgicAD, AtilaD, KaratasA, TezcanerA, KeskinD. Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Mater Sci Eng C 2019; 100 : 735– 746

[115]

TangS, ChiK, XuH, YongQ, YangJ, CatchmarkJM. A covalently cross-linked hyaluronic acid/bacterial cellulose composite hydrogel for potential biological applications. Carbohydr Polym 2021; 252 : 117123

[116]

YangQ, XieZ, HuJ, LiuY. Hyaluronic acid nanofiber mats loaded with antimicrobial peptide towards wound dressing applications. Mater Sci Eng C 2021; 128 : 112319

[117]

CaiY, JohnsonM, AS, Xu Q, TaiH, WangW. A hybrid injectable and self-healable hydrogel system as 3D cell culture scaffold. Macromol Biosci 2021; 21( 9): e2100079

[118]

LeeAK, LinYH, TsaiCH, ChangWT, LinTL, ShieMY. Digital light processing bioprinted human chondrocyte-laden poly (γ-glutamic acid)/hyaluronic acid bio-ink towards cartilage tissue engineering. Biomedicines 2021; 9( 7): 714

[119]

TarrahiR, KhataeeA, KarimiA, GolizadehM, Ebadi Fard AzarF. Development of a cellulose-based scaffold for sustained delivery of curcumin. Int J Biol Macromol 2021; 183 : 132– 144

[120]

GuoR, LiJ, ChenC, XiaoM, LiaoM, HuY, LiuY, LiD, ZouJ, SunD, TorreV, ZhangQ, ChaiR, TangM. Biomimetic 3D bacterial cellulose-graphene foam hybrid scaffold regulates neural stem cell proliferation and differentiation. Colloids Surf B Biointerfaces 2021; 200 : 111590

[121]

PriyaG, MadhanB, NarendrakumarU, Suresh KumarRV, ManjubalaI. In vitro and in vivo evaluation of carboxymethyl cellulose scaffolds for bone tissue engineering applications. ACS Omega 2021; 6( 2): 1246– 1253

[122]

WahidF, ZhaoXJ, ZhaoXQ, MaXF, XueN, LiuXZ, WangFP, JiaSR, ZhongC. Fabrication of bacterial cellulose-based dressings for promoting infected wound healing. ACS Appl Mater Interfaces 2021; 13( 28): 32716– 32728

[123]

HanY, LiC, CaiQ, BaoX, TangL, AoH, LiuJ, JinM, ZhouY, WanY, LiuZ. Studies on bacterial cellulose/poly(vinyl alcohol) hydrogel composites as tissue-engineered corneal stroma. Biomed Mater 2020; 15( 3): 035022

[124]

Szot-KarpińskaK, LeśniewskiA, Jönsson-Niedziółka M, MarkenF, Niedziółka-Jönsson J. Electrodes modified with bacteriophages and carbon nanofibres for cysteine detection. Sens Actuators B Chem 2019; 287 : 78– 85

[125]

ChengW, ZhangZ, XuR, CaiP, KristensenP, ChenM, HuangY. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. J Biomed Mater Res B Appl Biomater 2018; 106( 7): 2588– 2595

[126]

MaY, PacanJC, WangQ, XuY, HuangX, KorenevskyA, SabourPM. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol 2008; 74( 15): 4799– 4805

[127]

LeeJY, ChungWJ, KimG. A mechanically improved virus-based hybrid scaffold for bone tissue regeneration. RSC Advances 2016; 6( 60): 55022– 55032

[128]

GalloN, NasserH, SalvatoreL, NataliML, CampaL, MahmoudM, CapobiancoL, SanninoA, MadaghieleM. Hyaluronic acid for advanced therapies: Promises and challenges. Eur Polym J 2019; 117 : 134– 147

[129]

SunG, KusumaS, GerechtS. Development of a biodegradable, temperature-sensitive dextran-based polymer as a cell-detaching substrate. Macromol Biosci 2012; 12( 1): 21– 28

[130]

CurvelloR, RaghuwanshiVS, GarnierG. Engineering nanocellulose hydrogels for biomedical applications. Adv Colloid Interface Sci 2019; 267 : 47– 61

[131]

SzekalskaM, PuciłowskaA, SzymańskaA, CiosekP, WinnickaK. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. Int J Polym Sci 2016; 2016 : 7697031

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7221KB)

8255

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/