CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?
Pooria Safarzadeh Kozani, Pouya Safarzadeh Kozani, Fatemeh Rahbarizadeh
CAR T cells redirected against tumor-specific antigen glycoforms: can low-sugar antigens guarantee a sweet success?
Immune-based therapies have experienced a pronounced breakthrough in the past decades as they acquired multiple US Food and Drug Administration (FDA) approvals for various indications. To date, six chimeric antigen receptor T cell (CAR-T) therapies have been permitted for the treatment of certain patients with relapsed/refractory hematologic malignancies. However, several clinical trials of solid tumor CAR-T therapies were prematurely terminated, or they reported life-threatening treatment-related damages to healthy tissues. The simultaneous expression of target antigens by healthy organs and tumor cells is partly responsible for such toxicities. Alongside targeting tumor-specific antigens, targeting the aberrantly glycosylated glycoforms of tumor-associated antigens can also minimize the off-tumor effects of CAR-T therapies. Tn, T, and sialyl-Tn antigens have been reported to be involved in tumor progression and metastasis, and their expression results from the dysregulation of a series of glycosyltransferases and the endoplasmic reticulum protein chaperone, Cosmc. Moreover, these glycoforms have been associated with various types of cancers, including prostate, breast, colon, gastric, and lung cancers. Here, we discuss how underglycosylated antigens emerge and then detail the latest advances in the development of CAR-T-based immunotherapies that target some of such antigens.
cancer immunotherapy / chimeric antigen receptor / solid tumors / tumor-associated antigen / glycosylation / O-glycans / adoptive cell therapy
[1] |
Safarzadeh KozaniP, Safarzadeh KozaniP, RahbarizadehF. Novel antigens of CAR T cell therapy: new roads; old destination. Transl Oncol 2021; 14( 7): 101079
CrossRef
Google scholar
|
[2] |
Hashem BoroojerdiM, RahbarizadehF, Safarzadeh KozaniP, KamaliE, Safarzadeh KozaniP. Strategies for having a more effective and less toxic CAR T-cell therapy for acute lymphoblastic leukemia. Med Oncol 2020; 37( 11): 100
CrossRef
Google scholar
|
[3] |
MullardA. FDA approves first CAR T therapy. Nat Rev Drug Discov 2017; 16( 10): 669
|
[4] |
Noauthor listed. FDA approves second CAR T-cell therapy. Cancer Discov 2018; 8( 1): 5– 6
CrossRef
Google scholar
|
[5] |
VoelkerR. CAR-T therapy is approved for mantle cell lymphoma. JAMA 2020; 324( 9): 832
CrossRef
Google scholar
|
[6] |
MullardA. FDA approves first BCMA-targeted CAR-T cell therapy. Nat Rev Drug Discov 2021; 20( 5): 332
CrossRef
Google scholar
|
[7] |
MullardA. FDA approves fourth CAR-T cell therapy. Nat Rev Drug Discov 2021; 20( 3): 166
|
[8] |
Safarzadeh KozaniP, Safarzadeh KozaniP, RahbarizadehF, Khoshtinat NikkhoiS. Strategies for dodging the obstacles in CAR T cell therapy. Front Oncol 2021; 11( 924): 627549
CrossRef
Google scholar
|
[9] |
ShahNN, FryTJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 2019; 16( 6): 372– 385
CrossRef
Google scholar
|
[10] |
SafarzadehKozani P, SafarzadehKozani P, O’ConnorRS. In like a lamb; out like a lion: marching CAR-T cells towards enhanced efficacy in B-ALL. Mol Cancer Ther 2021; 20( 7): 1223– 1233
CrossRef
Google scholar
|
[11] |
JuneCH, O’ConnorRS, KawalekarOU, GhassemiS, MiloneMC. CAR T cell immunotherapy for human cancer. Science 2018; 359( 6382): 1361– 1365
CrossRef
Google scholar
|
[12] |
LandoniE, FucáG, WangJ, ChirasaniVR, YaoZ, DukhovlinovaE, FerroneS, SavoldoB, HongLK, ShouP, MusioS, PadelliF, FinocchiaroG, DrosteM, KuhlmanB, ShamshievA, PellegattaS, DokholyanNV, DottiG. Modifications to the framework regions eliminate chimeric antigen receptor tonic signaling. Cancer Immunol Res 2021; 9( 4): 441– 453
CrossRef
Google scholar
|
[13] |
LongAH, HasoWM, ShernJF, WanhainenKM, MurgaiM, IngaramoM, SmithJP, WalkerAJ, KohlerME, VenkateshwaraVR, KaplanRN, PattersonGH, FryTJ, OrentasRJ, MackallCL. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21( 6): 581– 590
CrossRef
Google scholar
|
[14] |
AjinaA, MaherJ. Strategies to address chimeric antigen receptor tonic signaling. Mol Cancer Ther 2018; 17( 9): 1795– 1815
CrossRef
Google scholar
|
[15] |
HegeK. Context matters in CAR T cell tonic signaling. Nat Med 2021; 27( 5): 763– 764
CrossRef
Google scholar
|
[16] |
ZhaoJX, YangL, GuZN, ChenHQ, TianFW, ChenYQ, ZhangH, ChenW. Stabilization of the single-chain fragment variable by an interdomain disulfide bond and its effect on antibody affinity. Int J Mol Sci 2010; 12( 1): 1– 11
CrossRef
Google scholar
|
[17] |
RahbarizadehF, AhmadvandD, MoghimiSM. CAR T-cell bioengineering: single variable domain of heavy chain antibody targeted CARs. Adv Drug Deliv Rev 2019; 141 : 41– 46
CrossRef
Google scholar
|
[18] |
SharifzadehZ, RahbarizadehF, ShokrgozarMA, AhmadvandD, MahboudiF, JamnaniFR, MoghimiSM. Genetically engineered T cells bearing chimeric nanoconstructed receptors harboring TAG-72-specific camelid single domain antibodies as targeting agents. Cancer Lett 2013; 334( 2): 237– 244
CrossRef
Google scholar
|
[19] |
JamnaniFR, RahbarizadehF, ShokrgozarMA, MahboudiF, AhmadvandD, SharifzadehZ, ParhamifarL, MoghimiSM. T cells expressing VHH-directed oligoclonal chimeric HER2 antigen receptors: towards tumor-directed oligoclonal T cell therapy. Biochim Biophys Acta 2014; 1840( 1): 378– 386
CrossRef
Google scholar
|
[20] |
KhaleghiS, RahbarizadehF, AhmadvandD, RasaeeMJ, PognonecP. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol 2012; 95( 4): 434– 444
CrossRef
Google scholar
|
[21] |
RajabzadehA, RahbarizadehF, AhmadvandD, Kabir SalmaniM, HamidiehAA. A VHH-based anti-MUC1 chimeric antigen receptor for specific retargeting of human primary T cells to MUC1-positive cancer cells. Cell J 2021; 22( 4): 502– 513
|
[22] |
Iri-SoflaFJ, RahbarizadehF, AhmadvandD, RasaeeMJ. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by φC31 integrase. Exp Cell Res 2011; 317( 18): 2630– 2641
CrossRef
Google scholar
|
[23] |
BakhtiariSH, RahbarizadehF, HasanniaS, AhmadvandD, Iri-SoflaFJ, RasaeeMJ. Anti-MUC1 nanobody can redirect T-body cytotoxic effector function. Hybridoma (Larchmt) 2009; 28( 2): 85– 92
CrossRef
Google scholar
|
[24] |
LarsonRC, MausMV. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat Rev Cancer 2021; 21( 3): 145– 161
CrossRef
Google scholar
|
[25] |
RafiqS, HackettCS, BrentjensRJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2020; 17( 3): 147– 167
CrossRef
Google scholar
|
[26] |
HuppaJB, AxmannM, MörtelmaierMA, LillemeierBF, NewellEW, BrameshuberM, KleinLO, SchützGJ, DavisMM. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 2010; 463( 7283): 963– 967
CrossRef
Google scholar
|
[27] |
HuangJ, BrameshuberM, ZengX, XieJ, LiQJ, ChienYH, ValituttiS, DavisMM. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 2013; 39( 5): 846– 857
CrossRef
Google scholar
|
[28] |
HuseM, KleinLO, GirvinAT, FarajJM, LiQJ, KuhnsMS, DavisMM. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 2007; 27( 1): 76– 88
CrossRef
Google scholar
|
[29] |
RamakrishnaS, HighfillSL, WalshZ, NguyenSM, LeiH, ShernJF, QinH, KraftIL, Stetler-StevensonM, YuanCM, HwangJD, FengY, ZhuZ, DimitrovD, ShahNN, FryTJ. Modulation of target antigen density improves CAR T-cell functionality and persistence. Clin Cancer Res 2019; 25( 17): 5329– 5341
CrossRef
Google scholar
|
[30] |
MajznerRG, RietbergSP, SotilloE, DongR, VachharajaniVT, LabaniehL, MyklebustJH, KadapakkamM, WeberEW, TousleyAM, RichardsRM, HeitzenederS, NguyenSM, WiebkingV, TheruvathJ, LynnRC, XuP, DunnAR, ValeRD, MackallCL. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov 2020; 10( 5): 702– 723
CrossRef
Google scholar
|
[31] |
DonnadieuE, DupréL, PinhoLG, Cotta-de-AlmeidaV. Surmounting the obstacles that impede effective CAR T cell trafficking to solid tumors. J Leukoc Biol 2020; 108( 4): 1067– 1079
CrossRef
Google scholar
|
[32] |
Karsten U, Goletz S. What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? Biochemistry (Mosc) 2015; 80(7): 801–807
CrossRef
Pubmed
Google scholar
|
[33] |
GlinskyVV, GlinskyGV, Rittenhouse-OlsonK, HuflejtME, GlinskiiOV, DeutscherSL, QuinnTP. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 2001; 61( 12): 4851– 4857
|
[34] |
BianCF, ZhangY, SunH, LiDF, WangDC. Structural basis for distinct binding properties of the human galectins to Thomsen-Friedenreich antigen. PLoS One 2011; 6( 9): e25007
CrossRef
Google scholar
|
[35] |
ChenHD, ZhouX, YuG, ZhaoYL, RenY, ZhouYD, LiQ, ZhangXL. Knockdown of core 1 beta 1, 3-galactosyltransferase prolongs skin allograft survival with induction of galectin-1 secretion and suppression of CD8+ T cells: T synthase knockdown effects on galectin-1 and CD8+ T cells. J Clin Immunol 2012; 32( 4): 820– 836
CrossRef
Google scholar
|
[36] |
FuC, ZhaoH, WangY, CaiH, XiaoY, ZengY, ChenH. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016; 88( 6): 275– 286
CrossRef
Google scholar
|
[37] |
OgataS, MaimonisPJ, ItzkowitzSH. Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res 1992; 52( 17): 4741– 4746
|
[38] |
TakenakaY, FukumoriT, RazA. Galectin-3 and metastasis. Glycoconj J 2002; 19( 7-9): 543– 549
CrossRef
Google scholar
|
[39] |
BeatsonR, MaurstadG, PiccoG, ArulappuA, ColemanJ, WandellHH, ClausenH, MandelU, Taylor-PapadimitriouJ, SletmoenM, BurchellJM. The breast cancer-associated glycoforms of MUC1, MUC1-Tn and sialyl-Tn, are expressed in COSMC wild-type cells and bind the C-Type lectin MGL. PLoS One 2015; 10( 5): e0125994
CrossRef
Google scholar
|
[40] |
PinhoS, MarcosNT, FerreiraB, CarvalhoAS, OliveiraMJ, Santos-SilvaF, Harduin-LepersA, ReisCA. Biological significance of cancer-associated sialyl-Tn antigen: modulation of malignant phenotype in gastric carcinoma cells. Cancer Lett 2007; 249( 2): 157– 170
CrossRef
Google scholar
|
[41] |
van KooykY, IlarreguiJM, van VlietSJ. Novel insights into the immunomodulatory role of the dendritic cell and macrophage-expressed C-type lectin MGL. Immunobiology 2015; 220( 2): 185– 192
CrossRef
Google scholar
|
[42] |
vanVliet SJ, VuistIM, LenosK, TefsenB, KalayH, García-VallejoJJ, vanKooyk Y. Human T cell activation results in extracellular signal-regulated kinase (ERK)-calcineurin-dependent exposure of Tn antigen on the cell surface and binding of the macrophage galactose-type lectin (MGL). J Biol Chem 2013; 288( 38): 27519– 27532
CrossRef
Google scholar
|
[43] |
SpringerGF, TaylorCR, HowardDR, TegtmeyerH, DesaiPR, MurthySM, FelderB, ScanlonEF. Tn, a carcinoma-associated antigen, reacts with anti-Tn of normal human sera. Cancer 1985; 55( 3): 561– 569
CrossRef
Google scholar
|
[44] |
KjeldsenT, ClausenH, HirohashiS, OgawaT, IijimaH, HakomoriS. Preparation and characterization of monoclonal antibodies directed to the tumor-associated O-linked sialosyl-2−6 alpha-N-acetylgalactosaminyl (sialosyl-Tn) epitope. Cancer Res 1988; 48( 8): 2214– 2220
|
[45] |
ItzkowitzS, KjeldsenT, FrieraA, HakomoriS, YangUS, KimYS. Expression of Tn, sialosyl Tn, and T antigens in human pancreas. Gastroenterology 1991; 100( 6): 1691– 1700
CrossRef
Google scholar
|
[46] |
ItzkowitzSH, YuanM, MontgomeryCK, KjeldsenT, TakahashiHK, BigbeeWL, KimYS. Expression of Tn, sialosyl-Tn, and T antigens in human colon cancer. Cancer Res 1989; 49( 1): 197– 204
|
[47] |
KonskaG, GuerryM, Caldefie-ChezetF, De LatourM, GuillotJ. Study of the expression of Tn antigen in different types of human breast cancer cells using VVA-B4 lectin. Oncol Rep 2006; 15( 2): 305– 310
CrossRef
Google scholar
|
[48] |
KobayashiH, TeraoT, KawashimaY. Clinical evaluation of circulating serum sialyl Tn antigen levels in patients with epithelial ovarian cancer. J Clin Oncol 1991; 9( 6): 983– 987
CrossRef
Google scholar
|
[49] |
AkitaK, YoshidaS, IkeharaY, ShirakawaS, TodaM, InoueM, KitawakiJ, NakanishiH, NarimatsuH, NakadaH. Different levels of sialyl-Tn antigen expressed on MUC16 in patients with endometriosis and ovarian cancer. Int J Gynecol Cancer 2012; 22( 4): 531– 538
CrossRef
Google scholar
|
[50] |
JuT, AryalRP, KudelkaMR, WangY, CummingsRD. The Cosmc connection to the Tn antigen in cancer. Cancer Biomark 2014; 14( 1): 63– 81
CrossRef
Google scholar
|
[51] |
Lira-NavarreteE, deLas Rivas M, CompañónI, PallarésMC, KongY, Iglesias-FernándezJ, BernardesGJ, PeregrinaJM, RoviraC, BernadóP, BruscoliniP, ClausenH, LostaoA, CorzanaF, Hurtado-GuerreroR. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat Commun 2015; 6( 1): 6937
CrossRef
Google scholar
|
[52] |
TamuraF, SatoY, HirakawaM, YoshidaM, OnoM, OsugaT, OkagawaY, UemuraN, AriharaY, MuraseK, KawanoY, IyamaS, TakadaK, HayashiT, SatoT, MiyanishiK, KobuneM, TakimotoR, KatoJ. RNAi-mediated gene silencing of ST6GalNAc I suppresses the metastatic potential in gastric cancer cells. Gastric Cancer 2016; 19( 1): 85– 97
CrossRef
Google scholar
|
[53] |
JuT, LanneauGS, GautamT, WangY, XiaB, StowellSR, WillardMT, WangW, XiaJY, ZunaRE, LaszikZ, BenbrookDM, HaniganMH, CummingsRD. Human tumor antigens Tn and sialyl Tn arise from mutations in Cosmc. Cancer Res 2008; 68( 6): 1636– 1646
CrossRef
Google scholar
|
[54] |
YamadaK, KobayashiN, IkedaT, SuzukiY, TsugeT, HorikoshiS, EmancipatorSN, TominoY. Down-regulation of core 1 β1,3-galactosyltransferase and Cosmc by Th2 cytokine alters O-glycosylation of IgA1. Nephrol Dial Transplant 2010; 25( 12): 3890– 3897
CrossRef
Google scholar
|
[55] |
ThurnherM, RusconiS, BergerEG. Persistent repression of a functional allele can be responsible for galactosyltransferase deficiency in Tn syndrome. J Clin Invest 1993; 91( 5): 2103– 2110
CrossRef
Google scholar
|
[56] |
GillDJ, ChiaJ, SenewiratneJ, BardF. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. J Cell Biol 2010; 189( 5): 843– 858
CrossRef
Google scholar
|
[57] |
RivinojaA, HassinenA, KokkonenN, KauppilaA, KellokumpuS. Elevated Golgi pH impairs terminal N-glycosylation by inducing mislocalization of Golgi glycosyltransferases. J Cell Physiol 2009; 220( 1): 144– 154
CrossRef
Google scholar
|
[58] |
JulienS, AdriaenssensE, OttenbergK, FurlanA, CourtandG, Vercoutter-EdouartAS, HanischFG, DelannoyP, Le BourhisX. ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 2006; 16( 1): 54– 64
CrossRef
Google scholar
|
[59] |
KabußR, AshikovA, OelmannS, Gerardy-SchahnR, BakkerH. Endoplasmic reticulum retention of the large splice variant of the UDP-galactose transporter is caused by a dilysine motif. Glycobiology 2005; 15( 10): 905– 911
CrossRef
Google scholar
|
[60] |
HassinenA, RivinojaA, KauppilaA, KellokumpuS. Golgi N-glycosyltransferases form both homo- and heterodimeric enzyme complexes in live cells. J Biol Chem 2010; 285( 23): 17771– 17777
CrossRef
Google scholar
|
[61] |
SteentoftC, FuhrmannM, BattistiF, Van CoillieJ, MadsenTD, CamposD, HalimA, VakhrushevSY, JoshiHJ, SchreiberH, MandelU, NarimatsuY. A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology 2019; 29( 4): 307– 319
CrossRef
Google scholar
|
[62] |
InoY, GotohM, SakamotoM, TsukagoshiK, HirohashiS. Dysadherin, a cancer-associated cell membrane glycoprotein, down-regulates E-cadherin and promotes metastasis. Proc Natl Acad Sci USA 2002; 99( 1): 365– 370
CrossRef
Google scholar
|
[63] |
HuangX, WangB, YangD, ShiX, HongJ, WangS, DaiX, ZhouX, GengYJ. Reduced expression of FXYD domain containing ion transport regulator 5 in association with hypertension. Int J Mol Med 2012; 29( 2): 231– 238
|
[64] |
ThistlethwaiteFC, GilhamDE, GuestRD, RothwellDG, PillaiM, BurtDJ, ByatteAJ, KirillovaN, ValleJW, SharmaSK, ChesterKA, WestwoodNB, HalfordSER, NabarroS, WanS, AustinE, HawkinsRE. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol Immunother 2017; 66( 11): 1425– 1436
CrossRef
Google scholar
|
[65] |
ZhengC, FengJ, LuD, WangP, XingS, CollJL, YangD, YanX. A novel anti-CEACAM5 monoclonal antibody, CC4, suppresses colorectal tumor growth and enhances NK cells-mediated tumor immunity. PLoS One 2011; 6( 6): e21146
CrossRef
Google scholar
|
[66] |
OrdoñezC, ScreatonRA, IlantzisC, StannersCP. Human carcinoembryonic antigen functions as a general inhibitor of anoikis. Cancer Res 2000; 60( 13): 3419– 3424
|
[67] |
SatoY, TatenoH, AdachiJ, OkuyamaH, EndoH, TomonagaT, InoueM. Generation of a monoclonal antibody recognizing the CEACAM glycan structure and inhibiting adhesion using cancer tissue-originated spheroid as an antigen. Sci Rep 2016; 6( 1): 24823
CrossRef
Google scholar
|
[68] |
MaezawaY CinaD QuagginSE. Glomerular cell biology. In: Alpern RJ, Moe OW, Caplan M. Seldin and Giebisch’s The Kidney. 5th ed. Cambridge, USA: Academic Press, 2013. 721– 755
|
[69] |
LinCW, SunMS, WuHC. Podocalyxin-like 1 is associated with tumor aggressiveness and metastatic gene expression in human oral squamous cell carcinoma. Int J Oncol 2014; 45( 2): 710– 718
CrossRef
Google scholar
|
[70] |
HayatsuN, KanekoMK, MishimaK, NishikawaR, MatsutaniM, PriceJE, KatoY. Podocalyxin expression in malignant astrocytic tumors. Biochem Biophys Res Commun 2008; 374( 2): 394– 398
CrossRef
Google scholar
|
[71] |
LarssonA, JohanssonME, WangefjordS, GaberA, NodinB, KucharzewskaP, WelinderC, BeltingM, EberhardJ, JohnssonA, UhlénM, JirströmK. Overexpression of podocalyxin-like protein is an independent factor of poor prognosis in colorectal cancer. Br J Cancer 2011; 105( 5): 666– 672
CrossRef
Google scholar
|
[72] |
Flores-TéllezTN, LopezTV, VásquezGarzón VR, Villa-TreviñoS. Co-expression of Ezrin-CLIC5-podocalyxin is associated with migration and invasiveness in hepatocellular carcinoma. PLoS One 2015; 10( 7): e0131605
CrossRef
Google scholar
|
[73] |
SnyderKA, HughesMR, HedbergB, BrandonJ, HernaezDC, BergqvistP, CruzF, PoK, GravesML, TurveyME, NielsenJS, WilkinsJA, McCollSR, BabcookJS, RoskelleyCD, McNagnyKM. Podocalyxin enhances breast tumor growth and metastasis and is a target for monoclonal antibody therapy. Breast Cancer Res 2015; 17( 1): 46
CrossRef
Google scholar
|
[74] |
KanekoMK, OhishiT, KawadaM, KatoY. A cancer-specific anti-podocalyxin monoclonal antibody (60-mG2a-f) exerts antitumor effects in mouse xenograft models of pancreatic carcinoma. Biochem Biophys Rep 2020; 24 : 100826
CrossRef
Google scholar
|
[75] |
YamadaS, ItaiS, KanekoMK, KatoY. Anti-podocalyxin monoclonal antibody 47-mG2a detects lung cancers by immunohistochemistry. Monoclon Antib Immunodiagn Immunother 2018; 37( 2): 91– 94
CrossRef
Google scholar
|
[76] |
SchachtV, DadrasSS, JohnsonLA, JacksonDG, HongYK, DetmarM. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005; 166( 3): 913– 921
CrossRef
Google scholar
|
[77] |
ShiinaS, OhnoM, OhkaF, KuramitsuS, YamamichiA, KatoA, MotomuraK, TanahashiK, YamamotoT, WatanabeR, ItoI, SengaT, HamaguchiM, WakabayashiT, KanekoMK, KatoY, ChandramohanV, BignerDD, NatsumeA. CAR T cells targeting podoplanin reduce orthotopic glioblastomas in mouse brains. Cancer Immunol Res 2016; 4( 3): 259– 268
CrossRef
Google scholar
|
[78] |
MishimaK, KatoY, KanekoMK, NishikawaR, HiroseT, MatsutaniM. Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol 2006; 111( 5): 483– 488
CrossRef
Google scholar
|
[79] |
AbeS, KanekoMK, TsuchihashiY, IzumiT, OgasawaraS, OkadaN, SatoC, TobiumeM, OtsukaK, MiyamotoL, TsuchiyaK, KawazoeK, KatoY, NishiokaY. Antitumor effect of novel anti-podoplanin antibody NZ-12 against malignant pleural mesothelioma in an orthotopic xenograft model. Cancer Sci 2016; 107( 9): 1198– 1205
CrossRef
Google scholar
|
[80] |
HeY, SchreiberK, WolfSP, WenF, SteentoftC, ZerweckJ, SteinerM, SharmaP, ShepardHM, PoseyA, JuneCH, MandelU, ClausenH, LeisegangM, MeredithSC, KranzDM, SchreiberH. Multiple cancer-specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI Insight 2019; 4( 23): e135306
CrossRef
Google scholar
|
[81] |
KatoY, KanekoMK. A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep 2014; 4 : 5924
CrossRef
Google scholar
|
[82] |
NathS, MukherjeeP. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med 2014; 20( 6): 332– 342
CrossRef
Google scholar
|
[83] |
MeiZ, ZhangK, LamAK, HuangJ, QiuF, QiaoB, ZhangY. MUC1 as a target for CAR-T therapy in head and neck squamous cell carinoma. Cancer Med 2020; 9( 2): 640– 652
CrossRef
Google scholar
|
[84] |
ZhouR, YazdanifarM, RoyLD, WhildingLM, GavrillA, MaherJ, MukherjeeP. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2019; 10 : 1149
CrossRef
Google scholar
|
[85] |
RahbarizadehF, RasaeeMJ, Forouzandeh MoghadamM, AllamehAA, SadroddinyE. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid Hybridomics 2004; 23( 3): 151– 159
CrossRef
Google scholar
|
[86] |
RahbarizadehF, RasaeeMJ, ForouzandehM, AllamehA, SarramiR, NasiryH, SadeghizadehM. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin. Immunol Invest 2005; 34( 4): 431– 452
CrossRef
Google scholar
|
[87] |
WilkieS, PiccoG, FosterJ, DaviesDM, JulienS, CooperL, ArifS, MatherSJ, Taylor-PapadimitriouJ, BurchellJM, MaherJ. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008; 180( 7): 4901– 4909
CrossRef
Google scholar
|
[88] |
YouF, JiangL, ZhangB, LuQ, ZhouQ, LiaoX, WuH, DuK, ZhuY, MengH, GongZ, ZongY, HuangL, LuM, TangJ, LiY, ZhaiX, WangX, YeS, ChenD, YuanL, QiL, YangL. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci 2016; 59( 4): 386– 397
CrossRef
Google scholar
|
[89] |
ZhouR, YazdanifarM, RoyLD, WhildingLM, GavrillA, MaherJ, MukherjeeP. Corrigendum: CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol 2020; 11 : 628776
CrossRef
Google scholar
|
[90] |
PoseyAD Jr, SchwabRD, BoesteanuAC, SteentoftC, MandelU, EngelsB, StoneJD, MadsenTD, SchreiberK, HainesKM, CogdillAP, ChenTJ, SongD, SchollerJ, KranzDM, FeldmanMD, YoungR, KeithB, SchreiberH, ClausenH, JohnsonLA, JuneCH. Engineered CAR T cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity 2016; 44( 6): 1444– 1454
CrossRef
Google scholar
|
[91] |
MaherJ, WilkieS, DaviesDM, ArifS, PiccoG, JulienS, FosterJ, BurchellJ, Taylor-PapadimitriouJ. Targeting of tumor-associated glycoforms of MUC1 with CAR T cells. Immunity 2016; 45( 5): 945– 946
CrossRef
Google scholar
|
[92] |
BerryN, JonesDB, SmallwoodJ, TaylorI, KirkhamN, Taylor-PapadimitriouJ. The prognostic value of the monoclonal antibodies HMFG1 and HMFG2 in breast cancer. Br J Cancer 1985; 51( 2): 179– 186
CrossRef
Google scholar
|
[93] |
AthanassiouA, PectasidesD, PateniotisK, TzimisL, NatsisP, LafiA, ArapantoniP, KoutsioubaP, Taylor-PapadimitriouJ, EpenetosA. Immunoscintigraphy with 131I-labelled HMFG2 and HMFG2 F(ab′)2 in the pre-operative detection of clinical and subclinical lymph node metastases in breast cancer patients. Int J Cancer 1988; 41( S3): 89– 95
CrossRef
Google scholar
|
[94] |
BamiasA, BowlesMJ, KrauszT, WilliamsG, EpenetosAA. Intravesical administration of indium-111-labelled HMFG2 monoclonal antibody in superficial bladder carcinomas. Int J Cancer 1993; 54( 6): 899– 903
CrossRef
Google scholar
|
[95] |
BoseM MukherjeeP. Abstract 2052: A novel antibody blocks anti-apoptotic activity of MUC1 in pancreatic cancer cell lines. Cancer Res 2019; 79(13 Supplement): 2052
|
[96] |
CurryJM, ThompsonKJ, RaoSG, BesmerDM, MurphyAM, GrdzelishviliVZ, AhrensWA, McKillopIH, SindramD, IannittiDA, MartinieJB, MukherjeeP. The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. J Surg Oncol 2013; 107( 7): 713– 722
CrossRef
Google scholar
|
[97] |
WuST, WilliamsCD, GroverPA, MooreLJ, MukherjeeP. Early detection of pancreatic cancer in mouse models using a novel antibody, TAB004. PLoS One 2018; 13( 2): e0193260
CrossRef
Google scholar
|
[98] |
MooreLJ, RoyLD, ZhouR, GroverP, WuST, CurryJM, DillonLM, PuriPM, YazdanifarM, PuriR, MukherjeeP, DréauD. Antibody-guided in vivo imaging for early detection of mammary gland tumors. Transl Oncol 2016; 9( 4): 295– 305
CrossRef
Google scholar
|
[99] |
RoyLD, DillonLM, ZhouR, MooreLJ, LivasyC, El-KhouryJM, PuriR, MukherjeeP. A tumor specific antibody to aid breast cancer screening in women with dense breast tissue. Genes Cancer 2017; 8( 3-4): 536– 549
CrossRef
Google scholar
|
[100] |
LavrsenK, MadsenCB, RaschMG, WoetmannA, ØdumN, MandelU, ClausenH, PedersenAE, WandallHH. Aberrantly glycosylated MUC1 is expressed on the surface of breast cancer cells and a target for antibody-dependent cell-mediated cytotoxicity. Glycoconj J 2013; 30( 3): 227– 236
CrossRef
Google scholar
|
[101] |
HombachA, HeuserC, SircarR, TillmannT, DiehlV, KruisW, PohlC, AbkenH. T cell targeting of TAG72+ tumor cells by a chimeric receptor with antibody-like specificity for a carbohydrate epitope. Gastroenterology 1997; 113( 4): 1163– 1170
CrossRef
Google scholar
|
[102] |
QiY, MoyanaT, BresalierR, XiangJ. Antibody-targeted lymphokine-activated killer cells inhibit liver micrometastases in severe combined immunodeficient mice. Gastroenterology 1995; 109( 6): 1950– 1957
CrossRef
Google scholar
|
[103] |
MetcalfKS, SelbyPJ, TrejdosiewiczLK, SouthgateJ. Culture of ascitic ovarian cancer cells as a clinically-relevant ex vivo model for the assessment of biological therapies. Eur J Gynaecol Oncol 1998; 19( 2): 113– 119
|
[104] |
MyriokefalitakiE, VorgiasG, VlahosG, RodolakisA. Prognostic value of preoperative Ca125 and Tag72 serum levels and their correlation to disease relapse and survival in endometrial cancer. Arch Gynecol Obstet 2015; 292( 3): 647– 654
CrossRef
Google scholar
|
[105] |
HombachA, SircarR, HeuserC, TillmannT, DiehlV, KruisW, PohlC, AbkenH. Chimeric anti-TAG72 receptors with immunoglobulin constant Fc domains and gamma or zeta signalling chains. Int J Mol Med 1998; 2( 1): 99– 103
CrossRef
Google scholar
|
[106] |
HegeKM, BergslandEK, FisherGA, NemunaitisJJ, WarrenRS, McArthurJG, LinAA, SchlomJ, JuneCH, SherwinSA. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer 2017; 5( 1): 22
CrossRef
Google scholar
|
[107] |
MuradJP, KozlowskaAK, LeeHJ, RamamurthyM, ChangWC, YazakiP, ColcherD, ShivelyJ, CristeaM, FormanSJ, PricemanSJ. Effective targeting of TAG72+ peritoneal ovarian tumors via regional delivery of CAR-engineered T cells. Front Immunol 2018; 9 : 2268
CrossRef
Google scholar
|
[108] |
ReisCA, SørensenT, MandelU, DavidL, MirgorodskayaE, RoepstorffP, KihlbergJ, HansenJE, ClausenH. Development and characterization of an antibody directed to an α-N-acetyl-D-galactosamine glycosylated MUC2 peptide. Glycoconj J 1998; 15( 1): 51– 62
CrossRef
Google scholar
|
[109] |
PedersenJW, BlixtO, BennettEP, TarpMA, DarI, MandelU, PoulsenSS, PedersenAE, RasmussenS, JessP, ClausenH, WandallHH. Seromic profiling of colorectal cancer patients with novel glycopeptide microarray. Int J Cancer 2011; 128( 8): 1860– 1871
CrossRef
Google scholar
|
[110] |
TassoneP, BondH, BonelliP, TuccilloF, ValerioG, PetrellaA, LambertiA, CeccoL, TurcoMC, CerraM, MontagnaniS, MorroneG, VenutaS. UN1, a murine monoclonal antibody recognizing a novel human thymic antigen. Tissue Antigens 1994; 44( 2): 73– 82
CrossRef
Google scholar
|
[111] |
de LaurentiisA, GaspariM, PalmieriC, FalconeC, IaccinoE, FiumeG, MassaO, MasulloM, TuccilloFM, RovedaL, PratiU, FierroO, CozzolinoI, TronconeG, TassoneP, ScalaG, QuintoI. Mass spectrometry-based identification of the tumor antigen UN1 as the transmembrane CD43 sialoglycoprotein. Mol Cell Proteomics 2011; 10( 5): M111.007898
CrossRef
Google scholar
|
[112] |
MatsuuraH, HakomoriS. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc Natl Acad Sci USA 1985; 82( 19): 6517– 6521
CrossRef
Google scholar
|
[113] |
HeY, SchreiberK, WolfSP, WenF, SteentoftC, ZerweckJ, SteinerM, SharmaP, ShepardHM, PoseyA, JuneCH, MandelU, ClausenH, LeisegangM, MeredithSC, KranzDM, SchreiberH. Multiple cancer-specific antigens are targeted by a chimeric antigen receptor on a single cancer cell. JCI Insight 2019; 4( 23): e135306
CrossRef
Google scholar
|
[114] |
SchietingerA, PhilipM, YoshidaBA, AzadiP, LiuH, MeredithSC, SchreiberH. A mutant chaperone converts a wild-type protein into a tumor-specific antigen. Science 2006; 314( 5797): 304– 308
CrossRef
Google scholar
|
[115] |
BurchellJ, GendlerS, Taylor-PapadimitriouJ, GirlingA, LewisA, MillisR, LamportD. Development and characterization of breast cancer reactive monoclonal antibodies directed to the core protein of the human milk mucin. Cancer Res 1987; 47( 20): 5476– 5482
|
[116] |
DanielczykA, StahnR, FaulstichD, LöfflerA, MärtenA, KarstenU, GoletzS. PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol Immunother 2006; 55( 11): 1337– 1347
CrossRef
Google scholar
|
[117] |
TarpMA, SørensenAL, MandelU, PaulsenH, BurchellJ, Taylor-PapadimitriouJ, ClausenH. Identification of a novel cancer-specific immunodominant glycopeptide epitope in the MUC1 tandem repeat. Glycobiology 2007; 17( 2): 197– 209
CrossRef
Google scholar
|
[118] |
YamamotoM, BhavanandanVP, NakamoriS, IrimuraT. A novel monoclonal antibody specific for sialylated MUC1 mucin. Jpn J Cancer Res 1996; 87( 5): 488– 496
CrossRef
Google scholar
|
[119] |
TakeuchiH, KatoK, Denda-NagaiK, HanischFG, ClausenH, IrimuraT. The epitope recognized by the unique anti-MUC1 monoclonal antibody MY.1E12 involves sialylα2-3galactosylβ1-3N-acetylgalactosaminide linked to a distinct threonine residue in the MUC1 tandem repeat. J Immunol Methods 2002; 270( 2): 199– 209
CrossRef
Google scholar
|
[120] |
RyukoK, ScholDJ, SnijdewintFG, von Mensdorff-PouillyS, Poort-KeesomRJ, Karuntu-WanamartaYA, VerstraetenRA, MiyazakiK, KenemansP, HilgersJ. Characterization of a new MUC1 monoclonal antibody (VU-2-G7) directed to the glycosylated PDTR sequence of MUC1. Tumour Biol 2000; 21( 4): 197– 210
CrossRef
Google scholar
|
[121] |
SørensenAL, ReisCA, TarpMA, MandelU, RamachandranK, SankaranarayananV, SchwientekT, GrahamR, Taylor-PapadimitriouJ, HollingsworthMA, BurchellJ, ClausenH. Chemoenzymatically synthesized multimeric Tn/STn MUC1 glycopeptides elicit cancer-specific anti-MUC1 antibody responses and override tolerance. Glycobiology 2006; 16( 2): 96– 107
CrossRef
Google scholar
|
[122] |
NicoletCM, SiegelDH, SurfusJE, SondelPM. TAG-72-reactive antibody CC49 recognizes molecules expressed by hematopoietic cell lines. Tumour Biol 1997; 18( 6): 356– 366
CrossRef
Google scholar
|
[123] |
DaiH, WuZ, JiaH, TongC, GuoY, TiD, HanX, LiuY, ZhangW, WangC, ZhangY, ChenM, YangQ, WangY, HanW. Bispecific CAR-T cells targeting both CD19 and CD22 for therapy of adults with relapsed or refractory B cell acute lymphoblastic leukemia. J Hematol Oncol 2020; 13( 1): 30
CrossRef
Google scholar
|
/
〈 | 〉 |