New definition of metabolic dysfunction-associated fatty liver disease with elevated brachial-ankle pulse wave velocity and albuminuria: a prospective cohort study

Jialu Wang, Shanshan Liu, Qiuyu Cao, Shujing Wu, Jingya Niu, Ruizhi Zheng, Lizhan Bie, Zhuojun Xin, Yuanyue Zhu, Shuangyuan Wang, Hong Lin, Tiange Wang, Min Xu, Jieli Lu, Yuhong Chen, Yiping Xu, Weiqing Wang, Guang Ning, Yu Xu, Mian Li, Yufang Bi, Zhiyun Zhao

PDF(1311 KB)
PDF(1311 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (5) : 714-722. DOI: 10.1007/s11684-021-0888-8
RESEARCH ARTICLE
RESEARCH ARTICLE

New definition of metabolic dysfunction-associated fatty liver disease with elevated brachial-ankle pulse wave velocity and albuminuria: a prospective cohort study

Author information +
History +

Abstract

A new definition of metabolic dysfunction-associated fatty liver disease (MAFLD) has recently been proposed. We aim to examine the associations of MAFLD, particularly its discordance from non-alcoholic fatty liver disease (NAFLD), with the progression of elevated brachial-ankle pulse wave velocity (baPWV) and albuminuria in a community-based study sample in Shanghai, China. After 4.3 years of follow-up, 778 participants developed elevated baPWV and 499 developed albuminuria. In comparison with the non-MAFLD group, the multivariable adjusted odds ratio (OR) of MAFLD group for new-onset elevated baPWV was 1.25 (95% confidence interval (CI) 1.01–1.55) and 1.35 (95% CI 1.07–1.70) for albuminuria. Participants without NAFLD but diagnosed according to MAFLD definition were associated with higher risk of incident albuminuria (OR 1.77; 95% CI 1.07–2.94). Patients with MAFLD with high value of hepamet fibrosis score or poor-controlled diabetes had higher risk of elevated baPWV or albuminuria. In conclusion, MAFLD was associated with new-onset elevated baPWV and albuminuria independently of body mass index, waist circumference, and hip circumference. Individuals without NAFLD but diagnosed as MAFLD had high risk of albuminuria, supporting that MAFLD criteria would be practical for the evaluation of long-term risk of subclinical atherosclerosis among fatty liver patients.

Keywords

metabolic dysfunction-associated fatty liver disease / non-alcoholic fatty liver disease / fibrosis score / brachial-ankle pulse wave velocity / albuminuria

Cite this article

Download citation ▾
Jialu Wang, Shanshan Liu, Qiuyu Cao, Shujing Wu, Jingya Niu, Ruizhi Zheng, Lizhan Bie, Zhuojun Xin, Yuanyue Zhu, Shuangyuan Wang, Hong Lin, Tiange Wang, Min Xu, Jieli Lu, Yuhong Chen, Yiping Xu, Weiqing Wang, Guang Ning, Yu Xu, Mian Li, Yufang Bi, Zhiyun Zhao. New definition of metabolic dysfunction-associated fatty liver disease with elevated brachial-ankle pulse wave velocity and albuminuria: a prospective cohort study. Front. Med., 2022, 16(5): 714‒722 https://doi.org/10.1007/s11684-021-0888-8

References

[1]
Eslam M, Sanyal AJ, George J; International Consensus Panel. MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158( 7): 1999– 2014.e1
CrossRef Google scholar
[2]
Eslam M, Sarin SK, Wong VW, Fan JG, Kawaguchi T, Ahn SH, Zheng MH, Shiha G, Yilmaz Y, Gani R, Alam S, Dan YY, Kao JH, Hamid S, Cua IH, Chan WK, Payawal D, Tan SS, Tanwandee T, Adams LA, Kumar M, Omata M, George J. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int 2020; 14( 6): 889– 919
CrossRef Google scholar
[3]
Mendez-Sanchez N, Arrese M, Gadano A, Oliveira CP, Fassio E, Arab JP, Chávez-Tapia NC, Dirchwolf M, Torre A, Ridruejo E, Pinchemel-Cotrim H, Castellanos Fernández MI, Uribe M, Girala M, Diaz-Ferrer J, Restrepo JC, Padilla-Machaca M, Dagher L, Gatica M, Olaechea B, Pessôa MG, Silva M. The Latin American Association for the Study of the Liver (ALEH) position statement on the redefinition of fatty liver disease. Lancet Gastroenterol Hepatol 2021; 6( 1): 65– 72
CrossRef Google scholar
[4]
Shiha G, Alswat K, Al Khatry M, Sharara AI, Örmeci N, Waked I, Benazzouz M, Al-Ali F, Hamed AE, Hamoudi W, Attia D, Derbala M, Sharaf-Eldin M, Al-Busafi SA, Zaky S, Bamakhrama K, Ibrahim N, Ajlouni Y, Sabbah M, Salama M, Anushiravani A, Afredj N, Barakat S, Hashim A, Fouad Y, Soliman R. Nomenclature and definition of metabolic-associated fatty liver disease: a consensus from the Middle East and north Africa. Lancet Gastroenterol Hepatol 2021; 6( 1): 57– 64
CrossRef Google scholar
[5]
Spearman CW, Desalegn H, Ocama P, Awuku YA, Ojo O, Elsahhar M, Abdo AA, Ndububa DA, Fouad Y, Borodo MM, Ng’wanasayi M, Ally R, Elwakil R. The sub-Saharan Africa position statement on the redefinition of fatty liver disease: from NAFLD to MAFLD. J Hepatol 2021; 74( 5): 1256– 1258
CrossRef Google scholar
[6]
Fouad Y, Elwakil R, Elsahhar M, Said E, Bazeed S, Ali Gomaa A, Hashim A, Kamal E, Mehrez M, Attia D. The NAFLD-MAFLD debate: eminence vs evidence. Liver Int 2021; 41( 2): 255– 260
CrossRef Google scholar
[7]
European Association for the Study of the Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J Hepatol 2016; 64( 6): 1388– 1402
CrossRef Google scholar
[8]
Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-Sun Wong V, Dufour JF, Schattenberg JM, Kawaguchi T, Arrese M, Valenti L, Shiha G, Tiribelli C, Yki-Järvinen H, Fan JG, Grønbæk H, Yilmaz Y, Cortez-Pinto H, Oliveira CP, Bedossa P, Adams LA, Zheng MH, Fouad Y, Chan WK, Mendez-Sanchez N, Ahn SH, Castera L, Bugianesi E, Ratziu V, George J. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020; 73( 1): 202– 209
CrossRef Google scholar
[9]
Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313( 22): 2263– 2273
CrossRef Google scholar
[10]
Targher G, Byrne CD, Lonardo A, Zoppini G, Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: a meta-analysis. J Hepatol 2016; 65( 3): 589– 600
CrossRef Google scholar
[11]
Ohkuma T, Ninomiya T, Tomiyama H, Kario K, Hoshide S, Kita Y, Inoguchi T, Maeda Y, Kohara K, Tabara Y, Nakamura M, Ohkubo T, Watada H, Munakata M, Ohishi M, Ito N, Nakamura M, Shoji T, Vlachopoulos C, Yamashina A, Nagano M, Yukiyo O, Kabutoya T, Asayama K, Takashima N, Chowdhury TT, Mitsuki-Shinohara K, Yamashita T; Collaborative Group for J-BAVEL (Japan Brachial-Ankle Pulse Wave Velocity Individual Participant Data Meta-Analysis of Prospective Studies). Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: an individual participant data meta-analysis. Hypertension 2017; 69( 6): 1045– 1052
CrossRef Google scholar
[12]
Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P, Roderick P, Sairenchi T, Schöttker B, Shankar A, Shlipak M, Tonelli M, Townend J, van Zuilen A, Yamagishi K, Yamashita K, Gansevoort R, Sarnak M, Warnock DG, Woodward M, Ärnlöv J; CKD Prognosis Consortium. Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 2015; 3( 7): 514– 525
CrossRef Google scholar
[13]
Zheng J, Zhou Y, Zhang K, Qi Y, An S, Wang S, Zhao X, Tang YD. Association between nonalcoholic fatty liver disease and subclinical atherosclerosis: a cross-sectional study on population over 40 years old. BMC Cardiovasc Disord 2018; 18( 1): 147
CrossRef Google scholar
[14]
Zhu WH, Fang LZ, Lu CR, Dai HL, Chen JH, Qiao QH, Chen LY. Correlation between non-alcoholic fatty liver with metabolic risk factors and brachial-ankle pulse wave velocity. World J Gastroenterol 2015; 21( 35): 10192– 10199
CrossRef Google scholar
[15]
Li N, Zhang GW, Zhang JR, Jin D, Li Y, Liu T, Wang RT. Non-alcoholic fatty liver disease is associated with progression of arterial stiffness. Nutr Metab Cardiovasc Dis 2015; 25( 2): 218– 223
CrossRef Google scholar
[16]
Kang SH, Cho KH, Do JY. Non-alcoholic fatty liver disease is associated with low-grade albuminuria in men without diabetes mellitus. Int J Med Sci 2019; 16( 2): 285– 291
CrossRef Google scholar
[17]
Li M, Xu Y, Xu M, Ma L, Wang T, Liu Y, Dai M, Chen Y, Lu J, Liu J, Bi Y, Ning G. Association between nonalcoholic fatty liver disease (NAFLD) and osteoporotic fracture in middle-aged and elderly Chinese. J Clin Endocrinol Metab 2012; 97( 6): 2033– 2038
CrossRef Google scholar
[18]
Xin Z, Zhu Y, Wang S, Liu S, Xu M, Wang T, Lu J, Chen Y, Zhao Z, Wang W, Ning G, Bi Y, Xu Y, Li M. Associations of subclinical atherosclerosis with nonalcoholic fatty liver disease and fibrosis assessed by non-invasive score. Liver Int 2020; 40( 4): 806– 814
CrossRef Google scholar
[19]
Ampuero J, Pais R, Aller R, Gallego-Durán R, Crespo J, García-Monzón C, Boursier J, Vilar E, Petta S, Zheng MH, Escudero D, Calleja JL, Aspichueta P, Diago M, Rosales JM, Caballería J, Gómez-Camarero J, Lo Iacono O, Benlloch S, Albillos A, Turnes J, Banales JM, Ratziu V, Romero-Gómez M; HEPAmet Registry. Development and validation of hepamet fibrosis scoring system—a simple, noninvasive test to identify patients with nonalcoholic fatty liver disease with advanced fibrosis. Clin Gastroenterol Hepatol 2020; 18( 1): 216– 225.e5
CrossRef Google scholar
[20]
Stefan N. Causes, consequences, and treatment of metabolically unhealthy fat distribution. Lancet Diabetes Endocrinol 2020; 8( 7): 616– 627
CrossRef Google scholar
[21]
Kim NH, Park J, Kim SH, Kim YH, Kim DH, Cho GY, Baik I, Lim HE, Kim EJ, Na JO, Lee JB, Lee SK, Shin C. Non-alcoholic fatty liver disease, metabolic syndrome and subclinical cardiovascular changes in the general population. Heart 2014; 100( 12): 938– 943
CrossRef Google scholar
[22]
Hong HC, Hwang SY, Ryu JY, Yoo HJ, Seo JA, Kim SG, Kim NH, Baik SH, Choi DS, Choi KM. The synergistic impact of nonalcoholic fatty liver disease and metabolic syndrome on subclinical atherosclerosis. Clin Endocrinol (Oxf) 2016; 84( 2): 203– 209
CrossRef Google scholar
[23]
Wijarnpreecha K, Thongprayoon C, Boonpheng B, Panjawatanan P, Sharma K, Ungprasert P, Pungpapong S, Cheungpasitporn W. Nonalcoholic fatty liver disease and albuminuria: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2018; 30( 9): 986– 994
CrossRef Google scholar
[24]
Liu Z Suo C Shi O Lin C Zhao R Yuan H Jin L Zhang T Chen X. The health impact of MAFLD, a novel disease cluster of NAFLD, is amplified by the integrated effect of fatty liver disease-related genetic variants. Clin Gastroenterol Hepatol 2020: S1542- 3565(20)31729-8
[25]
Lin S, Huang J, Wang M, Kumar R, Liu Y, Liu S, Wu Y, Wang X, Zhu Y. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver Int 2020; 40( 9): 2082– 2089
CrossRef Google scholar
[26]
Lee H, Lee YH, Kim SU, Kim HC. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: a nationwide cohort study. Clin Gastroenterol Hepatol 2020; S1542-3565( 20): 31717– 1
[27]
Stefan N, Häring HU, Cusi K. Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 2019; 7( 4): 313– 324
CrossRef Google scholar
[28]
Chen Y, Xu M, Wang T, Sun J, Sun W, Xu B, Huang X, Xu Y, Lu J, Li X, Wang W, Bi Y, Ning G. Advanced fibrosis associates with atherosclerosis in subjects with nonalcoholic fatty liver disease. Atherosclerosis 2015; 241( 1): 145– 150
CrossRef Google scholar
[29]
Yamamura S, Eslam M, Kawaguchi T, Tsutsumi T, Nakano D, Yoshinaga S, Takahashi H, Anzai K, George J, Torimura T. MAFLD identifies patients with significant hepatic fibrosis better than NAFLD. Liver Int 2020; 40( 12): 3018– 3030
CrossRef Google scholar

Acknowledgements

The investigators are grateful to all participants for their cooperation in the study. This work was supported by the grants from the National Key R&D Program of China (Nos. 2017YFC1310700, 2018YFC1311800, and 2018YFC1311705), the National Natural Science Foundation of China (Nos. 81870560, 82070880, 81941017, 81770842, 81970706, and 82022011), the National Science and Technology Major Project for “Significant New Drugs Development” (No. 2017ZX09304007), Shanghai Municipal Government (No. 18411951800), Shanghai Shenkang Hospital Development Center (Nos. SHDC12019101, SHDC2020CR1001A, and SHDC2020CR3069B), the Scientific and Technological Committee of Shanghai (No. 19411964200), Shanghai Jiao Tong University School of Medicine (No. DLY201801), Ruijin Hospital (No. 2018CR002) and Shanghai Rising-Star Program (No. 21QA1408100).

Compliance with ethics guidelines

Jialu Wang, Shanshan Liu, Qiuyu Cao, Shujing Wu, Jingya Niu, Ruizhi Zheng, Lizhan Bie, Zhuojun Xin, Yuanyue Zhu, Shuangyuan Wang, Hong Lin, Tiange Wang, Min Xu, Jieli Lu, Yuhong Chen, Yiping Xu, Weiqing Wang, Guang Ning, Yu Xu, Mian Li, Yufang Bi, and Zhiyun Zhao have no conflict of interest to declare. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients for being included in the study.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-021-0888-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1311 KB)

Accesses

Citations

Detail

Sections
Recommended

/