Hyperglycemic memory in diabetic cardiomyopathy

Jiabing Zhan, Chen Chen, Dao Wen Wang, Huaping Li

PDF(574 KB)
PDF(574 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (1) : 25-38. DOI: 10.1007/s11684-021-0881-2
REVIEW
REVIEW

Hyperglycemic memory in diabetic cardiomyopathy

Author information +
History +

Abstract

Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.

Keywords

diabetes / diabetic cardiomyopathy / hyperglycemic memory

Cite this article

Download citation ▾
Jiabing Zhan, Chen Chen, Dao Wen Wang, Huaping Li. Hyperglycemic memory in diabetic cardiomyopathy. Front. Med., 2022, 16(1): 25‒38 https://doi.org/10.1007/s11684-021-0881-2

References

[1]
Fang ZY, Prins JB, Marwick TH. Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 2004; 25(4): 543–567
CrossRef Pubmed Google scholar
[2]
Farhangkhoee H, Khan ZA, Kaur H, Xin X, Chen S, Chakrabarti S. Vascular endothelial dysfunction in diabetic cardiomyopathy: pathogenesis and potential treatment targets. Pharmacol Ther 2006; 111(2): 384–399
CrossRef Pubmed Google scholar
[3]
Fonarow GC. An approach to heart failure and diabetes mellitus. Am J Cardiol 2005; 96(4 Supplement): 47–52
CrossRef Pubmed Google scholar
[4]
Haffner S, Taegtmeyer H. Epidemic obesity and the metabolic syndrome. Circulation 2003; 108(13): 1541–1545
CrossRef Pubmed Google scholar
[5]
Hsueh W, Abel ED, Breslow JL, Maeda N, Davis RC, Fisher EA, Dansky H, McClain DA, McIndoe R, Wassef MK, Rabadán-Diehl C, Goldberg IJ. Recipes for creating animal models of diabetic cardiovascular disease. Circ Res 2007; 100(10): 1415–1427
CrossRef Pubmed Google scholar
[6]
Hamby RI, Zoneraich S, Sherman L. Diabetic cardiomyopathy. JAMA 1974; 229(13): 1749–1754
CrossRef Pubmed Google scholar
[7]
Cosson S, Kevorkian JP. Left ventricular diastolic dysfunction: an early sign of diabetic cardiomyopathy? Diabetes Metab 2003; 29(5): 455–466
CrossRef Pubmed Google scholar
[8]
Jia G, Hill MA, Sowers JR. Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 2018; 122(4): 624–638
CrossRef Pubmed Google scholar
[9]
Lee WS, Kim J. Application of animal models in diabetic cardiomyopathy. Diabetes Metab J 2021; 45(2): 129–145
CrossRef Pubmed Google scholar
[10]
Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 2008; 121(9): 748–757
CrossRef Pubmed Google scholar
[11]
Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 2013; 18(2): 149–166
CrossRef Pubmed Google scholar
[12]
Li H, Fan J, Chen C, Wang DW. Subcellular microRNAs in diabetic cardiomyopathy. Ann Transl Med 2020; 8(23): 1602
CrossRef Pubmed Google scholar
[13]
Lee MMY, McMurray JJV, Lorenzo-Almorós A, Kristensen SL, Sattar N, Jhund PS, Petrie MC. Diabetic cardiomyopathy. Heart 2019; 105(4): 337–345
CrossRef Pubmed Google scholar
[14]
Ren J, Ceylan-Isik AF. Diabetic cardiomyopathy: do women differ from men? Endocrine 2004; 25(2): 73–83
CrossRef Pubmed Google scholar
[15]
Ren J, Sowers JR. Application of a novel curcumin analog in the management of diabetic cardiomyopathy. Diabetes 2014; 63(10): 3166–3168
CrossRef Pubmed Google scholar
[16]
Bi Y, Zhang Y, Ren J. Phosphoinositide 3-kinase therapy in diabetic cardiomyopathy: unravelling an enigma. Am J Physiol Heart Circ Physiol 2020; 318(5): H1029–H1031
CrossRef Pubmed Google scholar
[17]
Yang L, Zhao D, Ren J, Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1852(2): 209–218
CrossRef Pubmed Google scholar
[18]
.Diabetes Control and Complications Trial Research Group, Nathan DM, Genuth S, Lachin J, Cleary P, Crofford O, Davis M, Rand L, Siebert C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993; 329(14): 977–986
CrossRef Pubmed Google scholar
[19]
Afroz A, Ali L, Karim MN, Alramadan MJ, Alam K, Magliano DJ, Billah B. Glycaemic control for people with type 2 diabetes mellitus in Bangladesh—an urgent need for optimization of management plan. Sci Rep 2019; 9(1): 10248
CrossRef Pubmed Google scholar
[20]
Fincke BG, Clark JA, Linzer M, Spiro A 3rd, Miller DR, Lee A, Kazis LE. Assessment of long-term complications due to type 2 diabetes using patient self-report: the diabetes complications index. J Ambul Care Manage 2005; 28(3): 262–273
CrossRef Pubmed Google scholar
[21]
Stettler C, Allemann S, Jüni P, Cull CA, Holman RR, Egger M, Krähenbühl S, Diem P. Glycemic control and macrovascular disease in types 1 and 2 diabetes mellitus: meta-analysis of randomized trials. Am Heart J 2006; 152(1): 27–38
CrossRef Pubmed Google scholar
[22]
UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352(9131): 854–865
CrossRef Pubmed Google scholar
[23]
UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837–853
CrossRef Pubmed Google scholar
[24]
Control Group, Turnbull FM, Abraira C, Anderson RJ, Byington RP, Chalmers JP, Duckworth WC, Evans GW, Gerstein HC, Holman RR, Moritz TE, Neal BC, Ninomiya T, Patel AA, Paul SK, Travert F, Woodward M. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009; 52(11): 2288–2298
CrossRef Pubmed Google scholar
[25]
Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 2015; 385(9982): 2107–2117
CrossRef Pubmed Google scholar
[26]
Gugliucci A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv Nutr 2017; 8(1): 54–62
CrossRef Pubmed Google scholar
[27]
Davis KE, Prasad C, Vijayagopal P, Juma S, Imrhan V. Advanced glycation end products, inflammation, and chronic metabolic diseases: links in a chain? Crit Rev Food Sci Nutr 2016; 56(6): 989–998
CrossRef Pubmed Google scholar
[28]
Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, Li J, Ren J. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 2009; 13(8b): 1751–1764
CrossRef Pubmed Google scholar
[29]
Brownlee M. Glycation products and the pathogenesis of diabetic complications. Diabetes Care 1992; 15(12): 1835–1843
CrossRef Pubmed Google scholar
[30]
Oldfield MD, Bach LA, Forbes JM, Nikolic-Paterson D, McRobert A, Thallas V, Atkins RC, Osicka T, Jerums G, Cooper ME. Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). J Clin Invest 2001; 108(12): 1853–1863
CrossRef Pubmed Google scholar
[31]
Jin X, Yao T, Zhou Z, Zhu J, Zhang S, Hu W, Shen C. Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. Biomed Res Int 2015; 2015: 732450
CrossRef Pubmed Google scholar
[32]
Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87(2): 432–438
CrossRef Pubmed Google scholar
[33]
Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, Cao R, Yan SD, Brett J, Stern D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 1995; 96(3): 1395–1403
CrossRef Pubmed Google scholar
[34]
Wang J, Tang Z, Zhang Y, Qiu C, Zhu L, Zhao N, Liu Z. Matrine alleviates AGEs-induced cardiac dysfunctions by attenuating calcium overload via reducing ryanodine receptor 2 activity. Eur J Pharmacol 2019; 842: 118–124
CrossRef Pubmed Google scholar
[35]
Tian C, Alomar F, Moore CJ, Shao CH, Kutty S, Singh J, Bidasee KR. Reactive carbonyl species and their roles in sarcoplasmic reticulum Ca2+ cycling defect in the diabetic heart. Heart Fail Rev 2014; 19(1): 101–112
CrossRef Pubmed Google scholar
[36]
Hamilton S, Terentyev D. Altered intracellular calcium homeostasis and arrhythmogenesis in the aged heart. Int J Mol Sci 2019; 20(10): 2386
CrossRef Pubmed Google scholar
[37]
Yang YC, Tsai CY, Chen CL, Kuo CH, Hou CW, Cheng SY, Aneja R, Huang CY, Kuo WW. Pkcδ activation is involved in ROS-mediated mitochondrial dysfunction and apoptosis in cardiomyocytes exposed to advanced glycation end products (Ages). Aging Dis 2018; 9(4): 647–663
CrossRef Pubmed Google scholar
[38]
Bucala R, Mitchell R, Arnold K, Innerarity T, Vlassara H, Cerami A. Identification of the major site of apolipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor. J Biol Chem 1995; 270(18): 10828–10832
CrossRef Pubmed Google scholar
[39]
Zoltowska M, Delvin E, Ziv E, Peretti N, Chartré M, Levy E. Impact of in vivo glycation of LDL on platelet aggregation and monocyte chemotaxis in diabetic psammomys obesus. Lipids 2004; 39(1): 81–85
CrossRef Pubmed Google scholar
[40]
Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 2018; 28(3): 337–352
CrossRef Pubmed Google scholar
[41]
Nowotny K, Grune T. Degradation of oxidized and glycoxidized collagen: role of collagen cross-linking. Arch Biochem Biophys 2014; 542: 56–64
CrossRef Pubmed Google scholar
[42]
Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Mol Med 2018; 24(1): 59
CrossRef Pubmed Google scholar
[43]
Li H, Fan J, Zhao Y, Zhang X, Dai B, Zhan J, Yin Z, Nie X, Fu XD, Chen C, Wang DW. Nuclear miR-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ Res 2019; 125(12): 1106–1120
CrossRef Pubmed Google scholar
[44]
Zhang X, Zuo X, Yang B, Li Z, Xue Y, Zhou Y, Huang J, Zhao X, Zhou J, Yan Y, Zhang H, Guo P, Sun H, Guo L, Zhang Y, Fu XD. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 2014; 158(3): 607–619
CrossRef Pubmed Google scholar
[45]
Lu TX, Rothenberg ME. MicroRNA. J Allergy Clin Immunol 2018; 141(4): 1202–1207
CrossRef Pubmed Google scholar
[46]
Zhong X, Liao Y, Chen L, Liu G, Feng Y, Zeng T, Zhang J. The microRNAs in the pathogenesis of metabolic memory. Endocrinology 2015; 156(9): 3157–3168
CrossRef Pubmed Google scholar
[47]
Li J, Donath S, Li Y, Qin D, Prabhakar BS, Li P. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010; 6(1): e1000795
CrossRef Pubmed Google scholar
[48]
van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA 2008; 105(35): 13027–13032
CrossRef Pubmed Google scholar
[49]
Strycharz J, Świderska E, Wróblewski A, Podolska M, Czarny P, Szemraj J, Balcerczyk A, Drzewoski J, Kasznicki J, Śliwińska A. Hyperglycemia affects miRNAs expression pattern during adipogenesis of human visceral adipocytes—is memorization involved? Nutrients 2018; 10(11): 1774
CrossRef Pubmed Google scholar
[50]
Peng QH, Tong P, Gu LM, Li WJ. Astragalus polysaccharide attenuates metabolic memory-triggered ER stress and apoptosis via regulation of miR-204/SIRT1 axis in retinal pigment epithelial cells. Biosci Rep 2020; 40(1): BSR20192121
CrossRef Pubmed Google scholar
[51]
Costantino S, Paneni F, Lüscher TF, Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J 2016; 37(6): 572–576
CrossRef Pubmed Google scholar
[52]
Hussain S, Khan AW, Akhmedov A, Suades R, Costantino S, Paneni F, Caidahl K, Mohammed SA, Hage C, Gkolfos C, Björck H, Pernow J, Lund LH, Lüscher TF, Cosentino F. Hyperglycemia induces myocardial dysfunction via epigenetic regulation of JunD. Circ Res 2020; 127(10): 1261–1273
CrossRef Pubmed Google scholar
[53]
Tong M, Sadoshima J. Nuclear miR-320 controls lipotoxicity. Circ Res 2019; 125(12): 1121–1123
CrossRef Pubmed Google scholar
[54]
Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 2012; 12(1): 5–18
CrossRef Pubmed Google scholar
[55]
Kuroki T, Isshiki K, King GL. Oxidative stress: the lead or supporting actor in the pathogenesis of diabetic complications. J Am Soc Nephrol 2003; 14(Suppl 3): S216–S220
CrossRef Pubmed Google scholar
[56]
Wang D, Yin Y, Wang S, Zhao T, Gong F, Zhao Y, Wang B, Huang Y, Cheng Z, Zhu G, Wang Z, Wang Y, Ren J, Liang G, Li X, Huang Z. FGF1ΔHBS prevents diabetic cardiomyopathy by maintaining mitochondrial homeostasis and reducing oxidative stress via AMPK/Nur77 suppression. Signal Transduct Target Ther 2021; 6(1): 133
CrossRef Pubmed Google scholar
[57]
Wende AR, Schell JC, Ha CM, Pepin ME, Khalimonchuk O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzi CA, Olsen CD, Bradley WE, Dell’Italia LJ, Dillmann WH, Litwin SE, Abel ED. Maintaining myocardial glucose utilization in diabetic cardiomyopathy accelerates mitochondrial dysfunction. Diabetes 2020; 69(10): 2094–2111
CrossRef Pubmed Google scholar
[58]
Maack C, Lehrke M, Backs J, Heinzel FR, Hulot JS, Marx N, Paulus WJ, Rossignol P, Taegtmeyer H, Bauersachs J, Bayes-Genis A, Brutsaert D, Bugger H, Clarke K, Cosentino F, De Keulenaer G, Dei Cas A, González A, Huelsmann M, Iaccarino G, Lunde IG, Lyon AR, Pollesello P, Rena G, Riksen NP, Rosano G, Staels B, van Laake LW, Wanner C, Farmakis D, Filippatos G, Ruschitzka F, Seferovic P, de Boer RA, Heymans S. Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association-European Society of Cardiology. Eur Heart J 2018; 39(48): 4243–4254
CrossRef Pubmed Google scholar
[59]
Jubaidi FF, Zainalabidin S, Mariappan V, Budin SB. Mitochondrial dysfunction in diabetic cardiomyopathy: the possible therapeutic roles of phenolic acids. Int J Mol Sci 2020; 21(17): 6043
CrossRef Pubmed Google scholar
[60]
van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P. Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc Res 2011; 92(1): 10–18
CrossRef Pubmed Google scholar
[61]
Trumpower BL. The protonmotive Q cycle. Energy transduction by coupling of proton translocation to electron transfer by the cytochrome bc1 complex. J Biol Chem 1990; 265(20): 11409–11412
CrossRef Pubmed Google scholar
[62]
Wallace D C. Diseases of the mitochondrial DNA. Annu Rev Biochem 1992; 61: 1175–1212
CrossRef Pubmed Google scholar
[63]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058–1070
CrossRef Pubmed Google scholar
[64]
Craven PA, Davidson CM, DeRubertis FR. Increase in diacylglycerol mass in isolated glomeruli by glucose from de novo synthesis of glycerolipids. Diabetes 1990; 39(6): 667–674
CrossRef Pubmed Google scholar
[65]
Ihnat MA, Thorpe JE, Kamat CD, Szabó C, Green DE, Warnke LA, Lacza Z, Cselenyák A, Ross K, Shakir S, Piconi L, Kaltreider RC, Ceriello A. Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signalling. Diabetologia 2007; 50(7): 1523–1531
CrossRef Pubmed Google scholar
[66]
Cosentino F, Francia P, Camici GG, Pelicci PG, Lüscher TF, Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 2008; 28(4): 622–628
CrossRef Pubmed Google scholar
[67]
Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin-Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Lüscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 2006; 99(1): 42–52
CrossRef Pubmed Google scholar
[68]
Paneni F, Mocharla P, Akhmedov A, Costantino S, Osto E, Volpe M, Lüscher TF, Cosentino F. Gene silencing of the mitochondrial adaptor p66Shc suppresses vascular hyperglycemic memory in diabetes. Circ Res 2012; 111(3): 278–289
CrossRef Pubmed Google scholar
[69]
Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66Shc, and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62(6): 1800–1807
CrossRef Pubmed Google scholar
[70]
Lee JY, Lee YJ, Jeon HY, Han ET, Park WS, Hong SH, Kim YM, Ha KS. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory-induced endothelial dysfunction. FASEB J 2019; 33(11): 12655–12667
CrossRef Pubmed Google scholar
[71]
Isabelle M, Vergeade A, Moritz F, Dautréaux B, Henry JP, Lallemand F, Richard V, Mulder P, Thuillez C, Monteil C. NADPH oxidase inhibition prevents cocaine-induced up-regulation of xanthine oxidoreductase and cardiac dysfunction. J Mol Cell Cardiol 2007; 42(2): 326–332
CrossRef Pubmed Google scholar
[72]
Li H, Dai B, Fan J, Chen C, Nie X, Yin Z, Zhao Y, Zhang X, Wang D W. The different roles of miRNA-92a-2–5p and let-7b-5p in mitochondrial translation in db/db Mice. Mol Ther Nucleic Acids 2019; 17: 424–435
CrossRef Pubmed Google scholar
[73]
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS crosstalk in cardiac and pulmonary diseases. Int J Mol Sci 2020; 21(12): 4370
CrossRef Pubmed Google scholar
[74]
Kim J H, Park S G, Song S Y, Kim J K, Sung J H. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2. Cell Death Dis 2013; 4: e588
CrossRef Pubmed Google scholar
[75]
He J, Xu Q, Jing Y, Agani F, Qian X, Carpenter R, Li Q, Wang XR, Peiper SS, Lu Z, Liu LZ, Jiang BH. Reactive oxygen species regulate ERBB2 and ERBB3 expression via miR-199a/125b and DNA methylation. EMBO Rep 2012; 13(12): 1116–1122
CrossRef Pubmed Google scholar
[76]
West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017; 17(6): 363–375
CrossRef Pubmed Google scholar
[77]
Jayaraman S. Epigenetic mechanisms of metabolic memory in diabetes. Circ Res 2012; 110(8): 1039–1041
CrossRef Pubmed Google scholar
[78]
Cencioni C, Spallotta F, Greco S, Martelli F, Zeiher A M, Gaetano C. Epigenetic mechanisms of hyperglycemic memory. Int J Biochem Cell Biol 2014; 51: 155–158
CrossRef Pubmed Google scholar
[79]
Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009; 324(5929): 930–935
CrossRef Pubmed Google scholar
[80]
Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, Liu L, Liu Y, Yang C, Xu Y, Zhao S, Ye D, Xiong Y, Guan KL. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 2012; 26(12): 1326–1338
CrossRef Pubmed Google scholar
[81]
Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuño MI, Bernal R, Gomez-Huelgas R, Urpi-Sarda M, Sabater M, Pérez-Brocal V, Andrés-Lacueva C, Moya A, Tinahones FJ, Fernández-Real JM, Vendrell J, Fernández-Veledo S. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 2018; 12(7): 1642–1657
CrossRef Pubmed Google scholar
[82]
Kim M. DNA methylation: a cause and consequence of type 2 diabetes. Genomics Inform 2019; 17(4): e38
CrossRef Pubmed Google scholar
[83]
Su X, Wellen K E, Rabinowitz J D. Metabolic control of methylation and acetylation. Curr Opin Chem Biol 2016; 30: 52–60
CrossRef Pubmed Google scholar
[84]
Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004; 14(14): R546–R551
CrossRef Pubmed Google scholar
[85]
Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, Epstein JA, Gruber PJ. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J 2008; 22(10): 3549–3560
CrossRef Pubmed Google scholar
[86]
Chen Y, Du J, Zhao Y T, Zhang L, Lv G, Zhuang S, Qin G, Zhao T C. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol 2015; 14: 99
CrossRef Pubmed Google scholar
[87]
Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S, Li Y. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin-like growth factor receptor. Exp Cell Res 2010; 316(17): 2903–2909
CrossRef Pubmed Google scholar
[88]
Wang M, Hu J, Yan L, Yang Y, He M, Wu M, Li Q, Gong W, Yang Y, Wang Y, Handy DE, Lu B, Hao C, Wang Q, Li Y, Hu R, Stanton RC, Zhang Z. High glucose-induced ubiquitination of G6PD leads to the injury of podocytes. FASEB J 2019; 33(5): 6296–6310
CrossRef Pubmed Google scholar
[89]
Vogelauer M, Krall AS, McBrian MA, Li JY, Kurdistani SK. Stimulation of histone deacetylase activity by metabolites of intermediary metabolism. J Biol Chem 2012; 287(38): 32006–32016
CrossRef Pubmed Google scholar
[90]
Kouzarides T. Acetylation: a regulatory modification to rival phosphorylation? EMBO J 2000; 19(6): 1176–1179
CrossRef Pubmed Google scholar
[91]
Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G, Liu M, Zhang R, Li C, Ji G, Zhang Y. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: role of Foxo3A-Parkin-mediated mitophagy. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1973–1983
CrossRef Pubmed Google scholar
[92]
Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, Musso E, Baccarin M, Di Segni M, Fagnoni F, Germani A, Quaini E, Mayr M, Xu Q, Barbuti A, DiFrancesco D, Pompilio G, Quaini F, Gaetano C, Capogrossi MC. Human cardiac and bone marrow stromal cells exhibit distinctive properties related to their origin. Cardiovasc Res 2011; 89(3): 650–660
CrossRef Pubmed Google scholar
[93]
Wagner GR, Payne RM. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J Biol Chem 2013; 288(40): 29036–29045
CrossRef Pubmed Google scholar
[94]
Narita T, Weinert BT, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nat Rev Mol Cell Biol 2019; 20(3): 156–174
CrossRef Pubmed Google scholar
[95]
Kumar S, Kim YR, Vikram A, Naqvi A, Li Q, Kassan M, Kumar V, Bachschmid MM, Jacobs JS, Kumar A, Irani K. Sirtuin1-regulated lysine acetylation of p66Shc governs diabetes-induced vascular oxidative stress and endothelial dysfunction. Proc Natl Acad Sci USA 2017; 114(7): 1714–1719
CrossRef Pubmed Google scholar
[96]
Huang T, Li X, Wang F, Lu L, Hou W, Zhu M, Miao C. The CREB/KMT5A complex regulates PTP1B to modulate high glucose-induced endothelial inflammatory factor levels in diabetic nephropathy. Cell Death Dis 2021; 12(4): 333
CrossRef Pubmed Google scholar
[97]
Wang J, Shen X, Liu J, Chen W, Wu F, Wu W, Meng Z, Zhu M, Miao C. High glucose mediates NLRP3 inflammasome activation via upregulation of ELF3 expression. Cell Death Dis 2020; 11(5): 383
CrossRef Pubmed Google scholar
[98]
Zhang H, Gao Q, Tan S, You J, Lyu C, Zhang Y, Han M, Chen Z, Li J, Wang H, Liao L, Qin J, Li J, Wong J. SET8 prevents excessive DNA methylation by methylation-mediated degradation of UHRF1 and DNMT1. Nucleic Acids Res 2019; 47(17): 9053–9068
CrossRef Pubmed Google scholar
[99]
Miao F, Chen Z, Genuth S, Paterson A, Zhang L, Wu X, Li SM, Cleary P, Riggs A, Harlan DM, Lorenzi G, Kolterman O, Sun W, Lachin JM, Natarajan R; DCCT/EDIC Research Group. Evaluating the role of epigenetic histone modifications in the metabolic memory of type 1 diabetes. Diabetes 2014; 63(5): 1748–1762
CrossRef Pubmed Google scholar
[100]
Chen Z, Miao F, Paterson AD, Lachin JM, Zhang L, Schones DE, Wu X, Wang J, Tompkins JD, Genuth S, Braffett BH, Riggs AD; DCCT/EDIC Research Group, Natarajan R. Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci USA 2016; 113(21): E3002–E3011
CrossRef Pubmed Google scholar
[101]
Olsen AS, Sarras MP Jr, Leontovich A, Intine RV. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 2012; 61(2): 485–491
CrossRef Pubmed Google scholar
[102]
Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009; 58(5): 1229–1236
CrossRef Pubmed Google scholar
[103]
El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder RG, Cooper ME, Brownlee M. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med 2008; 205(10): 2409–2417
CrossRef Pubmed Google scholar
[104]
Pinney SE, Simmons RA. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol Metab 2010; 21(4): 223–229
CrossRef Pubmed Google scholar
[105]
Siebel AL, Fernandez AZ, El-Osta A. Glycemic memory associated epigenetic changes. Biochem Pharmacol 2010; 80(12): 1853–1859
CrossRef Pubmed Google scholar
[106]
Okabe J, Orlowski C, Balcerczyk A, Tikellis C, Thomas MC, Cooper ME, El-Osta A. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Circ Res 2012; 110(8): 1067–1076
CrossRef Pubmed Google scholar
[107]
Yu XY, Geng YJ, Liang JL, Zhang S, Lei HP, Zhong SL, Lin QX, Shan ZX, Lin SG, Li Y. High levels of glucose induce “metabolic memory” in cardiomyocyte via epigenetic histone H3 lysine 9 methylation. Mol Biol Rep 2012; 39(9): 8891–8898
CrossRef Pubmed Google scholar
[108]
Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 2004; 279(17): 18091–18097
CrossRef Pubmed Google scholar
[109]
Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 2008; 57(12): 3189–3198
CrossRef Pubmed Google scholar
[110]
Zheng Z, Chen H, Li J, Li T, Zheng B, Zheng Y, Jin H, He Y, Gu Q, Xu X. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin. Diabetes 2012; 61(1): 217–228
CrossRef Pubmed Google scholar
[111]
Chen X, Wu Q, Jiang H, Wang J, Zhao Y, Xu Y, Zhu M. SET8 is involved in the regulation of hyperglycemic memory in human umbilical endothelial cells. Acta Biochim Biophys Sin (Shanghai) 2018; 50(7): 635–642
CrossRef Pubmed Google scholar
[112]
Zee BM, Levin RS, Xu B, LeRoy G, Wingreen NS, Garcia BA. In vivo residue-specific histone methylation dynamics. J Biol Chem 2010; 285(5): 3341–3350
CrossRef Pubmed Google scholar
[113]
Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13(5): 343–357
CrossRef Pubmed Google scholar
[114]
Schotta G, Ebert A, Krauss V, Fischer A, Hoffmann J, Rea S, Jenuwein T, Dorn R, Reuter G. Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J 2002; 21(5): 1121–1131
CrossRef Pubmed Google scholar
[115]
Rusché LN, Rine J. Conversion of a gene-specific repressor to a regional silencer. Genes Dev 2001; 15(8): 955–967
CrossRef Pubmed Google scholar
[116]
Owen DJ, Ornaghi P, Yang JC, Lowe N, Evans PR, Ballario P, Neuhaus D, Filetici P, Travers AA. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J 2000; 19(22): 6141–6149
CrossRef Pubmed Google scholar
[117]
Dodd IB, Micheelsen MA, Sneppen K, Thon G. Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 2007; 129(4): 813–822
CrossRef Pubmed Google scholar
[118]
Prattichizzo F, De Nigris V, Spiga R, Mancuso E, La Sala L, Antonicelli R, Testa R, Procopio A D, Olivieri F, Ceriello A.Inflammageing and metaflammation: the yin and yang of type 2 diabetes. Ageing Res Rev 2018; 41:1–17
CrossRef Pubmed Google scholar
[119]
Elia E, Ministrini S, Carbone F, Montecucco F. Diabetic cardiomyopathy and inflammation: development of hostile microenvironment resulting in cardiac damage. Minerva Cardioangiol 2021; [Epub ahead of print] doi: 10.23736/S0026-4725.20.05454-7
Pubmed
[120]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820
CrossRef Pubmed Google scholar
[121]
Bianchi C, Miccoli R, Del Prato S. Hyperglycemia and vascular metabolic memory: truth or fiction? Curr Diab Rep 2013; 13(3): 403–410
CrossRef Pubmed Google scholar
[122]
Cooper ME, El-Osta A. Epigenetics: mechanisms and implications for diabetic complications. Circ Res 2010; 107(12): 1403–1413
CrossRef Pubmed Google scholar
[123]
Banerjee PS, Ma J, Hart GW. Diabetes-associated dysregulation of O-GlcNAcylation in rat cardiac mitochondria. Proc Natl Acad Sci USA 2015; 112(19): 6050–6055
CrossRef Pubmed Google scholar
[124]
Ngoh GA, Facundo HT, Zafir A, Jones SP. O-GlcNAc signaling in the cardiovascular system. Circ Res 2010; 107(2): 171–185
CrossRef Pubmed Google scholar
[125]
Ducheix S, Magre J, Cariou B, Prieur X. Chronic O-GlcNAcylation and diabetic cardiomyopathy: the bitterness of glucose. Front Endocrinol (Lausanne) 2018; 9: 642
CrossRef Pubmed Google scholar
[126]
Love DC, Krause MW, Hanover JA. O-GlcNAc cycling: emerging roles in development and epigenetics. Semin Cell Dev Biol 2010; 21(6): 646–654
CrossRef Pubmed Google scholar
[127]
Friedrichs P, Schlotterer A, Sticht C, Kolibabka M, Wohlfart P, Dietrich A, Linn T, Molema G, Hammes HP. Hyperglycaemic memory affects the neurovascular unit of the retina in a diabetic mouse model. Diabetologia 2017; 60(7): 1354–1358
CrossRef Pubmed Google scholar
[128]
Carney EF. Diabetic nephropathy: role of podocyte SHP-1 in hyperglycaemic memory. Nat Rev Nephrol 2016; 12(11): 650
Pubmed
[129]
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353(25): 2643–2653
CrossRef Pubmed Google scholar
[130]
Yorek MS, Obrosov A, Shevalye H, Lupachyk S, Harper MM, Kardon RH, Yorek MA. Effect of glycemic control on corneal nerves and peripheral neuropathy in streptozotocin-induced diabetic C57Bl/6J mice. J Peripher Nerv Syst 2014; 19(3): 205–217
CrossRef Pubmed Google scholar
[131]
Engerman RL, Kern TS. Progression of incipient diabetic retinopathy during good glycemic control. Diabetes 1987; 36(7): 808–812
CrossRef Pubmed Google scholar
[132]
Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes 2003; 52(3): 818–823
CrossRef Pubmed Google scholar

Acknowledgements

We thank our colleagues in the group of Dao Wen Wang for stimulating discussions. This work was supported by grants from the National Natural Science Foundation of China (Nos. 81822002, 31771264, and 31800973) and the Fundamental Research Funds for the Central Universities (No. 2019kfyXMBZ035). The funders had no role in study design, data collection and analysis, manuscript preparation, or decision to publish.

Compliance with ethics guidelines

Jiabing Zhan, Chen Chen, Dao Wen Wang, and Huaping Li declare no conflicts of interest. This manuscript is a review and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(574 KB)

Accesses

Citations

Detail

Sections
Recommended

/