Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia

Mengping Xi, Shanshan Guo, Caicike Bayin, Lijun peng, Florent Chuffart, Ekaterina Bourova-Flin, Sophie Rousseaux, Saadi Khochbin, Jian-Qing Mi, Jin Wang

PDF(2292 KB)
PDF(2292 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 442-458. DOI: 10.1007/s11684-021-0877-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia

Author information +
History +

Abstract

T-cell acute lymphoblastic leukemia (T-ALL) is one of the most dangerous hematological malignancies, with high tumor heterogeneity and poor prognosis. More than 60% of T-ALL patients carry NOTCH1 gene mutations, leading to abnormal expression of downstream target genes and aberrant activation of various signaling pathways. We found that chidamide, an HDAC inhibitor, exerts an antitumor effect on T-ALL cell lines and primary cells including an anti-NOTCH1 activity. In particular, chidamide inhibits the NOTCH1-MYC signaling axis by down-regulating the level of the intracellular form of NOTCH1 (NICD1) as well as MYC, partly through their ubiquitination and degradation by the proteasome pathway. We also report here the preliminary results of our clinical trial supporting that a treatment by chidamide reduces minimal residual disease (MRD) in patients and is well tolerated. Our results highlight the effectiveness and safety of chidamide in the treatment of T-ALL patients, including those with NOTCH1 mutations and open the way to a new therapeutic strategy for these patients.

Keywords

T-cell acute lymphoblastic leukemia / HDAC inhibitor / chidamide / NOTCH1 / MYC / ubiquitination

Cite this article

Download citation ▾
Mengping Xi, Shanshan Guo, Caicike Bayin, Lijun peng, Florent Chuffart, Ekaterina Bourova-Flin, Sophie Rousseaux, Saadi Khochbin, Jian-Qing Mi, Jin Wang. Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia. Front. Med., 2022, 16(3): 442‒458 https://doi.org/10.1007/s11684-021-0877-y

References

[1]
Alvarnas JC, Brown PA, Aoun P, Ballen KK, Barta SK, Borate U, Boyer MW, Burke PW, Cassaday R, Castro JE, Coccia PF, Coutre SE, Damon LE, DeAngelo DJ, Douer D, Frankfurt O, Greer JP, Johnson RA, Kantarjian HM, Klisovic RB, Kupfer G, Litzow M, Liu A, Rao AV, Shah B, Uy GL, Wang ES, Zelenetz AD, Gregory K, Smith C. Acute Lymphoblastic Leukemia, Version 2.2015. J Natl Compr Canc Netw 2015; 13(10): 1240–1279
CrossRef Pubmed Google scholar
[2]
Hunger SP, Mullighan CG. Acute lymphoblastic leukemia in children. N Engl J Med 2015; 373(16): 1541–1552
CrossRef Pubmed Google scholar
[3]
Aref S, El Agdar M, Salama O, Zeid TA, Sabry M. Significance of NOTCH1 mutations détections in T-acute lymphoblastic leukemia patients. Cancer Biomark 2020; 27(2): 157–162
CrossRef Pubmed Google scholar
[4]
Guru Murthy GS, Pondaiah SK, Abedin S, Atallah E. Incidence and survival of T-cell acute lymphoblastic leukemia in the United States. Leuk Lymphoma 2019; 60(5): 1171–1178
Pubmed
[5]
Aldoss I, Stein AS. Advances in adult acute lymphoblastic leukemia therapy. Leuk Lymphoma 2018; 59(5): 1033–1050
CrossRef Pubmed Google scholar
[6]
DeAngelo DJ, Yu D, Johnson JL, Coutre SE, Stone RM, Stopeck AT, Gockerman JP, Mitchell BS, Appelbaum FR, Larson RA. Nelarabine induces complete remissions in adults with relapsed or refractory T-lineage acute lymphoblastic leukemia or lymphoblastic lymphoma: Cancer and Leukemia Group B study 19801. Blood 2007; 109(12): 5136–5142
CrossRef Pubmed Google scholar
[7]
Caracciolo D, Riillo C, Ballerini A, Gaipa G, Lhermitte L, Rossi M, Botta C, Duroyon E, Grillone K, Gallo Cantafio ME, Buracchi C, Alampi G, Gulino A, Belmonte B, Conforti F, Golino G, Juli G, Altomare E, Polerà N, Scionti F, Arbitrio M, Iannone M, Martino M, Correale P, Talarico G, Ghelli Luserna di Rorà A, Ferrari A, Concolino D, Sestito S, Pensabene L, Giordano A, Hildinger M, Di Martino MT, Martinelli G, Tripodo C, Asnafi V, Biondi A, Tagliaferri P, Tassone P. Therapeutic afucosylated monoclonal antibody and bispecific T-cell engagers for T-cell acute lymphoblastic leukemia. J Immunother Cancer 2021; 9(2): e002026
CrossRef Pubmed Google scholar
[8]
You MJ, Medeiros LJ, Hsi ED. T-lymphoblastic leukemia/lymphoma. Am J Clin Pathol 2015; 144(3): 411–422
CrossRef Pubmed Google scholar
[9]
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129(9): 1113–1123
CrossRef Pubmed Google scholar
[10]
Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, Zhou X, Ma X, Sioson E, Li Y, Rusch M, Gupta P, Pei D, Cheng C, Smith MA, Auvil JG, Gerhard DS, Relling MV, Winick NJ, Carroll AJ, Heerema NA, Raetz E, Devidas M, Willman CL, Harvey RC, Carroll WL, Dunsmore KP, Winter SS, Wood BL, Sorrentino BP, Downing JR, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 2017; 49(8): 1211–1218
CrossRef Pubmed Google scholar
[11]
Chen B, Jiang L, Zhong ML, Li JF, Li BS, Peng LJ, Dai YT, Cui BW, Yan TQ, Zhang WN, Weng XQ, Xie YY, Lu J, Ren RB, Chen SN, Hu JD, Wu DP, Chen Z, Tang JY, Huang JY, Mi JQ, Chen SJ. Identification of fusion genes and characterization of transcriptome features in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2018; 115(2): 373–378
CrossRef Pubmed Google scholar
[12]
Yuan L, Lu L, Yang Y, Sun H, Chen X, Huang Y, Wang X, Zou L, Bao L. Genetic mutational profiling analysis of T cell acute lymphoblastic leukemia reveal mutant FBXW7 as a prognostic indicator for inferior survival. Ann Hematol 2015; 94(11): 1817–1828
CrossRef Pubmed Google scholar
[13]
Yeh CH, Bellon M, Pancewicz-Wojtkiewicz J, Nicot C. Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia patients. Proc Natl Acad Sci USA 2016; 113(24): 6731–6736
CrossRef Pubmed Google scholar
[14]
Hefazi M, Litzow MR. Recent advances in the biology and treatment of T cell acute lymphoblastic leukemia. Curr Hematol Malig Rep 2018; 13(4): 265–274
CrossRef Pubmed Google scholar
[15]
McCarter AC, Wang Q, Chiang M. Notch in leukemia. Adv Exp Med Biol 2018; 1066: 355–394
CrossRef Pubmed Google scholar
[16]
Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2014; 141(2): 140–149
CrossRef Pubmed Google scholar
[17]
Kaushik B, Pal D, Saha S. Gamma secretase inhibitor: therapeutic target via NOTCH signaling in T cell acute lymphoblastic leukemia. Curr Drug Targets 2021; [Epub ahead of print] doi: 10.2174/1389450122666210203192752
CrossRef Pubmed Google scholar
[18]
Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A, Barnes KC, O’Neil J, Neuberg D, Weng AP, Aster JC, Sigaux F, Soulier J, Look AT, Young RA, Califano A, Ferrando AA. NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 2006; 103(48): 18261–18266
CrossRef Pubmed Google scholar
[19]
Margolin AA, Palomero T, Sumazin P, Califano A, Ferrando AA, Stolovitzky G. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc Natl Acad Sci USA 2009; 106(1): 244–249
CrossRef Pubmed Google scholar
[20]
Jiang J, Wang J, Yue M, Cai X, Wang T, Wu C, Su H, Wang Y, Han M, Zhang Y, Zhu X, Jiang P, Li P, Sun Y, Xiao W, Feng H, Qing G, Liu H. Direct phosphorylation and stabilization of MYC by Aurora B kinase promote T-cell leukemogenesis. Cancer Cell 2020; 37(2): 200–215.e5
CrossRef Pubmed Google scholar
[21]
Sanchez-Martin M, Ferrando A. The NOTCH1-MYC highway toward T-cell acute lymphoblastic leukemia. Blood 2017; 129(9): 1124–1133
CrossRef Pubmed Google scholar
[22]
Chiang MY, Wang Q, Gormley AC, Stein SJ, Xu L, Shestova O, Aster JC, Pear WS. High selective pressure for Notch1 mutations that induce Myc in T-cell acute lymphoblastic leukemia. Blood 2016; 128(18): 2229–2240
CrossRef Pubmed Google scholar
[23]
Loosveld M, Castellano R, Gon S, Goubard A, Crouzet T, Pouyet L, Prebet T, Vey N, Nadel B, Collette Y, Payet-Bornet D. Therapeutic targeting of c-Myc in T-cell acute lymphoblastic leukemia, T-ALL. Oncotarget 2014; 5(10): 3168–3172
CrossRef Pubmed Google scholar
[24]
McKeown MR, Bradner JE. Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 2014; 4(10): a014266
CrossRef Pubmed Google scholar
[25]
Beyer M, Romanski A, Mustafa AM, Pons M, Büchler I, Vogel A, Pautz A, Sellmer A, Schneider G, Bug G, Krämer OH. HDAC3 activity is essential for human leukemic cell growth and the expression of β-catenin, MYC, and WT1. Cancers (Basel) 2019; 11(10): 1436
CrossRef Pubmed Google scholar
[26]
Sun K, Atoyan R, Borek MA, Dellarocca S, Samson ME, Ma AW, Xu GX, Patterson T, Tuck DP, Viner JL, Fattaey A, Wang J. Dual HDAC and PI3K inhibitor CUDC-907 downregulates MYC and suppresses growth of MYC-dependent cancers. Mol Cancer Ther 2017; 16(2): 285–299
CrossRef Pubmed Google scholar
[27]
Waibel M, Vervoort SJ, Kong IY, Heinzel S, Ramsbottom KM, Martin BP, Hawkins ED, Johnstone RW. Epigenetic targeting of Notch1-driven transcription using the HDACi panobinostat is a potential therapy against T-cell acute lymphoblastic leukemia. Leukemia 2018; 32(1): 237–241
CrossRef Pubmed Google scholar
[28]
Ferrante F, Giaimo BD, Bartkuhn M, Zimmermann T, Close V, Mertens D, Nist A, Stiewe T, Meier-Soelch J, Kracht M, Just S, Klöble P, Oswald F, Borggrefe T. HDAC3 functions as a positive regulator in Notch signal transduction. Nucleic Acids Res 2020; 48(7): 3496–3512
CrossRef Pubmed Google scholar
[29]
Reynoird N, Schwartz BE, Delvecchio M, Sadoul K, Meyers D, Mukherjee C, Caron C, Kimura H, Rousseaux S, Cole PA, Panne D, French CA, Khochbin S. Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO J 2010; 29(17): 2943–2952
CrossRef Pubmed Google scholar
[30]
Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM, Kastritis E, Gilpatrick T, Paranal RM, Qi J, Chesi M, Schinzel AC, McKeown MR, Heffernan TP, Vakoc CR, Bergsagel PL, Ghobrial IM, Richardson PG, Young RA, Hahn WC, Anderson KC, Kung AL, Bradner JE, Mitsiades CS. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146(6): 904–917
CrossRef Pubmed Google scholar
[31]
Suresh PS, Devaraj VC, Srinivas NR, Mullangi R. Review of bioanalytical assays for the quantitation of various HDAC inhibitors such as vorinostat, belinostat, panobinostat, romidepsin and chidamine. Biomed Chromatogr 2017; 31(1): e3807
CrossRef Pubmed Google scholar
[32]
Liu Z, Ding K, Li L, Liu H, Wang Y, Liu C, Fu R. A novel histone deacetylase inhibitor chidamide induces G0/G1 arrest and apoptosis in myelodysplastic syndromes. Biomed Pharmacother 2016; 83: 1032–1037
CrossRef Pubmed Google scholar
[33]
Zhao S, Guo J, Zhao Y, Fei C, Zheng Q, Li X, Chang C. Chidamide, a novel histone deacetylase inhibitor, inhibits the viability of MDS and AML cells by suppressing JAK2/STAT3 signaling. Am J Transl Res 2016; 8(7): 3169–3178
Pubmed
[34]
Jiang T, Wang F, Hu L, Cheng X, Zheng Y, Liu T, Jia Y. Chidamide and decitabine can synergistically induce apoptosis of Hodgkin lymphoma cells by up-regulating the expression of PU.1 and KLF4. Oncotarget 2017; 8(44): 77586–77594
CrossRef Pubmed Google scholar
[35]
He J, Chen Q, Gu H, Chen J, Zhang E, Guo X, Huang X, Yan H, He D, Yang Y, Zhao Y, Wang G, He H, Yi Q, Cai Z. Therapeutic effects of the novel subtype-selective histone deacetylase inhibitor chidamide on myeloma-associated bone disease. Haematologica 2018; 103(8): 1369–1379
CrossRef Pubmed Google scholar
[36]
Zhou J, Zhang C, Sui X, Cao S, Tang F, Sun S, Wang S, Chen B. Histone deacetylase inhibitor chidamide induces growth inhibition and apoptosis in NK/T lymphoma cells through ATM-Chk2-p53-p21 signalling pathway. Invest New Drugs 2018; 36(4): 571–580
CrossRef Pubmed Google scholar
[37]
Shi Y, Jia B, Xu W, Li W, Liu T, Liu P, Zhao W, Zhang H, Sun X, Yang H, Zhang X, Jin J, Jin Z, Li Z, Qiu L, Dong M, Huang X, Luo Y, Wang X, Wang X, Wu J, Xu J, Yi P, Zhou J, He H, Liu L, Shen J, Tang X, Wang J, Yang J, Zeng Q, Zhang Z, Cai Z, Chen X, Ding K, Hou M, Huang H, Li X, Liang R, Liu Q, Song Y, Su H, Gao Y, Liu L, Luo J, Su L, Sun Z, Tan H, Wang H, Wang J, Wang S, Zhang H, Zhang X, Zhou D, Bai O, Wu G, Zhang L, Zhang Y. Chidamide in relapsed or refractory peripheral T cell lymphoma: a multicenter real-world study in China. J Hematol Oncol 2017; 10(1): 69
CrossRef Pubmed Google scholar
[38]
Lu X, Ning Z, Li Z, Cao H, Wang X. Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable Rare Dis Res 2016; 5(3): 185–191
CrossRef Pubmed Google scholar
[39]
Guan W, Jing Y, Dou L, Wang M, Xiao Y, Yu L. Chidamide in combination with chemotherapy in refractory and relapsed T lymphoblastic lymphoma/leukemia. Leuk Lymphoma 2020; 61(4): 855–861
CrossRef Pubmed Google scholar
[40]
Weng XQ, Shen Y, Sheng Y, Chen B, Wang JH, Li JM, Mi JQ, Chen QS, Zhu YM, Jiang CL, Yan H, Zhang XX, Huang T, Zhu Z, Chen Z, Chen SJ. Prognostic significance of monitoring leukemia-associated immunophenotypes by eight-color flow cytometry in adult B-acute lymphoblastic leukemia. Blood Cancer J 2013; 3(8): e133
CrossRef Pubmed Google scholar
[41]
Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, Gao XD, Chen B, Li JM, Xiong SM, Gu LJ, Tang JY, Liang H, Jiang H, Xue YQ, Shen ZX, Chen Z, Chen SJ. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 2006; 12(10): 3043–3049
CrossRef Pubmed Google scholar
[42]
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
CrossRef Pubmed Google scholar
[43]
Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015; 31(2): 166–169
CrossRef Pubmed Google scholar
[44]
Varet H, Brillet-Guéguen L, Coppée JY, Dillies MA. SARTools: a DESeq2- and EdgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data. PLoS One 2016; 11(6): e0157022
CrossRef Pubmed Google scholar
[45]
Xu JJ, Yao FR, Jiang M, Zhang YT, Guo F. High-resolution melting analysis for rapid and sensitive NOTCH1 screening in chronic lymphocytic leukemia. Int J Mol Med 2017; 39(2): 415–422
CrossRef Pubmed Google scholar
[46]
Squiban B, Ahmed ST, Frazer JK. Creation of a human T-ALL cell line online database. Leuk Lymphoma 2017; 58(11): 2728–2730
CrossRef Pubmed Google scholar
[47]
Sulis ML, Williams O, Palomero T, Tosello V, Pallikuppam S, Real PJ, Barnes K, Zuurbier L, Meijerink JP, Ferrando AA. NOTCH1 extracellular juxtamembrane expansion mutations in T-ALL. Blood 2008; 112(3): 733–740
CrossRef Pubmed Google scholar
[48]
Horvat L, Antica M, Matulić M. Effect of Notch and PARP pathways’ inhibition in leukemic cells. Cells 2018; 7(6): 58
CrossRef Pubmed Google scholar
[49]
Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 2004; 101(5): 1241–1246
CrossRef Pubmed Google scholar
[50]
Stengel KR, Hiebert SW. Class I HDACs affect DNA replication, repair, and chromatin structure: implications for cancer therapy. Antioxid Redox Signal 2015; 23(1): 51–65
CrossRef Pubmed Google scholar
[51]
Boulaire J, Fotedar A, Fotedar R. The functions of the cdk-cyclin kinase inhibitor p21WAF1. Pathol Biol (Paris) 2000; 48(3): 190–202
Pubmed
[52]
Radtke F, Wilson A, Mancini SJ, MacDonald HR. Notch regulation of lymphocyte development and function. Nat Immunol 2004; 5(3): 247–253
CrossRef Pubmed Google scholar
[53]
Osborne BA, Minter LM. Notch signalling during peripheral T-cell activation and differentiation. Nat Rev Immunol 2007; 7(1): 64–75
CrossRef Pubmed Google scholar
[54]
Yu VW, Saez B, Cook C, Lotinun S, Pardo-Saganta A, Wang YH, Lymperi S, Ferraro F, Raaijmakers MH, Wu JY, Zhou L, Rajagopal J, Kronenberg HM, Baron R, Scadden DT. Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 2015; 212(5): 759–774
CrossRef Pubmed Google scholar
[55]
Malard F, Mohty M. Acute lymphoblastic leukaemia. Lancet 2020; 395(10230): 1146–1162
CrossRef Pubmed Google scholar
[56]
De Bie J, Demeyer S, Alberti-Servera L, Geerdens E, Segers H, Broux M, De Keersmaecker K, Michaux L, Vandenberghe P, Voet T, Boeckx N, Uyttebroeck A, Cools J. Single-cell sequencing reveals the origin and the order of mutation acquisition in T-cell acute lymphoblastic leukemia. Leukemia 2018; 32(6): 1358–1369
CrossRef Pubmed Google scholar
[57]
Roti G, Qi J, Kitara S, Sanchez-Martin M, Saur Conway A, Varca AC, Su A, Wu L, Kung AL, Ferrando AA, Bradner JE, Stegmaier K. Leukemia-specific delivery of mutant NOTCH1 targeted therapy. J Exp Med 2018; 215(1): 197–216
CrossRef Pubmed Google scholar
[58]
Herranz D, Ambesi-Impiombato A, Palomero T, Schnell SA, Belver L, Wendorff AA, Xu L, Castillo-Martin M, Llobet-Navás D, Cordon-Cardo C, Clappier E, Soulier J, Ferrando AAA. A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia. Nat Med 2014; 20(10): 1130–1137
CrossRef Pubmed Google scholar
[59]
Herranz D, Ferrando AA. An oncogenic enhancer enemy (N-Me) in T-ALL. Cell Cycle 2015; 14(2): 167–168
CrossRef Pubmed Google scholar
[60]
Sengupta D, Kannan A, Kern M, Moreno MA, Vural E, Stack B Jr, Suen JY, Tackett AJ, Gao L. Disruption of BRD4 at H3K27Ac-enriched enhancer region correlates with decreased c-Myc expression in Merkel cell carcinoma. Epigenetics 2015; 10(6): 460–466
CrossRef Pubmed Google scholar
[61]
Lovén J, Hoke HA, Lin CY, Lau A, Orlando DA, Vakoc CR, Bradner JE, Lee TI, Young RA. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 2013; 153(2): 320–334
CrossRef Pubmed Google scholar
[62]
Levens D, Aplan PD. Notching up MYC gives a LIC. Cell Stem Cell 2013; 13(1): 8–9
CrossRef Pubmed Google scholar
[63]
Cheng CW, Biton M, Haber AL, Gunduz N, Eng G, Gaynor LT, Tripathi S, Calibasi-Kocal G, Rickelt S, Butty VL, Moreno-Serrano M, Iqbal AM, Bauer-Rowe KE, Imada S, Ulutas MS, Mylonas C, Whary MT, Levine SS, Basbinar Y, Hynes RO, Mino-Kenudson M, Deshpande V, Boyer LA, Fox JG, Terranova C, Rai K, Piwnica-Worms H, Mihaylova MM, Regev A, Yilmaz OH. Ketone body signaling mediates intestinal stem cell homeostasis and adaptation to diet. Cell 2019; 178(5): 1115–1131.e15
CrossRef Pubmed Google scholar

Acknowledgements

This study was funded by the Shanghai Science and Technology Committee (No. 21430711800), National Natural Science Foundation of China (Nos. 81670147, 81570178, and Antrag M-0377), Gaofeng Clinical Medicine Grant Support of Shanghai Municipal Education (No. 20172002), Shanghai Municipal Education Commission-Major Project for Scientific Research and Innovation Plan of Natural Science (No. 2021-01-07-00-02-E00091). SK laboratory is supported by “Fondation ARC” grant (PGA1RF20190208471) and the ANR EpiSperm 4 program. Additional supports were from the “Université Grenoble Alpes” ANR-15-IDEX-02 LIFE and SYMER programs, as well as the INSERM/ITMO/Aviesan MIC 2021 program (project ECTOCAN).

Compliance with ethics guidelines

Mengping Xi, Shanshan Guo, Caicike Bayin, Lijun peng, Florent Chuffart, Ekaterina Bourova-Flin, Sophie Rousseaux, Saadi Khochbin, Jian-Qing Mi, and Jin Wang declare that they have no conflict of interest. All procedures performed in studies involving human samples were approved by the ethics committee at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine and Shanghai Blood Center, and in accordance with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. All patients gave written informed consent prior to bone marrow sample collection for the use of biomaterials and clinical data for scientific purposes.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-021-0877-y and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2292 KB)

Accesses

Citations

Detail

Sections
Recommended

/