Astrocytes in depression and Alzheimer’s disease
Yang Liao, Qu Xing, Qianqian Li, Jing Zhang, Ruiyuan Pan, Zengqiang Yuan
Astrocytes in depression and Alzheimer’s disease
Astrocytes are an abundant subgroup of cells in the central nervous system (CNS) that play a critical role in controlling neuronal circuits involved in emotion, learning, and memory. In clinical cases, multiple chronic brain diseases may cause psychosocial and cognitive impairment, such as depression and Alzheimer’s disease (AD). For years, complex pathological conditions driven by depression and AD have been widely perceived to contribute to a high risk of disability, resulting in gradual loss of self-care ability, lower life qualities, and vast burden on human society. Interestingly, correlational research on depression and AD has shown that depression might be a prodrome of progressive degenerative neurological disease. As a kind of multifunctional glial cell in the CNS, astrocytes maintain physiological function via supporting neuronal cells, modulating pathologic niche, and regulating energy metabolism. Mounting evidence has shown that astrocytic dysfunction is involved in the progression of depression and AD. We herein review the current findings on the roles and mechanisms of astrocytes in the development of depression and AD, with an implication of potential therapeutic avenue for these diseases by targeting astrocytes.
astrocytes / depression / Alzheimer’s disease / roles / mechanisms
[1] |
Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999; 22(5): 208–215
CrossRef
Pubmed
Google scholar
|
[2] |
Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci 2005; 6(8): 626–640
CrossRef
Pubmed
Google scholar
|
[3] |
Blanco-Suárez E, Caldwell AL, Allen NJ. Role of astrocyte-synapse interactions in CNS disorders. J Physiol 2017; 595(6): 1903–1916
CrossRef
Pubmed
Google scholar
|
[4] |
Khakh BS, Sofroniew MV. Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 2015; 18(7): 942–952
CrossRef
Pubmed
Google scholar
|
[5] |
Stogsdill JA, Ramirez J, Liu D, Kim YH, Baldwin KT, Enustun E, Ejikeme T, Ji RR, Eroglu C. Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature 2017; 551(7679): 192–197
CrossRef
Pubmed
Google scholar
|
[6] |
Khakh BS. Astrocyte-neuron interactions in the striatum: insights on identity, form, and function. Trends Neurosci 2019; 42(9): 617–630
CrossRef
Pubmed
Google scholar
|
[7] |
Campisi M, Shin Y, Osaki T, Hajal C, Chiono V, Kamm RD. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes. Biomaterials 2018; 180: 117–129
CrossRef
Pubmed
Google scholar
|
[8] |
Liddelow SA, Marsh SE, Stevens B. Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol 2020; 41(9): 820–835
CrossRef
Pubmed
Google scholar
|
[9] |
Alexopoulos GS. Depression in the elderly. Lancet 2005; 365(9475): 1961–1970
CrossRef
Pubmed
Google scholar
|
[10] |
Cui R. Editorial: a systematic review of depression. Curr Neuropharmacol 2015; 13(4): 480
CrossRef
Pubmed
Google scholar
|
[11] |
Gaynes B. Assessing the risk factors for difficult-to-treat depression and treatment-resistant depression. J Clin Psychiatry 2016; 77(Suppl 1): 4–8
CrossRef
Pubmed
Google scholar
|
[12] |
Wang J, Wu X, Lai W, Long E, Zhang X, Li W, Zhu Y, Chen C, Zhong X, Liu Z, Wang D, Lin H. Prevalence of depression and depressive symptoms among outpatients: a systematic review and meta-analysis. BMJ Open 2017; 7(8): e017173
CrossRef
Pubmed
Google scholar
|
[13] |
World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization, 2017
|
[14] |
Malhi GS, Mann JJ. Depression. Lancet 2018; 392(10161): 2299–2312
CrossRef
Pubmed
Google scholar
|
[15] |
Boku S, Nakagawa S, Toda H, Hishimoto A. Neural basis of major depressive disorder: beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72(1): 3–12
CrossRef
Pubmed
Google scholar
|
[16] |
David DJ, Gardier AM. The pharmacological basis of the serotonin system: application to antidepressant response. Encephale 2016; 42(3): 255–263 (in French)
CrossRef
Pubmed
Google scholar
|
[17] |
Oxenkrug G. Serotonin-kynurenine hypothesis of depression: historical overview and recent developments. Curr Drug Targets 2013; 14(5): 514–521
CrossRef
Pubmed
Google scholar
|
[18] |
Takahashi S. Reduction of blood platelet serotonin levels in manic and depressed patients. Folia Psychiatr Neurol Jpn 1976; 30(4): 475–486
CrossRef
Pubmed
Google scholar
|
[19] |
Rojas PS, Fiedler JL. What do we really know about 5-HT1A receptor signaling in neuronal cells? Front Cell Neurosci 2016; 10: 272
CrossRef
Pubmed
Google scholar
|
[20] |
Teixeira CM, Rosen ZB, Suri D, Sun Q, Hersh M, Sargin D, Dincheva I, Morgan AA, Spivack S, Krok AC, Hirschfeld-Stoler T, Lambe EK, Siegelbaum SA, Ansorge MS. Hippocampal 5-HT input regulates memory formation and Schaffer collateral excitation. Neuron 2018; 98(5): 992–1004.e4
CrossRef
Pubmed
Google scholar
|
[21] |
Naharci MI, Buyukturan O, Cintosun U, Doruk H, Tasci I. Functional status of older adults with dementia at the end of life: is there still anything to do? Indian J Palliat Care 2019; 25(2): 197–202
CrossRef
Pubmed
Google scholar
|
[22] |
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459–509
CrossRef
Pubmed
Google scholar
|
[23] |
Jia J, Wei C, Chen S, Li F, Tang Y, Qin W, Zhao L, Jin H, Xu H, Wang F, Zhou A, Zuo X, Wu L, Han Y, Han Y, Huang L, Wang Q, Li D, Chu C, Shi L, Gong M, Du Y, Zhang J, Zhang J, Zhou C, Lv J, Lv Y, Xie H, Ji Y, Li F, Yu E, Luo B, Wang Y, Yang S, Qu Q, Guo Q, Liang F, Zhang J, Tan L, Shen L, Zhang K, Zhang J, Peng D, Tang M, Lv P, Fang B, Chu L, Jia L, Gauthier S. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement 2018; 14(4): 483–491
CrossRef
Pubmed
Google scholar
|
[24] |
Pan RY, Ma J, Kong XX, Wang XF, Li SS, Qi XL, Yan YH, Cheng J, Liu Q, Jin W, Tan CH, Yuan Z. Sodium rutin ameliorates Alzheimer’s disease-like pathology by enhancing microglial amyloid-β clearance. Sci Adv 2019; 5(2): eaau6328
CrossRef
Pubmed
Google scholar
|
[25] |
Realdon O, Rossetto F, Nalin M, Baroni I, Cabinio M, Fioravanti R, Saibene FL, Alberoni M, Mantovani F, Romano M, Nemni R, Baglio F. Technology-enhanced multi-domain at home continuum of care program with respect to usual care for people with cognitive impairment: the Ability-TelerehABILITation study protocol for a randomized controlled trial. BMC Psychiatry 2016; 16(1): 425
CrossRef
Pubmed
Google scholar
|
[26] |
Barage SH, Sonawane KD. Amyloid cascade hypothesis: pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides 2015; 52: 1–18
CrossRef
Pubmed
Google scholar
|
[27] |
Cline EN, Bicca MA, Viola KL, Klein WL. The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis 2018; 64(s1): S567–S610
CrossRef
Pubmed
Google scholar
|
[28] |
Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 2016; 8(6): 595–608
CrossRef
Pubmed
Google scholar
|
[29] |
Bakota L, Brandt R. Tau biology and tau-directed therapies for Alzheimer’s disease. Drugs 2016; 76(3): 301–313
CrossRef
Pubmed
Google scholar
|
[30] |
Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y, Cook C, Miller SJ, Dujardin S, Amaral AS, Grima JC, Bennett RE, Tepper K, DeTure M, Vanderburg CR, Corjuc BT, DeVos SL, Gonzalez JA, Chew J, Vidensky S, Gage FH, Mertens J, Troncoso J, Mandelkow E, Salvatella X, Lim RYH, Petrucelli L, Wegmann S, Rothstein JD, Hyman BT. Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease. Neuron 2018; 99(5): 925–940.e7
CrossRef
Pubmed
Google scholar
|
[31] |
Mirza SS, Wolters FJ, Swanson SA, Koudstaal PJ, Hofman A, Tiemeier H, Ikram MA. 10-year trajectories of depressive symptoms and risk of dementia: a population-based study. Lancet Psychiatry 2016; 3(7): 628–635
CrossRef
Pubmed
Google scholar
|
[32] |
Burke AD, Goldfarb D, Bollam P, Khokher S. Diagnosing and treating depression in patients with Alzheimer’s disease. Neurol Ther 2019; 8(2): 325–350
CrossRef
Pubmed
Google scholar
|
[33] |
Novais F, Starkstein S. Phenomenology of depression in Alzheimer’s disease. J Alzheimers Dis 2015; 47(4): 845–855
CrossRef
Pubmed
Google scholar
|
[34] |
Cobb JA, O’Neill K, Milner J, Mahajan GJ, Lawrence TJ, May WL, Miguel-Hidalgo J, Rajkowska G, Stockmeier CA. Density of GFAP-immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder. Neuroscience 2016; 316: 209–220
CrossRef
Pubmed
Google scholar
|
[35] |
Lemoine L, Saint-Aubert L, Nennesmo I, Gillberg PG, Nordberg A. Cortical laminar tau deposits and activated astrocytes in Alzheimer’s disease visualised by 3H-THK5117 and 3H-deprenyl autoradiography. Sci Rep 2017; 7(1): 45496
CrossRef
Pubmed
Google scholar
|
[36] |
Arranz AM, De Strooper B. The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 2019; 18(4): 406–414
CrossRef
Pubmed
Google scholar
|
[37] |
Escartin C, Guillemaud O, Carrillo-de Sauvage MA. Questions and (some) answers on reactive astrocytes. Glia 2019; 67(12): 2221–2247
CrossRef
Pubmed
Google scholar
|
[38] |
Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab 2012; 32(7): 1222–1232
CrossRef
Pubmed
Google scholar
|
[39] |
Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V. Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia 2018; 66(6): 1244–1262
CrossRef
Pubmed
Google scholar
|
[40] |
Giaume C, Koulakoff A, Roux L, Holcman D, Rouach N. Astroglial networks: a step further in neuroglial and gliovascular interactions. Nat Rev Neurosci 2010; 11(2): 87–99
CrossRef
Pubmed
Google scholar
|
[41] |
Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472(9): 1299–1343
CrossRef
Pubmed
Google scholar
|
[42] |
Calì C, Tauffenberger A, Magistretti P. The strategic location of glycogen and lactate: from body energy reserve to brain plasticity. Front Cell Neurosci 2019; 13: 82
CrossRef
Pubmed
Google scholar
|
[43] |
Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 2018; 19(4): 235–249
CrossRef
Pubmed
Google scholar
|
[44] |
Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF, Bergersen LH, Brinton RD, de la Monte S, Eckert A, Harvey J, Jeggo R, Jhamandas JH, Kann O, la Cour CM, Martin WF, Mithieux G, Moreira PI, Murphy MP, Nave KA, Nuriel T, Oliet SHR, Saudou F, Mattson MP, Swerdlow RH, Millan MJ. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing. Nat Rev Drug Discov 2020; 19(9): 609–633
CrossRef
Pubmed
Google scholar
|
[45] |
Juaristi I, Contreras L, González-Sánchez P, Pérez-Liébana I, González-Moreno L, Pardo B, Del Arco A, Satrústegui J. The response to stimulation in neurons and astrocytes. Neurochem Res 2019; 44(10): 2385–2391
CrossRef
Pubmed
Google scholar
|
[46] |
Barros LF, Brown A, Swanson RA. Glia in brain energy metabolism: a perspective. Glia 2018; 66(6): 1134–1137
CrossRef
Pubmed
Google scholar
|
[47] |
Dienel GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev 2019; 99(1): 949–1045
CrossRef
Pubmed
Google scholar
|
[48] |
Mächler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A, Kaelin V, Zuend M, San Martín A, Romero-Gómez I, Baeza-Lehnert F, Lengacher S, Schneider BL, Aebischer P, Magistretti PJ, Barros LF, Weber B. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab 2016; 23(1): 94–102
CrossRef
Pubmed
Google scholar
|
[49] |
Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011; 144(5): 810–823
CrossRef
Pubmed
Google scholar
|
[50] |
Brooks GA. The science and translation of lactate shuttle theory. Cell Metab 2018; 27(4): 757–785
CrossRef
Pubmed
Google scholar
|
[51] |
Detka J, Kurek A, Kucharczyk M, Głombik K, Basta-Kaim A, Kubera M, Lasoń W, Budziszewska B. Brain glucose metabolism in an animal model of depression. Neuroscience 2015; 295: 198–208
CrossRef
Pubmed
Google scholar
|
[52] |
Yin YN, Hu J, Wei YL, Li ZL, Luo ZC, Wang RQ, Yang KX, Li SJ, Li XW, Yang JM, Gao TM. Astrocyte-derived lactate modulates the passive coping response to behavioral challenge in male mice. Neurosci Bull 2021; 37(1): 1–14
CrossRef
Pubmed
Google scholar
|
[53] |
Murphy-Royal C, Johnston AD, Boyce AKJ, Diaz-Castro B, Institoris A, Peringod G, Zhang O, Stout RF, Spray DC, Thompson RJ, Khakh BS, Bains JS, Gordon GR. Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat Commun 2020; 11(1): 2014
CrossRef
Pubmed
Google scholar
|
[54] |
Carrard A, Elsayed M, Margineanu M, Boury-Jamot B, Fragnière L, Meylan EM, Petit JM, Fiumelli H, Magistretti PJ, Martin JL. Peripheral administration of lactate produces antidepressant-like effects. Mol Psychiatry 2018; 23(2): 392–399
CrossRef
Pubmed
Google scholar
|
[55] |
Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G, Allaman I, Magistretti PJ. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci USA 2014; 111(33): 12228–12233
CrossRef
Pubmed
Google scholar
|
[56] |
Powell CL, Davidson AR, Brown AM. Universal glia to neurone lactate transfer in the nervous system: physiological functions and pathological consequences. Biosensors (Basel) 2020; 10(11): E183
CrossRef
Pubmed
Google scholar
|
[57] |
Karnib N, El-Ghandour R, El Hayek L, Nasrallah P, Khalifeh M, Barmo N, Jabre V, Ibrahim P, Bilen M, Stephan JS, Holson EB, Ratan RR, Sleiman SF. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacology 2019; 44(6):1152–1162
CrossRef
Pubmed
Google scholar
|
[58] |
Bak LK, Walls AB. CrossTalk opposing view: lack of evidence supporting an astrocyte-to-neuron lactate shuttle coupling neuronal activity to glucose utilisation in the brain. J Physiol 2018; 596(3): 351–353
CrossRef
Pubmed
Google scholar
|
[59] |
Dienel GA. Lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte-neuron lactate shuttle in brain. J Neurosci Res 2017; 95(11): 2103–2125
CrossRef
Pubmed
Google scholar
|
[60] |
Lipmann F. Metabolic Generation and Utilization of Phosphate Bond Energy. John Wiley & Sons, Inc., 2006
|
[61] |
Mori M, Heuss C, Gähwiler BH, Gerber U. Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 2001; 535(1): 115–123
CrossRef
Pubmed
Google scholar
|
[62] |
Pankratov Y, Lalo U, Krishtal O, Verkhratsky A. Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 2002; 542(2): 529–536
CrossRef
Pubmed
Google scholar
|
[63] |
Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM. Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 2013; 19(6): 773–777
CrossRef
Pubmed
Google scholar
|
[64] |
Bansal Y, Kuhad A. Mitochondrial dysfunction in depression. Curr Neuropharmacol 2016; 14(6): 610–618
CrossRef
Pubmed
Google scholar
|
[65] |
Nakamura Y, Park JH, Hayakawa K. Therapeutic use of extracellular mitochondria in CNS injury and disease. Exp Neurol 2020; 324: 113114
CrossRef
Pubmed
Google scholar
|
[66] |
Illes P, Rubini P, Yin H, Tang Y. Impaired ATP release from brain astrocytes may be a cause of major depression. Neurosci Bull 2020; 36(11): 1281–1284
CrossRef
Pubmed
Google scholar
|
[67] |
Rajani V, Zhang Y, Jalubula V, Rancic V, SheikhBahaei S, Zwicker JD, Pagliardini S, Dickson CT, Ballanyi K, Kasparov S, Gourine AV, Funk GD. Release of ATP by pre-Bötzinger complex astrocytes contributes to the hypoxic ventilatory response via a Ca2+-dependent P2Y1 receptor mechanism. J Physiol 2018; 596(15): 3245–3269
CrossRef
Pubmed
Google scholar
|
[68] |
Halassa MM, Fellin T, Haydon PG. Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 2009; 57(4): 343–346
CrossRef
Pubmed
Google scholar
|
[69] |
Cai W, Xue C, Sakaguchi M, Konishi M, Shirazian A, Ferris HA, Li ME, Yu R, Kleinridders A, Pothos EN, Kahn CR. Insulin regulates astrocyte gliotransmission and modulates behavior. J Clin Invest 2018; 128(7): 2914–2926
CrossRef
Pubmed
Google scholar
|
[70] |
Choi W, Clemente N, Sun W, Du J, Lü W. The structures and gating mechanism of human calcium homeostasis modulator 2. Nature 2019; 576(7785): 163–167
CrossRef
Pubmed
Google scholar
|
[71] |
Syrjanen JL, Michalski K, Chou TH, Grant T, Rao S, Simorowski N, Tucker SJ, Grigorieff N, Furukawa H. Structure and assembly of calcium homeostasis modulator proteins. Nat Struct Mol Biol 2020; 27(2): 150–159
CrossRef
Pubmed
Google scholar
|
[72] |
Ma J, Qi X, Yang C, Pan R, Wang S, Wu J, Huang L, Chen H, Cheng J, Wu R, Liao Y, Mao L, Wang FC, Wu Z, An JX, Wang Y, Zhang X, Zhang C, Yuan Z. Calhm2 governs astrocytic ATP releasing in the development of depression-like behaviors. Mol Psychiatry 2018; 23(4): 883–891
CrossRef
Pubmed
Google scholar
|
[73] |
Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, Pasquier F, Galimberti D, Scarpini E, Mann D, Lendon C, Campion D, Amouyel P, Davies P, Foskett JK, Campagne F, Marambaud P. A polymorphism in CALHM1 influences Ca2+ homeostasis, Aβ levels, and Alzheimer’s disease risk. Cell 2008; 133(7): 1149–1161
CrossRef
Pubmed
Google scholar
|
[74] |
Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK. CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 2013; 495(7440): 223–226
CrossRef
Pubmed
Google scholar
|
[75] |
Rial D, Lemos C, Pinheiro H, Duarte JM, Gonçalves FQ, Real JI, Prediger RD, Gonçalves N, Gomes CA, Canas PM, Agostinho P, Cunha RA. Depression as a glial-based synaptic dysfunction. Front Cell Neurosci 2016; 9: 521
CrossRef
Pubmed
Google scholar
|
[76] |
Trautmann A. Extracellular ATP in the immune system: more than just a “danger signal”. Sci Signal 2009; 2(56): pe6
CrossRef
Pubmed
Google scholar
|
[77] |
Janks L, Sharma CVR, Egan TM. A central role for P2X7 receptors in human microglia. J Neuroinflammation 2018; 15(1): 325
CrossRef
Pubmed
Google scholar
|
[78] |
Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, Banasr M, Duric V, Yamanashi T, Kaneko K, Rasmussen K, Glasebrook A, Koester A, Song D, Jones KA, Zorn S, Smagin G, Duman RS. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry 2016; 80(1): 12–22
CrossRef
Pubmed
Google scholar
|
[79] |
Illes P, Verkhratsky A, Tang Y. Pathological ATPergic signaling in major depression and bipolar disorder. Front Mol Neurosci 2020; 12: 331
CrossRef
Pubmed
Google scholar
|
[80] |
Farooq RK, Tanti A, Ainouche S, Roger S, Belzung C, Camus V. A P2X7 receptor antagonist reverses behavioural alterations, microglial activation and neuroendocrine dysregulation in an unpredictable chronic mild stress (UCMS) model of depression in mice. Psychoneuroendocrinology 2018; 97: 120–130
CrossRef
Pubmed
Google scholar
|
[81] |
Yue N, Huang H, Zhu X, Han Q, Wang Y, Li B, Liu Q, Wu G, Zhang Y, Yu J. Activation of P2X7 receptor and NLRP3 inflammasome assembly in hippocampal glial cells mediates chronic stress-induced depressive-like behaviors. J Neuroinflammation 2017; 14(1): 102
CrossRef
Pubmed
Google scholar
|
[82] |
Rodrigues RJ, Tomé AR, Cunha RA. ATP as a multi-target danger signal in the brain. Front Neurosci 2015; 9: 148
CrossRef
Pubmed
Google scholar
|
[83] |
Wang C, Yin Q, Su Z, Xia L. Progress on role of extracellular ATP and its metabolite adenosine in immunoregulation: review. Chin J Cell Mol Immunol (Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi) 2020; 36(12):1134–1140 (in Chinese)
|
[84] |
Schain M, Kreisl WC. Neuroinflammation in neurodegenerative disorders—a review. Curr Neurol Neurosci Rep 2017; 17(3): 25
CrossRef
Pubmed
Google scholar
|
[85] |
Shabab T, Khanabdali R, Moghadamtousi SZ, Kadir HA, Mohan G. Neuroinflammation pathways: a general review. Int J Neurosci 2017; 127(7): 624–633
CrossRef
Pubmed
Google scholar
|
[86] |
Colombo E, Farina C. Astrocytes: key regulators of neuroinflammation. Trends Immunol 2016; 37(9): 608–620
CrossRef
Pubmed
Google scholar
|
[87] |
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 2004; 24(9): 2143–2155
CrossRef
Pubmed
Google scholar
|
[88] |
Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV. Essential protective roles of reactive astrocytes in traumatic brain injury. Brain 2006; 129(10): 2761–2772
CrossRef
Pubmed
Google scholar
|
[89] |
Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LB, Tiwari-Woodruff S, Sofroniew MV. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 2009; 29(37): 11511–11522
CrossRef
Pubmed
Google scholar
|
[90] |
Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, Mascanfroni ID, Yeste A, Kivisäkk P, Kallas K, Ellezam B, Bakshi R, Prat A, Antel JP, Weiner HL, Quintana FJ. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med 2014; 20(10): 1147–1156
CrossRef
Pubmed
Google scholar
|
[91] |
Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015; 9: 476
CrossRef
Pubmed
Google scholar
|
[92] |
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: a review. Eur J Neurosci 2021; 53(1): 151–171
CrossRef
Pubmed
Google scholar
|
[93] |
Cernackova A, Durackova Z, Trebaticka J, Mravec B. Neuroinflammation and depressive disorder: the role of the hypothalamus. J Clin Neurosci 2020; 75: 5–10
CrossRef
Pubmed
Google scholar
|
[94] |
Zheng ZH, Tu JL, Li XH, Hua Q, Liu WZ, Liu Y, Pan BX, Hu P, Zhang WH. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun 2021; 91: 505–518
CrossRef
Pubmed
Google scholar
|
[95] |
Ali T, Rahman SU, Hao Q, Li W, Liu Z, Ali Shah F, Murtaza I, Zhang Z, Yang X, Liu G, Li S. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J Pineal Res 2020; 69(2): e12667
CrossRef
Pubmed
Google scholar
|
[96] |
Li W, Ali T, He K, Liu Z, Shah FA, Ren Q, Liu Y, Jiang A, Li S. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression. Brain Behav Immun 2021; 92: 10–24
Pubmed
|
[97] |
Walker AK, Wing EE, Banks WA, Dantzer R. Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice. Mol Psychiatry 2019; 24(10): 1523–1532
CrossRef
Pubmed
Google scholar
|
[98] |
Zhang Y, Du L, Bai Y, Han B, He C, Gong L, Huang R, Shen L, Chao J, Liu P, Zhang H, Zhang H, Gu L, Li J, Hu G, Xie C, Zhang Z, Yao H. CircDYM ameliorates depressive-like behavior by targeting miR-9 to regulate microglial activation via HSP90 ubiquitination. Mol Psychiatry 2020; 25(6): 1175–1190
CrossRef
Pubmed
Google scholar
|
[99] |
Leng L, Zhuang K, Liu Z, Huang C, Gao Y, Chen G, Lin H, Hu Y, Wu D, Shi M, Xie W, Sun H, Shao Z, Li H, Zhang K, Mo W, Huang TY, Xue M, Yuan Z, Zhang X, Bu G, Xu H, Xu Q, Zhang J. Menin deficiency leads to depressive-like behaviors in mice by modulating astrocyte-mediated neuroinflammation. Neuron 2018; 100(3): 551–563.e7
CrossRef
Pubmed
Google scholar
|
[100] |
Wu Y, Qiu A, Yang Z, Wu J, Li X, Bao K, Wang M, Wu B. Malva sylvestris extract alleviates the astrogliosis and inflammatory stress in LPS-induced depression mice. J Neuroimmunol 2019; 336: 577029
CrossRef
Pubmed
Google scholar
|
[101] |
Wang Y, Ni J, Zhai L, Gao C, Xie L, Zhao L, Yin X. Inhibition of activated astrocyte ameliorates lipopolysaccharide-induced depressive-like behaviors. J Affect Disord 2019; 242: 52–59
CrossRef
Pubmed
Google scholar
|
[102] |
Zhang HY, Wang Y, He Y, Wang T, Huang XH, Zhao CM, Zhang L, Li SW, Wang C, Qu YN, Jiang XX. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J Neuroinflammation 2020; 17(1): 200
CrossRef
Pubmed
Google scholar
|
[103] |
Zimmer ER, Leuzy A, Benedet AL, Breitner J, Gauthier S, Rosa-Neto P. Tracking neuroinflammation in Alzheimer’s disease: the role of positron emission tomography imaging. J Neuroinflammation 2014; 11(1): 120
CrossRef
Pubmed
Google scholar
|
[104] |
Frost GR, Li YM. The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 2017; 7(12): 170228
CrossRef
Pubmed
Google scholar
|
[105] |
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73–88
CrossRef
Pubmed
Google scholar
|
[106] |
Verkhratsky A, Parpura V, Rodriguez-Arellano JJ, Zorec R. Astroglia in Alzheimer’s disease. Adv Exp Med Biol 2019; 1175: 273–324
CrossRef
Pubmed
Google scholar
|
[107] |
Serrano-Pozo A, Muzikansky A, Gómez-Isla T, Growdon JH, Betensky RA, Frosch MP, Hyman BT. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease. J Neuropathol Exp Neurol 2013; 72(6): 462–471
CrossRef
Pubmed
Google scholar
|
[108] |
Okabe Y, Takahashi T, Mitsumasu C, Kosai K, Tanaka E, Matsuishi T. Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome. PLoS One 2012; 7(4): e35354
CrossRef
Pubmed
Google scholar
|
[109] |
Tagarelli A, Piro A, Tagarelli G, Lagonia P, Quattrone A. Alois Alzheimer: a hundred years after the discovery of the eponymous disorder. Int J Biomed Sci 2006; 2(2): 196–204
Pubmed
|
[110] |
Ahmad MH, Fatima M, Mondal AC. Influence of microglia and astrocyte activation in the neuroinflammatory pathogenesis of Alzheimer’s disease: rational insights for the therapeutic approaches. J Clin Neurosci 2019; 59: 6–11
CrossRef
Pubmed
Google scholar
|
[111] |
Carter SF, Herholz K, Rosa-Neto P, Pellerin L, Nordberg A, Zimmer ER. Astrocyte biomarkers in Alzheimer’s disease. Trends Mol Med 2019; 25(2): 77–95
CrossRef
Pubmed
Google scholar
|
[112] |
Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci 2011; 31(18): 6627–6638
CrossRef
Pubmed
Google scholar
|
[113] |
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017; 541(7638): 481–487
CrossRef
Pubmed
Google scholar
|
[114] |
Rossner S, Lange-Dohna C, Zeitschel U, Perez-Polo JR. Alzheimer’s disease β-secretase BACE1 is not a neuron-specific enzyme. J Neurochem 2005; 92(2): 226–234
CrossRef
Pubmed
Google scholar
|
[115] |
Veeraraghavalu K, Zhang C, Zhang X, Tanzi RE, Sisodia SS. Age-dependent, non-cell-autonomous deposition of amyloid from synthesis of β-amyloid by cells other than excitatory neurons. J Neurosci 2014; 34(10): 3668–3673
CrossRef
Pubmed
Google scholar
|
[116] |
Brunello CA, Merezhko M, Uronen RL, Huttunen HJ. Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 2020; 77(9): 1721–1744
CrossRef
Pubmed
Google scholar
|
[117] |
Gao Y, Tan L, Yu JT, Tan L. Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 2018; 15(3): 283–300
CrossRef
Pubmed
Google scholar
|
[118] |
van der Kant R, Goldstein LSB, Ossenkoppele R. Amyloid-β-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci 2020; 21(1): 21–35
CrossRef
Pubmed
Google scholar
|
[119] |
Kovacs GG. Astroglia and tau: new perspectives. Front Aging Neurosci 2020; 12: 96
CrossRef
Pubmed
Google scholar
|
[120] |
Allen M, Wang X, Serie DJ, Strickland SL, Burgess JD, Koga S, Younkin CS, Nguyen TT, Malphrus KG, Lincoln SJ, Alamprese M, Zhu K, Chang R, Carrasquillo MM, Kouri N, Murray ME, Reddy JS, Funk C, Price ND, Golde TE, Younkin SG, Asmann YW, Crook JE, Dickson DW, Ertekin-Taner N. Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathol 2018; 136(5): 709–727
CrossRef
Pubmed
Google scholar
|
[121] |
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 2000; 33(1): 95–130
CrossRef
Pubmed
Google scholar
|
[122] |
Adams SJ, DeTure MA, McBride M, Dickson DW, Petrucelli L. Three repeat isoforms of tau inhibit assembly of four repeat tau filaments. PLoS One 2010; 5(5): e10810
CrossRef
Pubmed
Google scholar
|
[123] |
Richetin K, Steullet P, Pachoud M, Perbet R, Parietti E, Maheswaran M, Eddarkaoui S, Bégard S, Pythoud C, Rey M, Caillierez R, Q Do K, Halliez S, Bezzi P, Buée L, Leuba G, Colin M, Toni N, Déglon N. Tau accumulation in astrocytes of the dentate gyrus induces neuronal dysfunction and memory deficits in Alzheimer’s disease. Nat Neurosci 2020; 23(12): 1567–1579
CrossRef
Pubmed
Google scholar
|
[124] |
Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 2018; 562(7728): 578–582
CrossRef
Pubmed
Google scholar
|
[125] |
Newington JT, Harris RA, Cumming RC. Reevaluating metabolism in Alzheimer’s disease from the perspective of the astrocyte-neuron lactate shuttle model. J Neurodegener Dis 2013; 2013: 234572
CrossRef
Pubmed
Google scholar
|
[126] |
Zhang M, Cheng X, Dang R, Zhang W, Zhang J, Yao Z. Lactate deficit in an Alzheimer disease mouse model: the relationship with neuronal damage. J Neuropathol Exp Neurol 2018; 77(12): 1163–1176
CrossRef
Pubmed
Google scholar
|
[127] |
Pal S, Paul S. ATP controls the aggregation of Aβ16-22 peptides. J Phys Chem B 2020; 124(1): 210–223
CrossRef
Pubmed
Google scholar
|
[128] |
Jung ES, An K, Hong HS, Kim JH, Mook-Jung I. Astrocyte-originated ATP protects Aβ(1-42)-induced impairment of synaptic plasticity. J Neurosci 2012; 32(9): 3081–3087
CrossRef
Pubmed
Google scholar
|
[129] |
Park JC, Han SH, Mook-Jung I. Peripheral inflammatory biomarkers in Alzheimer’s disease: a brief review. BMB Rep 2020; 53(1): 10–19
CrossRef
Pubmed
Google scholar
|
[130] |
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388–405
CrossRef
Pubmed
Google scholar
|
[131] |
Fakhoury M. Microglia and astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 2018; 16(5): 508–518
CrossRef
Pubmed
Google scholar
|
[132] |
Pereira CF, Santos AE, Moreira PI, Pereira AC, Sousa FJ, Cardoso SM, Cruz MT. Is Alzheimer’s disease an inflammasomopathy? Ageing Res Rev 2019; 56: 100966
CrossRef
Pubmed
Google scholar
|
[133] |
Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology 2019; 27(4): 663–677
CrossRef
Pubmed
Google scholar
|
[134] |
Furman JL, Sama DM, Gant JC, Beckett TL, Murphy MP, Bachstetter AD, Van Eldik LJ, Norris CM. Targeting astrocytes ameliorates neurologic changes in a mouse model of Alzheimer’s disease. J Neurosci 2012; 32(46): 16129–16140
CrossRef
Pubmed
Google scholar
|
[135] |
Katsouri L, Birch AM, Renziehausen AWJ, Zach C, Aman Y, Steeds H, Bonsu A, Palmer EOC, Mirzaei N, Ries M, Sastre M. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer’s disease. Glia 2020; 68(5): 1017–1030
CrossRef
Pubmed
Google scholar
|
[136] |
Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, Ding J, Lu M, Hu G. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis 2019; 10(8): 577
CrossRef
Pubmed
Google scholar
|
[137] |
Belujon P, Grace AA. Dopamine system dysregulation in major depressive disorders. Int J Neuropsychopharmacol 2017; 20(12): 1036–1046
CrossRef
Pubmed
Google scholar
|
[138] |
Koppel I, Jaanson K, Klasche A, Tuvikene J, Tiirik T, Pärn A, Timmusk T. Dopamine cross-reacts with adrenoreceptors in cortical astrocytes to induce BDNF expression, CREB signaling and morphological transformation. Glia 2018; 66(1): 206–216
CrossRef
Pubmed
Google scholar
|
[139] |
Shao W, Zhang SZ, Tang M, Zhang XH, Zhou Z, Yin YQ, Zhou QB, Huang YY, Liu YJ, Wawrousek E, Chen T, Li SB, Xu M, Zhou JN, Hu G, Zhou JW. Suppression of neuroinflammation by astrocytic dopamine D2 receptors via αB-crystallin. Nature 2013; 494(7435): 90–94
CrossRef
Pubmed
Google scholar
|
[140] |
Shimizu M, Nishida A, Zensho H, Yamawaki S. Chronic antidepressant exposure enhances 5-hydroxytryptamine7 receptor-mediated cyclic adenosine monophosphate accumulation in rat frontocortical astrocytes. J Pharmacol Exp Ther 1996; 279(3): 1551–1558
Pubmed
|
[141] |
Whitaker-Azmitia PM, Clarke C, Azmitia EC. Localization of 5-HT1A receptors to astroglial cells in adult rats: implications for neuronal-glial interactions and psychoactive drug mechanism of action. Synapse 1993; 14(3): 201–205
CrossRef
Pubmed
Google scholar
|
[142] |
Corkrum M, Covelo A, Lines J, Bellocchio L, Pisansky M, Loke K, Quintana R, Rothwell PE, Lujan R, Marsicano G, Martin ED, Thomas MJ, Kofuji P, Araque A. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 2020; 105(6): 1036–1047.e5
CrossRef
Pubmed
Google scholar
|
[143] |
Inazu M, Takeda H, Ikoshi H, Sugisawa M, Uchida Y, Matsumiya T. Pharmacological characterization and visualization of the glial serotonin transporter. Neurochem Int 2001; 39(1): 39–49
CrossRef
Pubmed
Google scholar
|
[144] |
Zhou X, Xiao Q, Xie L, Yang F, Wang L, Tu J. Astrocyte, a promising target for mood disorder interventions. Front Mol Neurosci 2019; 12: 136
CrossRef
Pubmed
Google scholar
|
[145] |
Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, Moriyama Y, Ikenaka K, Tanaka KF, Koizumi S. Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes. EBioMedicine 2018; 32: 72–83
CrossRef
Pubmed
Google scholar
|
[146] |
Park YM, Lee BH. Alterations in serum BDNF and GDNF levels after 12 weeks of antidepressant treatment in female outpatients with major depressive disorder. Psychiatry Investig 2018; 15(8): 818–823
CrossRef
Pubmed
Google scholar
|
[147] |
Niwa M, Nitta A, Yamada Y, Nakajima A, Saito K, Seishima M, Shen L, Noda Y, Furukawa S, Nabeshima T. An inducer for glial cell line-derived neurotrophic factor and tumor necrosis factor-α protects against methamphetamine-induced rewarding effects and sensitization. Biol Psychiatry 2007; 61(7): 890–901
CrossRef
Pubmed
Google scholar
|
[148] |
Lu L, Wang X, Wu P, Xu C, Zhao M, Morales M, Harvey BK, Hoffer BJ, Shaham Y. Role of ventral tegmental area glial cell line-derived neurotrophic factor in incubation of cocaine craving. Biol Psychiatry 2009; 66(2): 137–145
CrossRef
Pubmed
Google scholar
|
[149] |
Fisher JR, Wallace CE, Tripoli DL, Sheline YI, Cirrito JR. Redundant Gs-coupled serotonin receptors regulate amyloid-β metabolism in vivo. Mol Neurodegener 2016; 11(1): 45
CrossRef
Pubmed
Google scholar
|
[150] |
Ma J, Gao Y, Jiang L, Chao FL, Huang W, Zhou CN, Tang W, Zhang L, Huang CX, Zhang Y, Luo YM, Xiao Q, Yu HR, Jiang R, Tang Y. Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer’s disease mice. Oncotarget 2017; 8(17): 27676–27692
CrossRef
Pubmed
Google scholar
|
[151] |
Zhou CN, Chao FL, Zhang Y, Jiang L, Zhang L, Fan JH, Wu YX, Dou XY, Tang Y. Fluoxetine delays the cognitive function decline and synaptic changes in a transgenic mouse model of early Alzheimer’s disease. J Comp Neurol 2019; 527(8): 1378–1387
CrossRef
Pubmed
Google scholar
|
[152] |
Alexopoulos GS. Mechanisms and treatment of late-life depression. Transl Psychiatry 2019; 9(1): 188
CrossRef
Pubmed
Google scholar
|
[153] |
Grace AA. Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 2016; 17(8): 524–532
CrossRef
Pubmed
Google scholar
|
[154] |
Pytka K, Podkowa K, Rapacz A, Podkowa A, Żmudzka E, Olczyk A, Sapa J, Filipek B. The role of serotonergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacol Rep 2016; 68(2): 263–274
CrossRef
Pubmed
Google scholar
|
[155] |
Kumar U, Patel SC. Immunohistochemical localization of dopamine receptor subtypes (D1R-D5R) in Alzheimer’s disease brain. Brain Res 2007; 1131(1): 187–196
CrossRef
Pubmed
Google scholar
|
[156] |
Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K, Liu A. Dopamine and dopamine receptors in Alzheimer’s disease: a systematic review and network meta-analysis. Front Aging Neurosci 2019; 11: 175
CrossRef
Pubmed
Google scholar
|
[157] |
Koch G, Di Lorenzo F, Bonnì S, Giacobbe V, Bozzali M, Caltagirone C, Martorana A. Dopaminergic modulation of cortical plasticity in Alzheimer’s disease patients. Neuropsychopharmacology. 2014; 39(11): 2654–2661
CrossRef
Pubmed
Google scholar
|
[158] |
D’Amelio M, Puglisi-Allegra S, Mercuri N. The role of dopaminergic midbrain in Alzheimer’s disease: translating basic science into clinical practice. Pharmacol Res 2018; 130: 414–419
CrossRef
Pubmed
Google scholar
|
[159] |
Krashia P, Nobili A, D’Amelio M. Unifying hypothesis of dopamine neuron loss in neurodegenerative diseases: focusing on Alzheimer’s disease. Front Mol Neurosci 2019; 12: 123
CrossRef
Pubmed
Google scholar
|
[160] |
Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 2019; 25(3): 227–240
CrossRef
Pubmed
Google scholar
|
[161] |
Molofsky AV, Deneen B. Astrocyte development: a guide for the perplexed. Glia 2015; 63(8): 1320–1329
CrossRef
Pubmed
Google scholar
|
[162] |
Herbert J, Lucassen PJ. Depression as a risk factor for Alzheimer’s disease: genes, steroids, cytokines and neurogenesis—what do we need to know? Front Neuroendocrinol 2016; 41: 153–171
CrossRef
Pubmed
Google scholar
|
[163] |
Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 2006; 63(5): 530–538
CrossRef
Pubmed
Google scholar
|
[164] |
Barlinn K, Kepplinger J, Puetz V, Illigens BM, Bodechtel U, Siepmann T. Exploring the risk-factor association between depression and incident stroke: a systematic review and meta-analysis. Neuropsychiatr Dis Treat 2014; 11: 1–14
CrossRef
Pubmed
Google scholar
|
[165] |
Gan Y, Gong Y, Tong X, Sun H, Cong Y, Dong X, Wang Y, Xu X, Yin X, Deng J, Li L, Cao S, Lu Z. Depression and the risk of coronary heart disease: a meta-analysis of prospective cohort studies. BMC Psychiatry 2014; 14(1): 371
CrossRef
Pubmed
Google scholar
|
[166] |
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: a review. Eur J Neurosci 2021; 53(1): 151–171
Pubmed
|
[167] |
Uddin MS, Kabir MT, Rahman MS, Behl T, Jeandet P, Ashraf GM, Najda A, Bin-Jumah MN, El-Seedi HR, Abdel-Daim MM. Revisiting the amyloid cascade hypothesis: from anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int J Mol Sci 2020; 21(16): E5858
CrossRef
Pubmed
Google scholar
|
[168] |
Wang Q, Jie W, Liu JH, Yang JM, Gao TM. An astroglial basis of major depressive disorder? An overview. Glia 2017; 65(8): 1227–1250
CrossRef
Pubmed
Google scholar
|
[169] |
Han X, Chen M, Wang F, Windrem M, Wang S, Shanz S, Xu Q, Oberheim NA, Bekar L, Betstadt S, Silva AJ, Takano T, Goldman SA, Nedergaard M. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 2013; 12(3): 342–353
CrossRef
Pubmed
Google scholar
|
[170] |
Lepore AC, Rauck B, Dejea C, Pardo AC, Rao MS, Rothstein JD, Maragakis NJ. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 2008; 11(11): 1294–1301
CrossRef
Pubmed
Google scholar
|
[171] |
Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, Zhang X, Xue Y, Maimon R, Dowdy SF, Devaraj NK, Zhou Z, Mobley WC, Cleveland DW, Fu XD. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 2020; 582(7813): 550–556
CrossRef
Pubmed
Google scholar
|
[172] |
Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y, Zhou Y, Tang C, Liu F, Wang L, Feng C, Liu M, Li S, Zhang Y, Xu H, Yao H, Shi L, Yang H. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 2020; 181(3): 590–603.e16
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |