Characterization of chromatin accessibility in psoriasis

Zheng Zhang, Lu Liu, Yanyun Shen, Ziyuan Meng, Min Chen, Zhong Lu, Xuejun Zhang

PDF(2871 KB)
PDF(2871 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 483-495. DOI: 10.1007/s11684-021-0872-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Characterization of chromatin accessibility in psoriasis

Author information +
History +

Abstract

The pathological hallmarks of psoriasis involve alterations in T cell genes associated with transcriptional levels, which are determined by chromatin accessibility. However, to what extent these alterations in T cell transcriptional levels recapitulate the epigenetic features of psoriasis remains unknown. Here, we systematically profiled chromatin accessibility on Th1, Th2, Th1-17, Th17, and Treg cells and found that chromatin remodeling contributes significantly to the pathogenesis of the disease. The chromatin remodeling tendency of different subtypes of Th cells were relatively consistent. Next, we profiled chromatin accessibility and transcriptional dynamics on memory Th/Treg cells. In the memory Th cells, 803 increased and 545 decreased chromatin-accessible regions were identified. In the memory Treg cells, 713 increased and 1206 decreased chromatin-accessible regions were identified. A total of 54 and 53 genes were differentially expressed in the peaks associated with the memory Th and Treg cells. FOSL1, SPI1, ATF3, NFKB1, RUNX, ETV4, ERG, FLI1, and ETC1 were identified as regulators in the development of psoriasis. The transcriptional regulatory network showed that NFKB1 and RELA were highly connected and central to the network. NFKB1 regulated the genes of CCL3, CXCL2, and IL1RN. Our results provided candidate transcription factors and a foundational framework of the regulomes of the disease.

Keywords

psoriasis / ATAC-seq / epigenetics / transcription factor

Cite this article

Download citation ▾
Zheng Zhang, Lu Liu, Yanyun Shen, Ziyuan Meng, Min Chen, Zhong Lu, Xuejun Zhang. Characterization of chromatin accessibility in psoriasis. Front. Med., 2022, 16(3): 483‒495 https://doi.org/10.1007/s11684-021-0872-3

References

[1]
Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 2017; 140(3): 645–653
CrossRef Pubmed Google scholar
[2]
Kim J, Krueger JG. Highly effective new treatments for psoriasis target the IL-23/type 17 T cell autoimmune axis. Annu Rev Med 2017; 68(1): 255–269
CrossRef Pubmed Google scholar
[3]
Enerbäck C, Sandin C, Lambert S, Zawistowski M, Stuart PE, Verma D, Tsoi LC, Nair RP, Johnston A, Elder JT. The psoriasis-protective TYK2 I684S variant impairs IL-12 stimulated pSTAT4 response in skin-homing CD4+ and CD8+ memory T-cells. Sci Rep 2018; 8(1): 7043
CrossRef Pubmed Google scholar
[4]
Lambert S, Swindell WR, Tsoi LC, Stoll SW, Elder JT. Dual role of Act1 in keratinocyte differentiation and host defense: TRAF3IP2 silencing alters keratinocyte differentiation and inhibits IL-17 responses. J Invest Dermatol 2017; 137(7): 1501–1511
CrossRef Pubmed Google scholar
[5]
Tang H, Jin X, Li Y, Jiang H, Tang X, Yang X, Cheng H, Qiu Y, Chen G, Mei J, Zhou F, Wu R, Zuo X, Zhang Y, Zheng X, Cai Q, Yin X, Quan C, Shao H, Cui Y, Tian F, Zhao X, Liu H, Xiao F, Xu F, Han J, Shi D, Zhang A, Zhou C, Li Q, Fan X, Lin L, Tian H, Wang Z, Fu H, Wang F, Yang B, Huang S, Liang B, Xie X, Ren Y, Gu Q, Wen G, Sun Y, Wu X, Dang L, Xia M, Shan J, Li T, Yang L, Zhang X, Li Y, He C, Xu A, Wei L, Zhao X, Gao X, Xu J, Zhang F, Zhang J, Li Y, Sun L, Liu J, Chen R, Yang S, Wang J, Zhang X. A large-scale screen for coding variants predisposing to psoriasis. Nat Genet 2014; 46(1): 45–50
CrossRef Pubmed Google scholar
[6]
ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57–74
CrossRef Pubmed Google scholar
[7]
Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 2013; 10(12): 1213–1218
CrossRef Pubmed Google scholar
[8]
Qu K, Zaba LC, Giresi PG, Li R, Longmire M, Kim YH, Greenleaf WJ, Chang HY. Individuality and variation of personal regulomes in primary human T cells. Cell Syst 2015; 1(1): 51–61
CrossRef Pubmed Google scholar
[9]
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 2015; 109: 21.29.1–21.29.9
CrossRef Pubmed Google scholar
[10]
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30(15): 2114–2120
CrossRef Pubmed Google scholar
[11]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357–359
CrossRef Pubmed Google scholar
[12]
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9(9): R137
CrossRef Pubmed Google scholar
[13]
Ross-Innes CS, Stark R, Teschendorff AE, Holmes KA, Ali HR, Dunning MJ, Brown GD, Gojis O, Ellis IO, Green AR, Ali S, Chin SF, Palmieri C, Caldas C, Carroll JS. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 2012; 481(7381): 389–393
CrossRef Pubmed Google scholar
[14]
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010; 26(1): 139–140
CrossRef Pubmed Google scholar
[15]
Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 2015; 31(14): 2382–2383
CrossRef Pubmed Google scholar
[16]
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38(4): 576–589
CrossRef Pubmed Google scholar
[17]
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol 2011; 29(1): 24–26
CrossRef Pubmed Google scholar
[18]
Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ. The UCSC Table Browser data retrieval tool. Nucleic Acids Res 2004; 32(Database issue): D493–D496
CrossRef Pubmed Google scholar
[19]
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32(18): 2847–2849
CrossRef Pubmed Google scholar
[20]
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013; 29(1): 15–21
CrossRef Pubmed Google scholar
[21]
Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011; 12(1): 323
CrossRef Pubmed Google scholar
[22]
Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016; 44(W1): W160–W165
CrossRef Pubmed Google scholar
[23]
McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM, Bejerano G. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol 2010; 28(5): 495–501
CrossRef Pubmed Google scholar
[24]
Li Z, Schulz MH, Look T, Begemann M, Zenke M, Costa IG. Identification of transcription factor binding sites using ATAC-seq. Genome Biol 2019; 20(1): 45
CrossRef Pubmed Google scholar
[25]
Han H, Shim H, Shin D, Shim JE, Ko Y, Shin J, Kim H, Cho A, Kim E, Lee T, Kim H, Kim K, Yang S, Bae D, Yun A, Kim S, Kim CY, Cho HJ, Kang B, Shin S, Lee I. TRRUST: a reference database of human transcriptional regulatory interactions. Sci Rep 2015; 5(1): 11432
CrossRef Pubmed Google scholar
[26]
Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, Silva TC, Groeneveld C, Wong CK, Cho SW, Satpathy AT, Mumbach MR, Hoadley KA, Robertson AG, Sheffield NC, Felau I, Castro MAA, Berman BP, Staudt LM, Zenklusen JC, Laird PW, Curtis C, Cancer Genome Atlas Analysis Network; Greenleaf WJ, Chang HY. The chromatin accessibility landscape of primary human cancers. Science 2018; 362(6413):eaav1898
CrossRef Pubmed Google scholar
[27]
Qu K, Zaba LC, Satpathy AT, Giresi PG, Li R, Jin Y, Armstrong R, Jin C, Schmitt N, Rahbar Z, Ueno H, Greenleaf WJ, Kim YH, Chang HY. Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell 2017; 32(1): 27–41.e4
CrossRef Pubmed Google scholar
[28]
Mazumdar C, Shen Y, Xavy S, Zhao F, Reinisch A, Li R, Corces MR, Flynn RA, Buenrostro JD, Chan SM, Thomas D, Koenig JL, Hong WJ, Chang HY, Majeti R. Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation. Cell Stem Cell 2015; 17(6): 675–688
CrossRef Pubmed Google scholar
[29]
Murrell M, Khachigian LM, Ward MR. Divergent roles of NF-κB and Egr-1 in flow-dependent restenosis after angioplasty and stenting. Atherosclerosis 2011; 214(1): 65–72
CrossRef Pubmed Google scholar
[30]
Cera AA, Cacci E, Toselli C, Cardarelli S, Bernardi A, Gioia R, Giorgi M, Poiana G, Biagioni S. Egr-1 maintains NSC proliferation and its overexpression counteracts cell cycle exit triggered by the withdrawal of epidermal growth factor. Dev Neurosci 2018; 40(3): 223–233
CrossRef Pubmed Google scholar
[31]
Castro G, Liu X, Ngo K, De Leon-Tabaldo A, Zhao S, Luna-Roman R, Yu J, Cao T, Kuhn R, Wilkinson P, Herman K, Nelen MI, Blevitt J, Xue X, Fourie A, Fung-Leung WP. RORγt and RORα signature genes in human Th17 cells. PLoS One 2017; 12(8): e0181868
CrossRef Pubmed Google scholar
[32]
Alarcón-Riquelme ME. Role of RUNX in autoimmune diseases linking rheumatoid arthritis, psoriasis and lupus. Arthritis Res Ther 2004; 6(4): 169–173
CrossRef Pubmed Google scholar
[33]
Zenz R, Wagner EF. Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 2006; 38(7): 1043–1049
CrossRef Pubmed Google scholar
[34]
Zhang XJ, Huang W, Yang S, Sun LD, Zhang FY, Zhu QX, Zhang FR, Zhang C, Du WH, Pu XM, Li H, Xiao FL, Wang ZX, Cui Y, Hao F, Zheng J, Yang XQ, Cheng H, He CD, Liu XM, Xu LM, Zheng HF, Zhang SM, Zhang JZ, Wang HY, Cheng YL, Ji BH, Fang QY, Li YZ, Zhou FS, Han JW, Quan C, Chen B, Liu JL, Lin D, Fan L, Zhang AP, Liu SX, Yang CJ, Wang PG, Zhou WM, Lin GS, Wu WD, Fan X, Gao M, Yang BQ, Lu WS, Zhang Z, Zhu KJ, Shen SK, Li M, Zhang XY, Cao TT, Ren W, Zhang X, He J, Tang XF, Lu S, Yang JQ, Zhang L, Wang DN, Yuan F, Yin XY, Huang HJ, Wang HF, Lin XY, Liu JJ. Psoriasis genome-wide association study identifies susceptibility variants within LCE gene cluster at 1q21. Nat Genet 2009; 41(2): 205–210
CrossRef Pubmed Google scholar
[35]
Sun LD, Cheng H, Wang ZX, Zhang AP, Wang PG, Xu JH, Zhu QX, Zhou HS, Ellinghaus E, Zhang FR, Pu XM, Yang XQ, Zhang JZ, Xu AE, Wu RN, Xu LM, Peng L, Helms CA, Ren YQ, Zhang C, Zhang SM, Nair RP, Wang HY, Lin GS, Stuart PE, Fan X, Chen G, Tejasvi T, Li P, Zhu J, Li ZM, Ge HM, Weichenthal M, Ye WZ, Zhang C, Shen SK, Yang BQ, Sun YY, Li SS, Lin Y, Jiang JH, Li CT, Chen RX, Cheng J, Jiang X, Zhang P, Song WM, Tang J, Zhang HQ, Sun L, Cui J, Zhang LJ, Tang B, Huang F, Qin Q, Pei XP, Zhou AM, Shao LM, Liu JL, Zhang FY, Du WD, Franke A, Bowcock AM, Elder JT, Liu JJ, Yang S, Zhang XJ. Association analyses identify six new psoriasis susceptibility loci in the Chinese population. Nat Genet 2010; 42(11): 1005–1009
CrossRef Pubmed Google scholar
[36]
Yin X, Low HQ, Wang L, Li Y, Ellinghaus E, Han J, Estivill X, Sun L, Zuo X, Shen C, Zhu C, Zhang A, Sanchez F, Padyukov L, Catanese JJ, Krueger GG, Duffin KC, Mucha S, Weichenthal M, Weidinger S, Lieb W, Foo JN, Li Y, Sim K, Liany H, Irwan I, Teo Y, Theng CT, Gupta R, Bowcock A, De Jager PL, Qureshi AA, de Bakker PI, Seielstad M, Liao W, Ståhle M, Franke A, Zhang X, Liu J. Genome-wide meta-analysis identifies multiple novel associations and ethnic heterogeneity of psoriasis susceptibility. Nat Commun 2015; 6(1): 6916
CrossRef Pubmed Google scholar
[37]
Zuo X, Sun L, Yin X, Gao J, Sheng Y, Xu J, Zhang J, He C, Qiu Y, Wen G, Tian H, Zheng X, Liu S, Wang W, Li W, Cheng Y, Liu L, Chang Y, Wang Z, Li Z, Li L, Wu J, Fang L, Shen C, Zhou F, Liang B, Chen G, Li H, Cui Y, Xu A, Yang X, Hao F, Xu L, Fan X, Li Y, Wu R, Wang X, Liu X, Zheng M, Song S, Ji B, Fang H, Yu J, Sun Y, Hui Y, Zhang F, Yang R, Yang S, Zhang X. Whole-exome SNP array identifies 15 new susceptibility loci for psoriasis. Nat Commun 2015; 6(1): 6793
CrossRef Pubmed Google scholar
[38]
Shashikant T, Ettensohn CA. Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol 2019; 151: 219–235
CrossRef Pubmed Google scholar
[39]
Dechassa ML, Tryndyak V, de Conti A, Xiao W, Beland FA, Pogribny IP. Identification of chromatin-accessible domains in non-alcoholic steatohepatitis-derived hepatocellular carcinoma. Mol Carcinog 2018; 57(8): 978–987
CrossRef Pubmed Google scholar
[40]
Ruiz JL, Tena JJ, Bancells C, Cortés A, Gómez-Skarmeta JL, Gómez-Díaz E. Characterization of the accessible genome in the human malaria parasite Plasmodium falciparum. Nucleic Acids Res 2018; 46(18): 9414–9431
CrossRef Pubmed Google scholar
[41]
Qu YL, Deng CH, Luo Q, Shang XY, Wu JX, Shi Y, Wang L, Han ZG. Arid1a regulates insulin sensitivity and lipid metabolism. EBioMedicine 2019; 42: 481–493
CrossRef Pubmed Google scholar
[42]
Wang Y, Zhang X, Song Q, Hou Y, Liu J, Sun Y, Wang P. Characterization of the chromatin accessibility in an Alzheimer’s disease (AD) mouse model. Alzheimers Res Ther 2020; 12(1): 29
CrossRef Pubmed Google scholar
[43]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475
CrossRef Pubmed Google scholar
[44]
Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 2000; 289(5488): 2350–2354
CrossRef Pubmed Google scholar
[45]
Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA. IL-21 and TGF-β are required for differentiation of human T(H)17 cells. Nature 2008; 454(7202): 350–352
CrossRef Pubmed Google scholar
[46]
Kopp T, Riedl E, Bangert C, Bowman EP, Greisenegger E, Horowitz A, Kittler H, Blumenschein WM, McClanahan TK, Marbury T, Zachariae C, Xu D, Hou XS, Mehta A, Zandvliet AS, Montgomery D, van Aarle F, Khalilieh S. Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature 2015; 521(7551): 222–226
CrossRef Pubmed Google scholar
[47]
Nikamo P, Lysell J, Ståhle M. Association with genetic variants in the IL-23 and NF-κB pathways discriminates between mild and severe psoriasis skin disease. J Invest Dermatol 2015; 135(8): 1969–1976
CrossRef Pubmed Google scholar
[48]
Zhou F, Zhu Z, Gao J, Yang C, Wen L, Liu L, Zuo X, Zheng X, Shi Y, Zhu C, Liang B, Yin X, Wang W, Cheng H, Shen S, Tang X, Tang H, Sun L, Zhang A, Yang S, Zhang X, Sheng Y. NFKB1 mediates Th1/Th17 activation in the pathogenesis of psoriasis. Cell Immunol 2018; 331: 16–21
CrossRef Pubmed Google scholar
[49]
Dortet L, Radoshevich L, Veiga E, Cossart P. Listeria monocytogenes. In: Schmidt TM. Encyclopedia of Microbiology (Fourth Edition). Oxford: Academic Press, 2019: 803–818
[50]
Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S, Elsharkawy AM, Gieling RG, Chakraborty JB, Fox C, Richardson C, Callaghan K, Blair GE, Fox N, Lagnado A, Passos JF, Moore AJ, Smith GR, Tiniakos DG, Mann J, Oakley F, Mann DA. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 2015; 6(1): 6818
CrossRef Pubmed Google scholar
[51]
Singhal G, Baune BT. Chapter 8—Do chemokines have a role in the pathophysiology of depression? In: Baune BT. Inflammation and Immunity in Depression. Adelaide: Academic Press, 2018: 135–159
[52]
Huret JL, Ahmad M, Arsaban M, Bernheim A, Cigna J, Desangles F, Guignard JC, Jacquemot-Perbal MC, Labarussias M, Leberre V, Malo A, Morel-Pair C, Mossafa H, Potier JC, Texier G, Viguié F, Yau Chun Wan-Senon S, Zasadzinski A, Dessen P. Atlas of genetics and cytogenetics in oncology and haematology in 2013. Nucleic Acids Res 2013; 41(Database issue): D920–D924
Pubmed
[53]
Nakajima A, Matsuki T, Komine M, Asahina A, Horai R, Nakae S, Ishigame H, Kakuta S, Saijo S, Iwakura Y. TNF, but not IL-6 and IL-17, is crucial for the development of T cell-independent psoriasis-like dermatitis in Il1rn−/− mice. J Immunol 2010; 185(3): 1887–1893
CrossRef Pubmed Google scholar

Acknowledgements

We thank the individuals and their families who participated in this project. We thank Pengcheng Yan for the pathway analysis. This study was funded by the National Natural Science Foundation of China (No. 81130031).

Compliance with ethics guidelines

Zheng Zhang, Lu Liu, Yanyun Shen, Ziyuan Meng, Min Chen, Zhong Lu, and Xuejun Zhang declare that they have no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-021-0872-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2871 KB)

Accesses

Citations

Detail

Sections
Recommended

/