Four-protein model for predicting prognostic risk of lung cancer

Xiang Wang , Minghui Wang , Lin Feng , Jie Song , Xin Dong , Ting Xiao , Shujun Cheng

Front. Med. ›› 2022, Vol. 16 ›› Issue (4) : 618 -626.

PDF (810KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (4) : 618 -626. DOI: 10.1007/s11684-021-0867-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Four-protein model for predicting prognostic risk of lung cancer

Author information +
History +
PDF (810KB)

Abstract

Patients with lung cancer at the same stage may have markedly different overall outcome and a lack of specific biomarker to predict lung cancer outcome. Heat-shock protein 90 β (HSP90β) is overexpressed in various tumor cells. In this study, the ELISA results of HSP90β combined with CEA, CA125, and CYFRA21-1 were used to construct a recursive partitioning decision tree model to establish a four-protein diagnostic model and predict the survival of patients with lung cancer. Survival analysis showed that the recursive partitioning decision tree could distinguish the prognosis between high- and low-risk groups. Results suggested that the joint detection of HSP90β, CEA, CA125, and CYFRA21-1 in the peripheral blood of patients with lung cancer is plausible for early diagnosis and prognosis prediction of lung cancer.

Keywords

lung cancer / HSP90β / decision tree model / prognosis

Cite this article

Download citation ▾
Xiang Wang, Minghui Wang, Lin Feng, Jie Song, Xin Dong, Ting Xiao, Shujun Cheng. Four-protein model for predicting prognostic risk of lung cancer. Front. Med., 2022, 16(4): 618-626 DOI:10.1007/s11684-021-0867-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65(1): 5–29

[2]

Park CK, Lee SH, Han JH, Kim CY, Kim DW, Paek SH, Kim DG, Heo DS, Kim IH, Jung HW. Recursive partitioning analysis of prognostic factors in WHO grade III glioma patients treated with radiotherapy or radiotherapy plus chemotherapy. BMC Cancer 2009; 9(1): 450

[3]

Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro-oncol 2004; 6(3): 227–235

[4]

Liu Y, Lin D, Xiao T, Ma Y, Hu Z, Zheng H, Zheng S, Liu Y, Li M, Li L, Cao Y, Guo S, Han N, Di X, Zhang K, Cheng S, Gao Y. An immunohistochemical analysis-based decision tree model for estimating the risk of lymphatic metastasis in pN0 squamous cell carcinomas of the lung. Histopathology 2011; 59(5): 882–891

[5]

Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 2010; 11(7): 515–528

[6]

Mahalingam D, Swords R, Carew JS, Nawrocki ST, Bhalla K, Giles FJ. Targeting HSP90 for cancer therapy. Br J Cancer 2009; 100(10): 1523–1529

[7]

Trepel J, Mollapour M, Giaccone G, Neckers L. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010; 10(8): 537–549

[8]

Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 2003; 228(2): 111–133

[9]

Beere HM. Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001; 2001(93): re1

[10]

Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 1994; 91(18): 8324–8328

[11]

Kamal A, Boehm MF, Burrows FJ. Therapeutic and diagnostic implications of Hsp90 activation. Trends Mol Med 2004; 10(6): 283–290

[12]

Maloney A, Workman P. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2002; 2(1): 3–24

[13]

Isaacs JS, Xu W, Neckers L. Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 2003; 3(3): 213–217

[14]

Gress TM, Müller-Pillasch F, Weber C, Lerch MM, Friess H, Büchler M, Beger HG, Adler G. Differential expression of heat shock proteins in pancreatic carcinoma. Cancer Res 1994; 54(2): 547–551

[15]

Mileo AM, Fanuele M, Battaglia F, Scambia G, Benedetti-Panici P, Mancuso S, Ferrini U. Selective over-expression of mRNA coding for 90 kDa stress-protein in human ovarian cancer. Anticancer Res 1990; 10(4): 903–906

[16]

Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M, Trager JB, Morin GB, Toft DO, Shay JW, Wright WE, White MA. Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev 1999; 13(7): 817–826

[17]

Akalin A, Elmore LW, Forsythe HL, Amaker BA, McCollum ED, Nelson PS, Ware JL, Holt SE. A novel mechanism for chaperone-mediated telomerase regulation during prostate cancer progression. Cancer Res 2001; 61(12): 4791–4796

[18]

Csermely P, Schnaider T, Soti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 1998; 79(2): 129–168

[19]

Sreedhar AS, Kalmár E, Csermely P, Shen YF. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 2004; 562(1–3): 11–15

[20]

Ogata M, Naito Z, Tanaka S, Moriyama Y, Asano G. Overexpression and localization of heat shock proteins mRNA in pancreatic carcinoma. J Nippon Med Sch 2000; 67(3): 177–185

[21]

Cambiazo V, González M, Isamit C, Maccioni RB. The β-isoform of heat shock protein hsp-90 is structurally related with human microtubule-interacting protein Mip-90. FEBS Lett 1999; 457(3): 343–347

[22]

Sreedhar AS, Mihály K, Pató B, Schnaider T, Steták A, Kis-Petik K, Fidy J, Simonics T, Maraz A, Csermely P. Hsp90 inhibition accelerates cell lysis. Anti-Hsp90 ribozyme reveals a complex mechanism of Hsp90 inhibitors involving both superoxide- and Hsp90-dependent events. J Biol Chem 2003; 278(37): 35231–35240

[23]

Liu X, Ye L, Wang J, Fan D. Expression of heat shock protein 90 β in human gastric cancer tissue and SGC7901/VCR of MDR-type gastric cancer cell line. Chin Med J (Engl) 1999; 112(12): 1133–1137

[24]

Sreedhar AS, Csermely P. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 2004; 101(3): 227–257

[25]

Bertram J, Palfner K, Hiddemann W, Kneba M. Increase of P-glycoprotein-mediated drug resistance by hsp 90 β. Anticancer Drugs 1996; 7(8): 838–845

[26]

Molina R, Filella X, Augé JM, Fuentes R, Bover I, Rifa J, Moreno V, Canals E, Viñolas N, Marquez A, Barreiro E, Borras J, Viladiu P. Tumor markers (CEA, CA 125, CYFRA 21-1, SCC and NSE) in patients with non-small cell lung cancer as an aid in histological diagnosis and prognosis. Comparison with the main clinical and pathological prognostic factors. Tumour Biol 2003; 24(4): 209–218

[27]

Karam AK, Karlan BY. Ovarian cancer: the duplicity of CA125 measurement. Nat Rev Clin Oncol 2010; 7(6): 335–339

[28]

Cedrés S, Nuñez I, Longo M, Martinez P, Checa E, Torrejón D, Felip E. Serum tumor markers CEA, CYFRA21-1, and CA-125 are associated with worse prognosis in advanced non-small-cell lung cancer (NSCLC). Clin Lung Cancer 2011; 12(3): 172–179

[29]

Xu J-Y, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, Qian K, Sun C, Liu Z, Jiang S, Wang M, Feng L, Zhao L, Liu P, Wang B, Zhao X, Xie H, Yang X, Zhao L, Chang Y, Jia J, Wang X, Zhang Y, Wang Y, Yang Y, Wu Z, Yang L, Liu B, Zhao T, Ren S, Sun A, Zhao Y, Ying W, Wang F, Wang G, Zhang Y, Cheng S, Qin J, Qian X, Wang Y, Li J, He F, Xiao T, Tan M. Integrative proteomic characterization of human lung adenocarcinoma. Cell 2020; 182(1): 245–261.e17

[30]

Wang X, Wang Y, Feng L, Wang M, Zhang K, Mao Y, Xiao T, Cheng S. Elevated expression of lung development-related protein HSP90β indicates poor prognosis in non-small cell lung cancer through affecting the cell cycle and apoptosis. Signal Transduct Target Ther 2021; 6(1): 82

[31]

Therneau TM, Atkinson EJ. An introduction to recursive partitioning using the RPART routines. Mayo Foundation: Technical report 1997; 61: 452

[32]

Millson SH, Truman AW, Rácz A, Hu B, Panaretou B, Nuttall J, Mollapour M, Söti C, Piper PW. Expressed as the sole Hsp90 of yeast, the α and β isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90β generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 2007; 274(17): 4453–4463

[33]

Gallegos Ruiz MI, Floor K, Roepman P, Rodriguez JA, Meijer GA, Mooi WJ, Jassem E, Niklinski J, Muley T, van Zandwijk N, Smit EF, Beebe K, Neckers L, Ylstra B, Giaccone G. Integration of gene dosage and gene expression in non-small cell lung cancer, identification of HSP90 as potential target. PLoS One 2008; 3(3): e0001722

[34]

Cheng Q, Chang JT, Geradts J, Neckers LM, Haystead T, Spector NL, Lyerly HK. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res 2012; 14(2): R62

[35]

Wang G, Gu X, Chen L, Wang Y, Cao B, E Q. Comparison of the expression of 5 heat shock proteins in benign and malignant salivary gland tumor tissues. Oncol Lett 2013; 5(4): 1363–1369

[36]

Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, Lain B, Torella C, Henning SW, Beste G, Scroggins BT, Neckers L, Ilag LL, Jay DG. Functional proteomic screens reveal an essential extracellular role for hsp90α in cancer cell invasiveness. Nat Cell Biol 2004; 6(6): 507–514

[37]

Sidera K, Samiotaki M, Yfanti E, Panayotou G, Patsavoudi E. Involvement of cell surface HSP90 in cell migration reveals a novel role in the developing nervous system. J Biol Chem 2004; 279(44): 45379–45388

[38]

Tsutsumi S, Scroggins B, Koga F, Lee MJ, Trepel J, Felts S, Carreras C, Neckers L. A small molecule cell-impermeant Hsp90 antagonist inhibits tumor cell motility and invasion. Oncogene 2008; 27(17): 2478–2487

[39]

Grunnet M, Sorensen JB. Carcinoembryonic antigen (CEA) as tumor marker in lung cancer. Lung Cancer 2012; 76(2): 138–143

[40]

Ando S, Kimura H, Iwai N, Yamamoto N, Iida T. Positive reactions for both Cyfra21-1 and CA125 indicate worst prognosis in non-small cell lung cancer. Anticancer Res 2003; 23(3C): 2869–2874

[41]

Hui L, Liping G. Statistical estimation of diagnosis with genetic markers based on decision tree analysis of complex disease. Comput Biol Med 2009; 39(11): 989–992

[42]

Al-Dlaeen D, Alashqur A. Using decision tree classification to assist in the prediction of Alzheimer’s disease. International Conference on Computer Science and Information Technology 2014: 122–126

[43]

Mai S, Turner T, Stocker R. Using decision tree for diagnosing heart disease patients. Australasian Data Mining Conference 2011: 23–30

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (810KB)

Supplementary files

FMD-21021-OF-XT_suppl_1

7076

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/