
Mechanism of insulin resistance in obesity: a role of ATP
Jianping Ye
Front. Med. ›› 2021, Vol. 15 ›› Issue (3) : 372-382.
Mechanism of insulin resistance in obesity: a role of ATP
Obesity increases the risk of type 2 diabetes through the induction of insulin resistance. The mechanism of insulin resistance has been extensively investigated for more than 60 years, but the essential pathogenic signal remains missing. Existing hypotheses include inflammation, mitochondrial dysfunction, hyperinsulinemia, hyperglucagonemia, glucotoxicity, and lipotoxicity. Drug discoveries based on these hypotheses are unsuccessful in the development of new medicines. In this review, multidisciplinary literature is integrated to evaluate ATP as a primary signal for insulin resistance. The ATP production is elevated in insulin-sensitive cells under obese conditions independent of energy demand, which we have named “mitochondrial overheating.” Overheating occurs because of substrate oversupply to mitochondria, leading to extra ATP production. The ATP overproduction contributes to the systemic insulin resistance through several mechanisms, such as inhibition of AMPK, induction of mTOR, hyperinsulinemia, hyperglucagonemia, and mitochondrial dysfunction. Insulin resistance represents a feedback regulation of energy oversupply in cells to control mitochondrial overloading by substrates. Insulin resistance cuts down the substrate uptake to attenuate mitochondrial overloading. The downregulation of the mitochondrial overloading by medicines, bypass surgeries, calorie restriction, and physical exercise leads to insulin sensitization in patients. Therefore, ATP may represent the primary signal of insulin resistance in the cellular protective response to the substrate oversupply. The prevention of ATP overproduction represents a key strategy for insulin sensitization.
type 2 diabetes / energy expenditure / mitochondria / hyperinsulinemia / hyperglucagonemia / AMPK
[1] |
Ye J. Mechanisms of insulin resistance in obesity. Front Med 2013; 7(1): 14–24
CrossRef
Pubmed
Google scholar
|
[2] |
Sanchez-Garrido MA, Tena-Sempere M. Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Mol Metab 2020; 35: 100937
CrossRef
Pubmed
Google scholar
|
[3] |
Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature 2019; 576(7785): 51–60
CrossRef
Pubmed
Google scholar
|
[4] |
Nikolic I, Leiva M, Sabio G. The role of stress kinases in metabolic disease. Nat Rev Endocrinol 2020; 16(12): 697–716
CrossRef
Pubmed
Google scholar
|
[5] |
Lee YS, Wollam J, Olefsky JM. An integrated view of immunometabolism. Cell 2018; 172(1-2): 22–40
CrossRef
Pubmed
Google scholar
|
[6] |
Goodman RP, Markhard AL, Shah H, Sharma R, Skinner OS, Clish CB, Deik A, Patgiri A, Hsu YH, Masia R, Noh HL, Suk S, Goldberger O, Hirschhorn JN, Yellen G, Kim JK, Mootha VK. Hepatic NADH reductive stress underlies common variation in metabolic traits. Nature 2020; 583(7814): 122–126
CrossRef
Pubmed
Google scholar
|
[7] |
Zhang Y, Ye J. Mitochondrial inhibitor as a new class of insulin sensitizer. Acta Pharm Sin B 2012; 2(4): 341–349
CrossRef
Pubmed
Google scholar
|
[8] |
Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 281(7285): 785–789
CrossRef
Pubmed
Google scholar
|
[9] |
Hernández EA, Kahl S, Seelig A, Begovatz P, Irmler M, Kupriyanova Y, Nowotny B, Nowotny P, Herder C, Barosa C, Carvalho F, Rozman J, Neschen S, Jones JG, Beckers J, de Angelis MH, Roden M. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J Clin Invest 2017; 127(2): 695–708
CrossRef
Pubmed
Google scholar
|
[10] |
Lee JH, Zhang Y, Zhao Z, Ye X, Zhang X, Wang H, Ye J. Intracellular ATP in balance of pro- and anti-inflammatory cytokines in adipose tissue with and without tissue expansion. Int J Obes 2017; 41(4): 645–651
CrossRef
Pubmed
Google scholar
|
[11] |
Zhang Y, Zhao Z, Ke B, Wan L, Wang H, Ye J. Induction of posttranslational modifications of mitochondrial proteins by ATP contributes to negative regulation of mitochondrial function. PLoS One 2016; 11(3): e0150454
CrossRef
Pubmed
Google scholar
|
[12] |
Qian S, Ma L, Peng S, Xu Y, Wu K, Shen S, Zhang X, Sun Y, Ye J. ATP reduces mitochondrial MECR protein in liver of diet-induced obese mice in mechanism of insulin resistance. Biosci Rep 2020; 40(6): BSR20200665
CrossRef
Pubmed
Google scholar
|
[13] |
Le J, Zhang X, Jia W, Zhang Y, Luo J, Sun Y, Ye J. Regulation of microbiota-GLP1 axis by sennoside A in diet-induced obese mice. Acta Pharm Sin B 2019; 9(4): 758–768
CrossRef
Pubmed
Google scholar
|
[14] |
Sun Y, Jin C, Zhang X, Jia W, Le J, Ye J. Restoration of GLP-1 secretion by Berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr Diabetes 2018; 8(1): 53
CrossRef
Pubmed
Google scholar
|
[15] |
Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. Nutrient excess in AMPK downregulation and insulin resistance. J Endocrinol Diabetes Obes 2013; 1(1): 1008
Pubmed
|
[16] |
Ruderman NB, Carling D, Prentki M, Cacicedo JM. AMPK, insulin resistance, and the metabolic syndrome. J Clin Invest 2013; 123(7): 2764–2772
CrossRef
Pubmed
Google scholar
|
[17] |
Garcia D, Shaw RJ. AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 2017; 66(6): 789–800
CrossRef
Pubmed
Google scholar
|
[18] |
Jiang P, Ren L, Zhi L, Yu Z, Lv F, Xu F, Peng W, Bai X, Cheng K, Quan L, Zhang X, Wang X, Zhang Y, Yang D, Hu X, Xiao RP. Negative regulation of AMPK signaling by high glucose via E3 ubiquitin ligase MG53. Mol Cell 2021; 81(3): 629–637.e5
CrossRef
Pubmed
Google scholar
|
[19] |
Um SH, D’Alessio D, Thomas G. Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 2006; 3(6): 393–402
CrossRef
Pubmed
Google scholar
|
[20] |
Muoio DM. Metabolic inflexibility: when mitochondrial indecision leads to metabolic gridlock. Cell 2014; 159(6): 1253–1262
CrossRef
Pubmed
Google scholar
|
[21] |
Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 2008; 7(1): 45–56
CrossRef
Pubmed
Google scholar
|
[22] |
Qiao J, Chen C, Shangguan D, Mu X, Wang S, Jiang L, Qi L. Simultaneous monitoring of mitochondrial temperature and ATP fluctuation using fluorescent probes in living cells. Anal Chem 2018; 90(21): 12553–12558
CrossRef
Pubmed
Google scholar
|
[23] |
Wang L, Yuan L, Zeng X, Peng J, Ni Y, Er JC, Xu W, Agrawalla BK, Su D, Kim B, Chang YT. A multisite-binding switchable fluorescent probe for monitoring mitochondrial ATP level fluctuation in live cells. Angew Chem Int Ed Engl 2016; 55(5): 1773–1776
CrossRef
Pubmed
Google scholar
|
[24] |
Qian SN, Peng SQ, Zhang XY, Ye JP. Novel role of intracellular ATP in obesity pathology. Acta Physiol Sin (Sheng Li Xue Bao) 2020; 72(4): 532–538 (in Chinese)
Pubmed
|
[25] |
Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018; 20(7): 745–754
CrossRef
Pubmed
Google scholar
|
[26] |
Mollica MP, Iossa S, Liverini G, Soboll S. Stimulation of oxygen consumption following addition of lipid substrates in liver and skeletal muscle from rats fed a high-fat diet. Metabolism 1999; 48(10): 1230–1235
CrossRef
Pubmed
Google scholar
|
[27] |
Català-Niell A, Estrany ME, Proenza AM, Gianotti M, Lladó I. Skeletal muscle and liver oxidative metabolism in response to a voluntary isocaloric intake of a high fat diet in male and female rats. Cell Physiol Biochem 2008; 22(1-4): 327–336
CrossRef
Pubmed
Google scholar
|
[28] |
Roesler A, Kazak L. UCP1-independent thermogenesis. Biochem J 2020; 477(3): 709–725
CrossRef
Pubmed
Google scholar
|
[29] |
Chiumello D, Gotti M, Vergani G. Paracetamol in fever in critically ill patients—an update. J Crit Care 2017; 38: 245–252
CrossRef
Pubmed
Google scholar
|
[30] |
Boden G, Jadali F, White J, Liang Y, Mozzoli M, Chen X, Coleman E, Smith C. Effects of fat on insulin-stimulated carbohydrate metabolism in normal men. J Clin Invest 1991; 88(3): 960–966
CrossRef
Pubmed
Google scholar
|
[31] |
Roden M, Price TB, Perseghin G, Petersen KF, Rothman DL, Cline GW, Shulman GI. Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 1996; 97(12): 2859–2865
CrossRef
Pubmed
Google scholar
|
[32] |
Pagel-Langenickel I, Bao J, Pang L, Sack MN. The role of mitochondria in the pathophysiology of skeletal muscle insulin resistance. Endocr Rev 2010; 31(1): 25–51
CrossRef
Pubmed
Google scholar
|
[33] |
Muoio DM. Intramuscular triacylglycerol and insulin resistance: guilty as charged or wrongly accused? Biochim Biophys Acta 2010; 1801(3): 281–288
CrossRef
Pubmed
Google scholar
|
[34] |
Hao Z, Mumphrey MB, Townsend RL, Morrison CD, Münzberg H, Ye J, Berthoud HR. Reprogramming of defended body weight after Roux-En-Y gastric bypass surgery in diet-induced obese mice. Obesity (Silver Spring) 2016; 24(3): 654–660
CrossRef
Pubmed
Google scholar
|
[35] |
Khan RS, Bril F, Cusi K, Newsome PN. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology 2019; 70(2): 711–724
CrossRef
Pubmed
Google scholar
|
[36] |
Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia 2017; 60(9): 1577–1585
CrossRef
Pubmed
Google scholar
|
[37] |
Turner N, Li JY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH, Li J, Ye JM. Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMP-activated protein kinase and improve insulin action. Diabetes 2008; 57(5): 1414–1418
CrossRef
Pubmed
Google scholar
|
[38] |
Yin J, Gao Z, Liu D, Liu Z, Ye J. Berberine improves glucose metabolism through induction of glycolysis. Am J Physiol Endocrinol Metab 2008; 294(1): E148–E156
CrossRef
Pubmed
Google scholar
|
[39] |
Perry RJ, Kim T, Zhang XM, Lee HY, Pesta D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, Spiegel DA, Shulman GI. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 2013; 18(5): 740–748
CrossRef
Pubmed
Google scholar
|
[40] |
Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 2015; 347(6227): 1253–1256
CrossRef
Pubmed
Google scholar
|
[41] |
Jiang H, Jin J, Duan Y, Xie Z, Li Y, Gao A, Gu M, Zhang X, Peng C, Xia C, Dong T, Li H, Yu L, Tang J, Yang F, Li J, Li J. Mitochondrial uncoupling coordinated with PDH activation safely ameliorates hyperglycemia via promoting glucose oxidation. Diabetes 2019; 68(12): 2197–2209
CrossRef
Pubmed
Google scholar
|
[42] |
Luptak I, Sverdlov AL, Panagia M, Qin F, Pimentel DR, Croteau D, Siwik DA, Ingwall JS, Bachschmid MM, Balschi JA, Colucci WS. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J Mol Cell Cardiol 2018; 116: 106–114
CrossRef
Pubmed
Google scholar
|
[43] |
Hesselink MK, Schrauwen-Hinderling V, Schrauwen P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat Rev Endocrinol 2016; 12(11): 633–645
CrossRef
Pubmed
Google scholar
|
[44] |
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M, Victor VM. Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol 2017; 11: 637–645
CrossRef
Pubmed
Google scholar
|
[45] |
Sharma K. Mitochondrial hormesis and diabetic complications. Diabetes 2015; 64(3): 663–672
CrossRef
Pubmed
Google scholar
|
[46] |
Zhang CS, Hawley SA, Zong Y, Li M, Wang Z, Gray A, Ma T, Cui J, Feng JW, Zhu M, Wu YQ, Li TY, Ye Z, Lin SY, Yin H, Piao HL, Hardie DG, Lin SC. Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK. Nature 2017; 548(7665): 112–116
CrossRef
Pubmed
Google scholar
|
[47] |
González A, Hall MN, Lin SC, Hardie DG. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab 2020; 31(3): 472–492
CrossRef
Pubmed
Google scholar
|
[48] |
Herzig S, Shaw RJ. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat Rev Mol Cell Biol 2018; 19(2): 121–135
CrossRef
Pubmed
Google scholar
|
[49] |
Hardie DG, Schaffer BE, Brunet A. AMPK: an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol 2016; 26(3): 190–201
CrossRef
Pubmed
Google scholar
|
[50] |
Viollet B, Andreelli F, Jørgensen SB, Perrin C, Geloen A, Flamez D, Mu J, Lenzner C, Baud O, Bennoun M, Gomas E, Nicolas G, Wojtaszewski JF, Kahn A, Carling D, Schuit FC, Birnbaum MJ, Richter EA, Burcelin R, Vaulont S. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity. J Clin Invest 2003; 111(1): 91–98
CrossRef
Pubmed
Google scholar
|
[51] |
Valero T. Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 2014; 20(35): 5507–5509
CrossRef
Pubmed
Google scholar
|
[52] |
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307(5708): 384–387
CrossRef
Pubmed
Google scholar
|
[53] |
Kelley DE, Mandarino LJ. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 2000; 49(5): 677–683
CrossRef
Pubmed
Google scholar
|
[54] |
Ye J. Role of insulin in the pathogenesis of free fatty acid-induced insulin resistance in skeletal muscle. Endocr Metab Immune Disord Drug Targets 2007; 7(1): 65–74
CrossRef
Pubmed
Google scholar
|
[55] |
Zhang J, Gao Z, Yin J, Quon MJ, Ye J. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-α signaling through IKK2. J Biol Chem 2008; 283(51): 35375–35382
CrossRef
Pubmed
Google scholar
|
[56] |
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311–326
CrossRef
Pubmed
Google scholar
|
[57] |
Zhang CS, Jiang B, Li M, Zhu M, Peng Y, Zhang YL, Wu YQ, Li TY, Liang Y, Lu Z, Lian G, Liu Q, Guo H, Yin Z, Ye Z, Han J, Wu JW, Yin H, Lin SY, Lin SC. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab 2014; 20(3): 526–540
CrossRef
Pubmed
Google scholar
|
[58] |
Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G. Mammalian TOR: a homeostatic ATP sensor. Science 2001; 294(5544): 1102–1105
CrossRef
Pubmed
Google scholar
|
[59] |
Corkey BE. Banting lecture 2011: hyperinsulinemia: cause or consequence? Diabetes 2012; 61(1): 4–13
CrossRef
Pubmed
Google scholar
|
[60] |
Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med 2017; 23(7): 804–814
CrossRef
Pubmed
Google scholar
|
[61] |
Page MM, Johnson JD. Mild suppression of hyperinsulinemia to treat obesity and insulin resistance. Trends Endocrinol Metab 2018; 29(6): 389–399
CrossRef
Pubmed
Google scholar
|
[62] |
Erion KA, Corkey BE. Hyperinsulinemia: a cause of obesity? Curr Obes Rep 2017; 6(2): 178–186
CrossRef
Pubmed
Google scholar
|
[63] |
Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 2008; 31(Suppl 2): S262–S268
CrossRef
Pubmed
Google scholar
|
[64] |
Mehran AE, Templeman NM, Brigidi GS, Lim GE, Chu KY, Hu X, Botezelli JD, Asadi A, Hoffman BG, Kieffer TJ, Bamji SX, Clee SM, Johnson JD. Hyperinsulinemia drives diet-induced obesity independently of brain insulin production. Cell Metab 2012; 16(6): 723–737
CrossRef
Pubmed
Google scholar
|
[65] |
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion. Nat Rev Mol Cell Biol 2021; 22(2): 142–158
CrossRef
Pubmed
Google scholar
|
[66] |
Smith GI, Polidori DC, Yoshino M, Kearney ML, Patterson BW, Mittendorfer B, Klein S. Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J Clin Invest 2020; 130(6): 3305–3314
CrossRef
Pubmed
Google scholar
|
[67] |
Gray SL, Donald C, Jetha A, Covey SD, Kieffer TJ. Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic β-cell leptin signaling. Endocrinology 2010; 151(9): 4178–4186
CrossRef
Pubmed
Google scholar
|
[68] |
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal 2014; 10(1): 189–231
CrossRef
Pubmed
Google scholar
|
[69] |
Hazama A, Hayashi S, Okada Y. Cell surface measurements of ATP release from single pancreatic β cells using a novel biosensor technique. Pflugers Arch 1998; 437(1): 31–35
CrossRef
Pubmed
Google scholar
|
[70] |
Hutton JC, Penn EJ, Peshavaria M. Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate. Biochem J 1983; 210(2): 297–305
CrossRef
Pubmed
Google scholar
|
[71] |
Soberanes S, Misharin AV, Jairaman A, Morales-Nebreda L, McQuattie-Pimentel AC, Cho T, Hamanaka RB, Meliton AY, Reyfman PA, Walter JM, Chen CI, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Antalek M, Abdala-Valencia H, Chiarella SE, Sun KA, Woods PS, Ghio AJ, Jain M, Perlman H, Ridge KM, Morimoto RI, Sznajder JI, Balch WE, Bhorade SM, Bharat A, Prakriya M, Chandel NS, Mutlu GM, Budinger GRS. Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis. Cell Metab 2019; 29(2): 335–347.e5
Pubmed
|
[72] |
Yang X, Xu Z, Zhang C, Cai Z, Zhang J. Metformin, beyond an insulin sensitizer, targeting heart and pancreatic β cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863(8): 1984–1990
CrossRef
Pubmed
Google scholar
|
[73] |
Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G, Heimberg H, Pipeleers D, Van de Casteele M. Metformin-induced stimulation of AMP-activated protein kinase in β-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem Pharmacol 2004; 68(3): 409–416
CrossRef
Pubmed
Google scholar
|
[74] |
Carpentier J, Luyckx AS, Lefebvre PJ. Influence of metformin on arginine-induced glucagon secretion in human diabetes. Diabete Metab 1975; 1: 23–28
Pubmed
|
[75] |
Wei X, Ke B, Zhao Z, Ye X, Gao Z, Ye J. Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS One 2014; 9(4): e95399
CrossRef
Pubmed
Google scholar
|
[76] |
Lee YH, Wang MY, Yu XX, Unger RH. Glucagon is the key factor in the development of diabetes. Diabetologia 2016; 59(7): 1372–1375
CrossRef
Pubmed
Google scholar
|
[77] |
Finan B, Capozzi ME, Campbell JE. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes 2020; 69(4): 532–541
CrossRef
Pubmed
Google scholar
|
[78] |
Dunning BE, Gerich JE. The role of α-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr Rev 2007; 28(3): 253–283
CrossRef
Pubmed
Google scholar
|
[79] |
Miller RA, Chu Q, Xie J, Foretz M, Viollet B, Birnbaum MJ. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 2013; 494(7436): 256–260
CrossRef
Pubmed
Google scholar
|
[80] |
Pettus JH, D’Alessio D, Frias JP, Vajda EG, Pipkin JD, Rosenstock J, Williamson G, Zangmeister MA, Zhi L, Marschke KB. Efficacy and safety of the glucagon receptor antagonist RVT-1502 in type 2 diabetes uncontrolled on metformin monotherapy: a 12-week dose-ranging study. Diabetes Care 2020; 43(1): 161–168
CrossRef
Pubmed
Google scholar
|
[81] |
Cryer PE. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology 2012; 153(3): 1039–1048
CrossRef
Pubmed
Google scholar
|
[82] |
Wendt A, Birnir B, Buschard K, Gromada J, Salehi A, Sewing S, Rorsman P, Braun M. Glucose inhibition of glucagon secretion from rat alpha-cells is mediated by GABA released from neighboring β-cells. Diabetes 2004; 53(4): 1038–1045
CrossRef
Pubmed
Google scholar
|
[83] |
Cabrera O, Jacques-Silva MC, Speier S, Yang SN, Köhler M, Fachado A, Vieira E, Zierath JR, Kibbey R, Berman DM, Kenyon NS, Ricordi C, Caicedo A, Berggren PO. Glutamate is a positive autocrine signal for glucagon release. Cell Metab 2008; 7(6): 545–554
CrossRef
Pubmed
Google scholar
|
[84] |
Elliott AD, Ustione A, Piston DW. Somatostatin and insulin mediate glucose-inhibited glucagon secretion in the pancreatic α-cell by lowering cAMP. Am J Physiol Endocrinol Metab 2015; 308(2): E130–E143
CrossRef
Pubmed
Google scholar
|
[85] |
Omar-Hmeadi M, Lund PE, Gandasi NR, Tengholm A, Barg S. Paracrine control of α-cell glucagon exocytosis is compromised in human type-2 diabetes. Nat Commun 2020; 11(1): 1896
CrossRef
Pubmed
Google scholar
|
[86] |
Liu R, Hong J, Xu X, Feng Q, Zhang D, Gu Y, Shi J, Zhao S, Liu W, Wang X, Xia H, Liu Z, Cui B, Liang P, Xi L, Jin J, Ying X, Wang X, Zhao X, Li W, Jia H, Lan Z, Li F, Wang R, Sun Y, Yang M, Shen Y, Jie Z, Li J, Chen X, Zhong H, Xie H, Zhang Y, Gu W, Deng X, Shen B, Xu X, Yang H, Xu G, Bi Y, Lai S, Wang J, Qi L, Madsen L, Wang J, Ning G, Kristiansen K, Wang W. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med 2017; 23(7): 859–868
CrossRef
Pubmed
Google scholar
|
[87] |
Simonson M, Boirie Y, Guillet C. Protein, amino acids and obesity treatment. Rev Endocr Metab Disord 2020; 21(3): 341–353
CrossRef
Pubmed
Google scholar
|
[88] |
Burnstock G, Gentile D. The involvement of purinergic signalling in obesity. Purinergic Signal 2018; 14(2): 97–108
CrossRef
Pubmed
Google scholar
|
[89] |
Antonioli L, Blandizzi C, Pacher P, Haskó G. The purinergic system as a pharmacological target for the treatment of immune-mediated inflammatory diseases. Pharmacol Rev 2019; 71(3): 345–382
CrossRef
Pubmed
Google scholar
|
[90] |
Giacovazzo G, Fabbrizio P, Apolloni S, Coccurello R, Volonté C. Stimulation of P2X7 enhances whole body energy metabolism in mice. Front Cell Neurosci 2019; 13: 390
CrossRef
Pubmed
Google scholar
|
[91] |
Sun S, Xia S, Ji Y, Kersten S, Qi L. The ATP-P2X7 signaling axis is dispensable for obesity-associated inflammasome activation in adipose tissue. Diabetes 2012; 61(6): 1471–1478
CrossRef
Pubmed
Google scholar
|
[92] |
Pérez-Sen R, Gómez-Villafuertes R, Ortega F, Gualix J, Delicado EG, Miras-Portugal MT. An update on P2Y13 receptor signalling and function. Adv Exp Med Biol 2017; 1051: 139–168
CrossRef
Pubmed
Google scholar
|
[93] |
Cao X, Ye X, Zhang S, Wang L, Xu Y, Peng S, Zhou Y, Peng Y, Li J, Zhang X, Han X, Huang H, Jia W, Ye J. ADP induces blood glucose through direct and indirect mechanisms in promotion of hepatic gluconeogenesis by elevation of NADH. Front Endocrinol 2021; 12: 663530
CrossRef
Google scholar
|
[94] |
Amisten S, Meidute-Abaraviciene S, Tan C, Olde B, Lundquist I, Salehi A, Erlinge D. ADP mediates inhibition of insulin secretion by activation of P2Y13 receptors in mice. Diabetologia 2010; 53(9): 1927–1934
CrossRef
Pubmed
Google scholar
|
[95] |
Enjyoji K, Kotani K, Thukral C, Blumel B, Sun X, Wu Y, Imai M, Friedman D, Csizmadia E, Bleibel W, Kahn BB, Robson SC. Deletion of cd39/entpd1 results in hepatic insulin resistance. Diabetes 2008; 57(9): 2311–2320
CrossRef
Pubmed
Google scholar
|
[96] |
Jacques FJ, Silva TM, da Silva FE, Ornelas IM, Ventura ALM. Nucleotide P2Y13-stimulated phosphorylation of CREB is required for ADP-induced proliferation of late developing retinal glial progenitors in culture. Cell Signal 2017; 35: 95–106
CrossRef
Pubmed
Google scholar
|
[97] |
Blom D, Yamin TT, Champy MF, Selloum M, Bedu E, Carballo-Jane E, Gerckens L, Luell S, Meurer R, Chin J, Mudgett J, Puig O. Altered lipoprotein metabolism in P2Y13 knockout mice. Biochim Biophys Acta 2010; 1801(12): 1349–1360
CrossRef
Pubmed
Google scholar
|
[98] |
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300(5622): 1140–1142
CrossRef
Pubmed
Google scholar
|
[99] |
Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 2007; 5(2): 151–156
CrossRef
Pubmed
Google scholar
|
[100] |
Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440(7086): 944–948
CrossRef
Pubmed
Google scholar
|
[101] |
Nair KS, Bigelow ML, Asmann YW, Chow LS, Coenen-Schimke JM, Klaus KA, Guo ZK, Sreekumar R, Irving BA. Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes 2008; 57(5): 1166–1175
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |