IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia

Xiao Huang, Tingting Ma, Yongmei Zhu, Bo Jiao, Shanhe Yu, Kankan Wang, Jian-Qing Mi, Ruibao Ren

PDF(624 KB)
PDF(624 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 403-415. DOI: 10.1007/s11684-021-0858-1
RESEARCH ARTICLE
RESEARCH ARTICLE

IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia

Author information +
History +

Abstract

The morbidity and mortality of myeloproliferative neoplasms (MPNs) are primarily caused by arterial and venous complications, progression to myelofibrosis, and transformation to acute leukemia. However, identifying molecular-based biomarkers for risk stratification of patients with MPNs remains a challenge. We have previously shown that interferon regulatory factor-8 (IRF8) and IRF4 serve as tumor suppressors in myeloid cells. In this study, we evaluated the expression of IRF4 and IRF8 and the JAK2V617F mutant allele burden in patients with MPNs. Patients with decreased IRF4 expression were correlated with a more developed MPN phenotype in myelofibrosis (MF) and secondary AML (sAML) transformed from MPNs versus essential thrombocythemia (ET). Negative correlations between the JAK2V617F allele burden and the expression of IRF8 (P <0.05) and IRF4 (P<0.001) and between white blood cell (WBC) count and IRF4 expression (P <0.05) were found in ET patients. IRF8 expression was negatively correlated with the JAK2V617F allele burden (P <0.05) in polycythemia vera patients. Complete response (CR), partial response (PR), and no response (NR) were observed in 67.5%, 10%, and 22.5% of ET patients treated with hydroxyurea (HU), respectively, in 12 months. At 3 months, patients in the CR group showed high IRF4 and IRF8 expression compared with patients in the PR and NR groups. In the 12-month therapy period, low IRF4 and IRF8 expression were independently associated with the unfavorable response to HU and high WBC count. Our data indicate that the expression of IRF4 and IRF8 was associated with the MPN phenotype, which may serve as biomarkers for the response to HU in ET.

Keywords

myeloproliferative neoplasms / IRF4 / IRF8 / hydroxyurea / essential thrombocythemia

Cite this article

Download citation ▾
Xiao Huang, Tingting Ma, Yongmei Zhu, Bo Jiao, Shanhe Yu, Kankan Wang, Jian-Qing Mi, Ruibao Ren. IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia. Front. Med., 2022, 16(3): 403‒415 https://doi.org/10.1007/s11684-021-0858-1

References

[1]
Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29(5): 573–582
CrossRef Pubmed Google scholar
[2]
Spivak JL. Myeloproliferative neoplasms. N Engl J Med 2017; 376(22): 2168–2181
CrossRef Pubmed Google scholar
[3]
Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR; Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365(9464): 1054–1061
CrossRef Pubmed Google scholar
[4]
O’Sullivan JM, Harrison CN. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms. Mol Cell Endocrinol 2017; 451: 71–79
CrossRef Pubmed Google scholar
[5]
Silvennoinen O, Hubbard SR. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 2015; 125(22): 3388–3392
CrossRef Pubmed Google scholar
[6]
Tefferi A, Elliott M. Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost 2007; 33(4): 313–320
CrossRef Pubmed Google scholar
[7]
Casini A, Fontana P, Lecompte TP. Thrombotic complications of myeloproliferative neoplasms: risk assessment and risk-guided management. J Thromb Haemost 2013; 11(7): 1215–1227
CrossRef Pubmed Google scholar
[8]
Hansen IO, Sørensen AL, Hasselbalch HC. Second malignancies in hydroxyurea and interferon-treated Philadelphia-negative myeloproliferative neoplasms. Eur J Haematol 2017; 98(1): 75–84
CrossRef Pubmed Google scholar
[9]
Hasselbalch HC. Perspectives on the increased risk of second cancer in patients with essential thrombocythemia, polycythemia vera and myelofibrosis. Eur J Haematol 2015; 94(2): 96–98
CrossRef Pubmed Google scholar
[10]
Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, Tognoni G, Marchioli R; European Collaboration on Low-Dose Aspirin in Polycythemia Vera (ECLAP). Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 2007; 109(6): 2446–2452
CrossRef Pubmed Google scholar
[11]
Lussana F, Caberlon S, Pagani C, Kamphuisen PW, Büller HR, Cattaneo M. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res 2009; 124(4): 409–417
CrossRef Pubmed Google scholar
[12]
Geyer HL, Scherber RM, Dueck AC, Kiladjian JJ, Xiao Z, Slot S, Zweegman S, Sackmann F, Fuentes AK, Hernández-Maraver D, Döhner K, Harrison CN, Radia D, Muxi P, Besses C, Cervantes F, Johansson PL, Andreasson B, Rambaldi A, Barbui T, Vannucchi AM, Passamonti F, Samuelsson J, Birgegard G, Mesa RA. Distinct clustering of symptomatic burden among myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood 2014; 123(24): 3803–3810
CrossRef Pubmed Google scholar
[13]
Harrison CN, Green AR. Essential thrombocythemia. Hematol Oncol Clin North Am 2003; 17(5): 1175–1190
CrossRef Pubmed Google scholar
[14]
Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V, Longo G, Bosi A, Vannucchi AM. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19(10): 1847–1849
CrossRef Pubmed Google scholar
[15]
Cortelazzo S, Finazzi G, Ruggeri M, Vestri O, Galli M, Rodeghiero F, Barbui T. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995; 332(17): 1132–1137
CrossRef Pubmed Google scholar
[16]
Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, Randi ML, Bertozzi I, Vannucchi AM, Antonioli E, Gisslinger H, Buxhofer-Ausch V, Finazzi G, Gangat N, Tefferi A, Barbui T. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood 2011; 117(22): 5857–5859
CrossRef Pubmed Google scholar
[17]
Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, Wilkins BS, van der Walt JD, Reilly JT, Grigg AP, Revell P, Woodcock BE, Green AR; United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005; 353(1): 33–45
CrossRef Pubmed Google scholar
[18]
Landolfi R, Di Gennaro L. Prevention of thrombosis in polycythemia vera and essential thrombocythemia. Haematologica 2008; 93(3): 331–335
CrossRef Pubmed Google scholar
[19]
Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26(1): 535–584
CrossRef Pubmed Google scholar
[20]
Locatelli F, Merli P, Rutella S. At the Bedside: Innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol 2013; 94(6): 1141–1157
CrossRef Pubmed Google scholar
[21]
Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O’Shea JJ, Singh H, Ozato K. IFN regulatory factor-4 and-8 govern dendritic cell subset development and their functional diversity. J Immunol 2005; 174(5): 2573–2581
CrossRef Pubmed Google scholar
[22]
Karow A, Nienhold R, Lundberg P, Peroni E, Putti MC, Randi ML, Skoda RC. Mutational profile of childhood myeloproliferative neoplasms. Leukemia 2015; 29(12): 2407–2409
CrossRef Pubmed Google scholar
[23]
Manzella L, Tirrò E, Pennisi MS, Massimino M, Stella S, Romano C, Vitale SR, Vigneri P. Roles of interferon regulatory factors in chronic myeloid leukemia. Curr Cancer Drug Targets 2016; 16(7): 594–605
CrossRef Pubmed Google scholar
[24]
Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC 3rd, Ozato K, Horak I. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87(2): 307–317
CrossRef Pubmed Google scholar
[25]
Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20(4): 1149–1161
CrossRef Pubmed Google scholar
[26]
Jo SH, Schatz JH, Acquaviva J, Singh H, Ren R. Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 2010; 116(15): 2759–2767
CrossRef Pubmed Google scholar
[27]
Barosi G, Birgegard G, Finazzi G, Griesshammer M, Harrison C, Hasselbalch HC, Kiladjian JJ, Lengfelder E, McMullin MF, Passamonti F, Reilly JT, Vannucchi AM, Barbui T. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood 2009; 113(20): 4829–4833
CrossRef Pubmed Google scholar
[28]
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391–2405
CrossRef Pubmed Google scholar
[29]
Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L, Fanelli T, Bosi A, Vannucchi AM; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014; 123(10): 1552–1555
CrossRef Pubmed Google scholar
[30]
Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20(4): 1149–1161
CrossRef Pubmed Google scholar
[31]
Iida S, Rao PH, Butler M, Corradini P, Boccadoro M, Klein B, Chaganti RSK, Dalla-Favera R. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 1997; 17(2): 226–230
CrossRef Pubmed Google scholar
[32]
Mamane Y, Sharma S, Grandvaux N, Hernandez E, Hiscott J. IRF-4 activities in HTLV-I-induced T cell leukemogenesis. J Interferon Cytokine Res 2002; 22(1): 135–143
CrossRef Pubmed Google scholar
[33]
Chang CC, Lorek J, Sabath DE, Li Y, Chitambar CR, Logan B, Kampalath B, Cleveland RP. Expression of MUM1/IRF4 correlates with clinical outcome in patients with B-cell chronic lymphocytic leukemia. Blood 2002; 100(13): 4671–4675
CrossRef Pubmed Google scholar
[34]
Stirewalt DL, Choi YE, Sharpless NE, Pogosova-Agadjanyan EL, Cronk MR, Yukawa M, Larson EB, Wood BL, Appelbaum FR, Radich JP, Heimfeld S. Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells. Leukemia 2009; 23(2): 391–393
CrossRef Pubmed Google scholar
[35]
Schmidt M, Hochhaus A, Nitsche A, Hehlmann R, Neubauer A. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-α. Blood 2001; 97(11): 3648–3650
CrossRef Pubmed Google scholar
[36]
Schmidt M, Hochhaus A, König-Merediz SA, Brendel C, Proba J, Hoppe GJ, Wittig B, Ehninger G, Hehlmann R, Neubauer A. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J Clin Oncol 2000; 18(19): 3331–3338
CrossRef Pubmed Google scholar
[37]
Mesa R, Miller CB, Thyne M, Mangan J, Goldberger S, Fazal S, Ma X, Wilson W, Paranagama DC, Dubinski DG, Boyle J, Mascarenhas JO. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer 2016; 16(1): 167
CrossRef Pubmed Google scholar
[38]
Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22(1): 14–22
CrossRef Pubmed Google scholar
[39]
Harrison CN, Koschmieder S, Foltz L, Guglielmelli P, Flindt T, Koehler M, Mathias J, Komatsu N, Boothroyd RN, Spierer A, Perez Ronco J, Taylor-Stokes G, Waller J, Mesa RA. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: results from the international MPN Landmark survey. Ann Hematol 2017; 96(10): 1653–1665
CrossRef Pubmed Google scholar
[40]
Stein BL, Moliterno AR. Primary myelofibrosis and the myeloproliferative neoplasms: the role of individual variation. JAMA 2010; 303(24): 2513–2518
CrossRef Pubmed Google scholar
[41]
Kreipe H, Hussein K, Göhring G, Schlegelberger B. Progression of myeloproliferative neoplasms to myelofibrosis and acute leukaemia. J Hematop 2011; 4(2): 61–68
CrossRef Google scholar
[42]
Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis—impact on disease phenotype. Eur J Haematol 2007; 79(6): 508–515
CrossRef Pubmed Google scholar
[43]
Antonioli E, Guglielmelli P, Poli G, Bogani C, Pancrazzi A, Longo G, Ponziani V, Tozzi L, Pieri L, Santini V, Bosi A, Vannucchi AM; Myeloproliferative Disorders Research Consortium (MPD-RC). Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica 2008; 93(1): 41–48
CrossRef Pubmed Google scholar
[44]
Hsiao HH, Yang MY, Liu YC, Lee CP, Yang WC, Liu TC, Chang CS, Lin SF. The association of JAK2V617F mutation and leukocytosis with thrombotic events in essential thrombocythemia. Exp Hematol 2007; 35(11): 1704–1707
CrossRef Pubmed Google scholar
[45]
Gugliotta L, Tieghi A, Iurlo A, Candoni A, Specchia G, Lunghi M, Rumi E, Scalzulli PR, Dragani A, Martinelli V, Randi ML, Maschio N, Liberati AM, Palmieri F, Santoro C, D'Arco AM, Rago A, Chiozzotto C, Mastrullo L, Cacciola E, Cacciola R, Lanza F, Codeluppi K, De Philippis C, Patriarca A, Ciancia R, Fiacchini M, Gugliotta G, Cimino G, Gaidano G, Mazzucconi MG, Passamonti F, Vannucchi AM, Vianelli N. Thrombosis history and relationship with low thrombocytosis, leukocytosis, and Jak2 V617F mutation in a cohort of 977 patients with essential thrombocythemia (ET): preliminary report of the Registro Italiano Trombocitemia (RIT). Blood 2011; 118 (21): 3836
CrossRef Google scholar
[46]
George TI. Malignant or benign leukocytosis. Hematology (Am Soc Hematol Educ Program) 2012; 2012(1): 475–484
CrossRef Pubmed Google scholar
[47]
Stein BL, Moliterno AR, Tiu RV. Polycythemia vera disease burden: contributing factors, impact on quality of life, and emerging treatment options. Ann Hematol 2014; 93(12): 1965–1976
CrossRef Pubmed Google scholar
[48]
Yamamoto M, Kato T, Hotta C, Nishiyama A, Kurotaki D, Yoshinari M, Takami M, Ichino M, Nakazawa M, Matsuyama T, Kamijo R, Kitagawa S, Ozato K, Tamura T. Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS One 2011; 6(10): e25812
CrossRef Pubmed Google scholar
[49]
Shiau CE, Kaufman Z, Meireles AM, Talbot WS. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One 2015; 10(1): e0117513
CrossRef Pubmed Google scholar
[50]
Paschall AV, Zhang R, Qi CF, Bardhan K, Peng L, Lu G, Yang J, Merad M, McGaha T, Zhou G, Mellor A, Abrams SI, Morse HC 3rd, Ozato K, Xiong H, Liu K. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. J Immunol 2015; 194(5): 2369–2379
CrossRef Pubmed Google scholar
[51]
Yáñez A, Ng MY, Hassanzadeh-Kiabi N, Goodridge HS. IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production. Blood 2015; 125(9): 1452–1459
CrossRef Pubmed Google scholar
[52]
Tamura T, Kong HJ, Tunyaplin C, Tsujimura H, Calame K, Ozato K. ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood 2003; 102(13): 4547–4554
CrossRef Pubmed Google scholar
[53]
Finazzi G, Rambaldi A, Guerini V, Carobbo A, Barbui T. Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica 2007; 92(1): 135–136
CrossRef Pubmed Google scholar
[54]
Carobbio A, Finazzi G, Antonioli E, Vannucchi AM, Barosi G, Ruggeri M, Rodeghiero F, Delaini F, Rambaldi A, Barbui T. Hydroxyurea in essential thrombocythemia: rate and clinical relevance of responses by European LeukemiaNet criteria. Blood 2010; 116(7): 1051–1055
CrossRef Pubmed Google scholar
[55]
Hernández-Boluda JC, Alvarez-Larrán A, Gómez M, Angona A, Amat P, Bellosillo B, Martínez-Avilés L, Navarro B, Teruel A, Martínez-Ruiz F, Besses C. Clinical evaluation of the European LeukaemiaNet criteria for clinicohaematological response and resistance/intolerance to hydroxycarbamide in essential thrombocythaemia. Br J Haematol 2011; 152(1): 81–88
CrossRef Pubmed Google scholar
[56]
Vannucchi AM, Pieri L, Guglielmelli P. JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Ther Adv Hematol 2011; 2(1): 21–32
CrossRef Pubmed Google scholar
[57]
Antonioli E, Carobbio A, Pieri L, Pancrazzi A, Guglielmelli P, Delaini F, Ponziani V, Bartalucci N, Tozzi L, Bosi A, Rambaldi A, Barbui T, Vannucchi AM. Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica 2010; 95(8): 1435–1438
CrossRef Pubmed Google scholar
[58]
Zalcberg IR, Ayres-Silva J, de Azevedo AM, Solza C, Daumas A, Bonamino M. Hydroxyurea dose impacts hematologic parameters in polycythemia vera and essential thrombocythemia but does not appreciably affect JAK2-V617F allele burden. Haematologica 2011; 96(3): e18–e20
CrossRef Pubmed Google scholar
[59]
Larsen TS, Pallisgaard N, de Stricker K, Møller MB, Hasselbalch HC. Limited efficacy of hydroxyurea in lowering of the JAK2 V617F allele burden. Hematology 2009; 14(1): 11–15
CrossRef Pubmed Google scholar
[60]
Netherby CS, Messmer MN, Burkard-Mandel L, Colligan S, Miller A, Cortes Gomez E, Wang J, Nemeth MJ, Abrams SI. The granulocyte progenitor stage is a key target of irf8-mediated regulation of myeloid-derived suppressor cell production. J Immunol 2017; 198(10): 4129–4139
CrossRef Pubmed Google scholar
[61]
Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res 2016; 39(11): 1548–1555
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program (No. 2016YFC0902800 to Ruibao Ren), the Key Project of National Natural Science Foundation of China (No. 81530006 to Ruibao Ren), Shanghai Collaborative Innovation Program on Regenerative Medicine and Stem Cell Research (No. 2019CXJQ01 to Ruibao Ren), National Natural Science Foundation of China (No. 81870112 to Ruibao Ren).

Compliance with ethics guidelines

Xiao Huang, Tingting Ma, Yongmei Zhu, Bo Jiao, Shanhe Yu, Kankan Wang, Jian-Qing Mi, and Ruibao Ren declare that they have no conflict of interest. This manuscript does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000 (5). Informed consent was obtained from all patients or guardians of patients for being included in the study.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-021-0858-1 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(624 KB)

Accesses

Citations

Detail

Sections
Recommended

/