IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia

Xiao Huang , Tingting Ma , Yongmei Zhu , Bo Jiao , Shanhe Yu , Kankan Wang , Jian-Qing Mi , Ruibao Ren

Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 403 -415.

PDF (624KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (3) : 403 -415. DOI: 10.1007/s11684-021-0858-1
RESEARCH ARTICLE
RESEARCH ARTICLE

IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia

Author information +
History +
PDF (624KB)

Abstract

The morbidity and mortality of myeloproliferative neoplasms (MPNs) are primarily caused by arterial and venous complications, progression to myelofibrosis, and transformation to acute leukemia. However, identifying molecular-based biomarkers for risk stratification of patients with MPNs remains a challenge. We have previously shown that interferon regulatory factor-8 (IRF8) and IRF4 serve as tumor suppressors in myeloid cells. In this study, we evaluated the expression of IRF4 and IRF8 and the JAK2V617F mutant allele burden in patients with MPNs. Patients with decreased IRF4 expression were correlated with a more developed MPN phenotype in myelofibrosis (MF) and secondary AML (sAML) transformed from MPNs versus essential thrombocythemia (ET). Negative correlations between the JAK2V617F allele burden and the expression of IRF8 (P <0.05) and IRF4 (P<0.001) and between white blood cell (WBC) count and IRF4 expression (P <0.05) were found in ET patients. IRF8 expression was negatively correlated with the JAK2V617F allele burden (P <0.05) in polycythemia vera patients. Complete response (CR), partial response (PR), and no response (NR) were observed in 67.5%, 10%, and 22.5% of ET patients treated with hydroxyurea (HU), respectively, in 12 months. At 3 months, patients in the CR group showed high IRF4 and IRF8 expression compared with patients in the PR and NR groups. In the 12-month therapy period, low IRF4 and IRF8 expression were independently associated with the unfavorable response to HU and high WBC count. Our data indicate that the expression of IRF4 and IRF8 was associated with the MPN phenotype, which may serve as biomarkers for the response to HU in ET.

Keywords

myeloproliferative neoplasms / IRF4 / IRF8 / hydroxyurea / essential thrombocythemia

Cite this article

Download citation ▾
Xiao Huang, Tingting Ma, Yongmei Zhu, Bo Jiao, Shanhe Yu, Kankan Wang, Jian-Qing Mi, Ruibao Ren. IRF4 and IRF8 expression are associated with clinical phenotype and clinico-hematological response to hydroxyurea in essential thrombocythemia. Front. Med., 2022, 16(3): 403-415 DOI:10.1007/s11684-021-0858-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tefferi A, Vainchenker W. Myeloproliferative neoplasms: molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011; 29(5): 573–582

[2]

Spivak JL. Myeloproliferative neoplasms. N Engl J Med 2017; 376(22): 2168–2181

[3]

Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM, Curtin N, Scott MA, Erber WN, Green AR; Cancer Genome Project. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 2005; 365(9464): 1054–1061

[4]

O’Sullivan JM, Harrison CN. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms. Mol Cell Endocrinol 2017; 451: 71–79

[5]

Silvennoinen O, Hubbard SR. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood 2015; 125(22): 3388–3392

[6]

Tefferi A, Elliott M. Thrombosis in myeloproliferative disorders: prevalence, prognostic factors, and the role of leukocytes and JAK2V617F. Semin Thromb Hemost 2007; 33(4): 313–320

[7]

Casini A, Fontana P, Lecompte TP. Thrombotic complications of myeloproliferative neoplasms: risk assessment and risk-guided management. J Thromb Haemost 2013; 11(7): 1215–1227

[8]

Hansen IO, Sørensen AL, Hasselbalch HC. Second malignancies in hydroxyurea and interferon-treated Philadelphia-negative myeloproliferative neoplasms. Eur J Haematol 2017; 98(1): 75–84

[9]

Hasselbalch HC. Perspectives on the increased risk of second cancer in patients with essential thrombocythemia, polycythemia vera and myelofibrosis. Eur J Haematol 2015; 94(2): 96–98

[10]

Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, Tognoni G, Marchioli R; European Collaboration on Low-Dose Aspirin in Polycythemia Vera (ECLAP). Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood 2007; 109(6): 2446–2452

[11]

Lussana F, Caberlon S, Pagani C, Kamphuisen PW, Büller HR, Cattaneo M. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res 2009; 124(4): 409–417

[12]

Geyer HL, Scherber RM, Dueck AC, Kiladjian JJ, Xiao Z, Slot S, Zweegman S, Sackmann F, Fuentes AK, Hernández-Maraver D, Döhner K, Harrison CN, Radia D, Muxi P, Besses C, Cervantes F, Johansson PL, Andreasson B, Rambaldi A, Barbui T, Vannucchi AM, Passamonti F, Samuelsson J, Birgegard G, Mesa RA. Distinct clustering of symptomatic burden among myeloproliferative neoplasm patients: retrospective assessment in 1470 patients. Blood 2014; 123(24): 3803–3810

[13]

Harrison CN, Green AR. Essential thrombocythemia. Hematol Oncol Clin North Am 2003; 17(5): 1175–1190

[14]

Antonioli E, Guglielmelli P, Pancrazzi A, Bogani C, Verrucci M, Ponziani V, Longo G, Bosi A, Vannucchi AM. Clinical implications of the JAK2 V617F mutation in essential thrombocythemia. Leukemia 2005; 19(10): 1847–1849

[15]

Cortelazzo S, Finazzi G, Ruggeri M, Vestri O, Galli M, Rodeghiero F, Barbui T. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995; 332(17): 1132–1137

[16]

Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, Randi ML, Bertozzi I, Vannucchi AM, Antonioli E, Gisslinger H, Buxhofer-Ausch V, Finazzi G, Gangat N, Tefferi A, Barbui T. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood 2011; 117(22): 5857–5859

[17]

Harrison CN, Campbell PJ, Buck G, Wheatley K, East CL, Bareford D, Wilkins BS, van der Walt JD, Reilly JT, Grigg AP, Revell P, Woodcock BE, Green AR; United Kingdom Medical Research Council Primary Thrombocythemia 1 Study. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005; 353(1): 33–45

[18]

Landolfi R, Di Gennaro L. Prevention of thrombosis in polycythemia vera and essential thrombocythemia. Haematologica 2008; 93(3): 331–335

[19]

Tamura T, Yanai H, Savitsky D, Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 2008; 26(1): 535–584

[20]

Locatelli F, Merli P, Rutella S. At the Bedside: Innate immunity as an immunotherapy tool for hematological malignancies. J Leukoc Biol 2013; 94(6): 1141–1157

[21]

Tamura T, Tailor P, Yamaoka K, Kong HJ, Tsujimura H, O’Shea JJ, Singh H, Ozato K. IFN regulatory factor-4 and-8 govern dendritic cell subset development and their functional diversity. J Immunol 2005; 174(5): 2573–2581

[22]

Karow A, Nienhold R, Lundberg P, Peroni E, Putti MC, Randi ML, Skoda RC. Mutational profile of childhood myeloproliferative neoplasms. Leukemia 2015; 29(12): 2407–2409

[23]

Manzella L, Tirrò E, Pennisi MS, Massimino M, Stella S, Romano C, Vitale SR, Vigneri P. Roles of interferon regulatory factors in chronic myeloid leukemia. Curr Cancer Drug Targets 2016; 16(7): 594–605

[24]

Holtschke T, Löhler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC 3rd, Ozato K, Horak I. Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 1996; 87(2): 307–317

[25]

Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20(4): 1149–1161

[26]

Jo SH, Schatz JH, Acquaviva J, Singh H, Ren R. Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 2010; 116(15): 2759–2767

[27]

Barosi G, Birgegard G, Finazzi G, Griesshammer M, Harrison C, Hasselbalch HC, Kiladjian JJ, Lengfelder E, McMullin MF, Passamonti F, Reilly JT, Vannucchi AM, Barbui T. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood 2009; 113(20): 4829–4833

[28]

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391–2405

[29]

Rotunno G, Mannarelli C, Guglielmelli P, Pacilli A, Pancrazzi A, Pieri L, Fanelli T, Bosi A, Vannucchi AM; Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. Blood 2014; 123(10): 1552–1555

[30]

Hao SX, Ren R. Expression of interferon consensus sequence binding protein (ICSBP) is downregulated in Bcr-Abl-induced murine chronic myelogenous leukemia-like disease, and forced coexpression of ICSBP inhibits Bcr-Abl-induced myeloproliferative disorder. Mol Cell Biol 2000; 20(4): 1149–1161

[31]

Iida S, Rao PH, Butler M, Corradini P, Boccadoro M, Klein B, Chaganti RSK, Dalla-Favera R. Deregulation of MUM1/IRF4 by chromosomal translocation in multiple myeloma. Nat Genet 1997; 17(2): 226–230

[32]

Mamane Y, Sharma S, Grandvaux N, Hernandez E, Hiscott J. IRF-4 activities in HTLV-I-induced T cell leukemogenesis. J Interferon Cytokine Res 2002; 22(1): 135–143

[33]

Chang CC, Lorek J, Sabath DE, Li Y, Chitambar CR, Logan B, Kampalath B, Cleveland RP. Expression of MUM1/IRF4 correlates with clinical outcome in patients with B-cell chronic lymphocytic leukemia. Blood 2002; 100(13): 4671–4675

[34]

Stirewalt DL, Choi YE, Sharpless NE, Pogosova-Agadjanyan EL, Cronk MR, Yukawa M, Larson EB, Wood BL, Appelbaum FR, Radich JP, Heimfeld S. Decreased IRF8 expression found in aging hematopoietic progenitor/stem cells. Leukemia 2009; 23(2): 391–393

[35]

Schmidt M, Hochhaus A, Nitsche A, Hehlmann R, Neubauer A. Expression of nuclear transcription factor interferon consensus sequence binding protein in chronic myeloid leukemia correlates with pretreatment risk features and cytogenetic response to interferon-α. Blood 2001; 97(11): 3648–3650

[36]

Schmidt M, Hochhaus A, König-Merediz SA, Brendel C, Proba J, Hoppe GJ, Wittig B, Ehninger G, Hehlmann R, Neubauer A. Expression of interferon regulatory factor 4 in chronic myeloid leukemia: correlation with response to interferon alfa therapy. J Clin Oncol 2000; 18(19): 3331–3338

[37]

Mesa R, Miller CB, Thyne M, Mangan J, Goldberger S, Fazal S, Ma X, Wilson W, Paranagama DC, Dubinski DG, Boyle J, Mascarenhas JO. Myeloproliferative neoplasms (MPNs) have a significant impact on patients’ overall health and productivity: the MPN Landmark survey. BMC Cancer 2016; 16(1): 167

[38]

Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008; 22(1): 14–22

[39]

Harrison CN, Koschmieder S, Foltz L, Guglielmelli P, Flindt T, Koehler M, Mathias J, Komatsu N, Boothroyd RN, Spierer A, Perez Ronco J, Taylor-Stokes G, Waller J, Mesa RA. The impact of myeloproliferative neoplasms (MPNs) on patient quality of life and productivity: results from the international MPN Landmark survey. Ann Hematol 2017; 96(10): 1653–1665

[40]

Stein BL, Moliterno AR. Primary myelofibrosis and the myeloproliferative neoplasms: the role of individual variation. JAMA 2010; 303(24): 2513–2518

[41]

Kreipe H, Hussein K, Göhring G, Schlegelberger B. Progression of myeloproliferative neoplasms to myelofibrosis and acute leukaemia. J Hematop 2011; 4(2): 61–68

[42]

Larsen TS, Pallisgaard N, Møller MB, Hasselbalch HC. The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis—impact on disease phenotype. Eur J Haematol 2007; 79(6): 508–515

[43]

Antonioli E, Guglielmelli P, Poli G, Bogani C, Pancrazzi A, Longo G, Ponziani V, Tozzi L, Pieri L, Santini V, Bosi A, Vannucchi AM; Myeloproliferative Disorders Research Consortium (MPD-RC). Influence of JAK2V617F allele burden on phenotype in essential thrombocythemia. Haematologica 2008; 93(1): 41–48

[44]

Hsiao HH, Yang MY, Liu YC, Lee CP, Yang WC, Liu TC, Chang CS, Lin SF. The association of JAK2V617F mutation and leukocytosis with thrombotic events in essential thrombocythemia. Exp Hematol 2007; 35(11): 1704–1707

[45]

Gugliotta L, Tieghi A, Iurlo A, Candoni A, Specchia G, Lunghi M, Rumi E, Scalzulli PR, Dragani A, Martinelli V, Randi ML, Maschio N, Liberati AM, Palmieri F, Santoro C, D'Arco AM, Rago A, Chiozzotto C, Mastrullo L, Cacciola E, Cacciola R, Lanza F, Codeluppi K, De Philippis C, Patriarca A, Ciancia R, Fiacchini M, Gugliotta G, Cimino G, Gaidano G, Mazzucconi MG, Passamonti F, Vannucchi AM, Vianelli N. Thrombosis history and relationship with low thrombocytosis, leukocytosis, and Jak2 V617F mutation in a cohort of 977 patients with essential thrombocythemia (ET): preliminary report of the Registro Italiano Trombocitemia (RIT). Blood 2011; 118 (21): 3836

[46]

George TI. Malignant or benign leukocytosis. Hematology (Am Soc Hematol Educ Program) 2012; 2012(1): 475–484

[47]

Stein BL, Moliterno AR, Tiu RV. Polycythemia vera disease burden: contributing factors, impact on quality of life, and emerging treatment options. Ann Hematol 2014; 93(12): 1965–1976

[48]

Yamamoto M, Kato T, Hotta C, Nishiyama A, Kurotaki D, Yoshinari M, Takami M, Ichino M, Nakazawa M, Matsuyama T, Kamijo R, Kitagawa S, Ozato K, Tamura T. Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS One 2011; 6(10): e25812

[49]

Shiau CE, Kaufman Z, Meireles AM, Talbot WS. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One 2015; 10(1): e0117513

[50]

Paschall AV, Zhang R, Qi CF, Bardhan K, Peng L, Lu G, Yang J, Merad M, McGaha T, Zhou G, Mellor A, Abrams SI, Morse HC 3rd, Ozato K, Xiong H, Liu K. IFN regulatory factor 8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. J Immunol 2015; 194(5): 2369–2379

[51]

Yáñez A, Ng MY, Hassanzadeh-Kiabi N, Goodridge HS. IRF8 acts in lineage-committed rather than oligopotent progenitors to control neutrophil vs monocyte production. Blood 2015; 125(9): 1452–1459

[52]

Tamura T, Kong HJ, Tunyaplin C, Tsujimura H, Calame K, Ozato K. ICSBP/IRF-8 inhibits mitogenic activity of p210 Bcr/Abl in differentiating myeloid progenitor cells. Blood 2003; 102(13): 4547–4554

[53]

Finazzi G, Rambaldi A, Guerini V, Carobbo A, Barbui T. Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica 2007; 92(1): 135–136

[54]

Carobbio A, Finazzi G, Antonioli E, Vannucchi AM, Barosi G, Ruggeri M, Rodeghiero F, Delaini F, Rambaldi A, Barbui T. Hydroxyurea in essential thrombocythemia: rate and clinical relevance of responses by European LeukemiaNet criteria. Blood 2010; 116(7): 1051–1055

[55]

Hernández-Boluda JC, Alvarez-Larrán A, Gómez M, Angona A, Amat P, Bellosillo B, Martínez-Avilés L, Navarro B, Teruel A, Martínez-Ruiz F, Besses C. Clinical evaluation of the European LeukaemiaNet criteria for clinicohaematological response and resistance/intolerance to hydroxycarbamide in essential thrombocythaemia. Br J Haematol 2011; 152(1): 81–88

[56]

Vannucchi AM, Pieri L, Guglielmelli P. JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Ther Adv Hematol 2011; 2(1): 21–32

[57]

Antonioli E, Carobbio A, Pieri L, Pancrazzi A, Guglielmelli P, Delaini F, Ponziani V, Bartalucci N, Tozzi L, Bosi A, Rambaldi A, Barbui T, Vannucchi AM. Hydroxyurea does not appreciably reduce JAK2 V617F allele burden in patients with polycythemia vera or essential thrombocythemia. Haematologica 2010; 95(8): 1435–1438

[58]

Zalcberg IR, Ayres-Silva J, de Azevedo AM, Solza C, Daumas A, Bonamino M. Hydroxyurea dose impacts hematologic parameters in polycythemia vera and essential thrombocythemia but does not appreciably affect JAK2-V617F allele burden. Haematologica 2011; 96(3): e18–e20

[59]

Larsen TS, Pallisgaard N, de Stricker K, Møller MB, Hasselbalch HC. Limited efficacy of hydroxyurea in lowering of the JAK2 V617F allele burden. Hematology 2009; 14(1): 11–15

[60]

Netherby CS, Messmer MN, Burkard-Mandel L, Colligan S, Miller A, Cortes Gomez E, Wang J, Nemeth MJ, Abrams SI. The granulocyte progenitor stage is a key target of irf8-mediated regulation of myeloid-derived suppressor cell production. J Immunol 2017; 198(10): 4129–4139

[61]

Nam S, Lim JS. Essential role of interferon regulatory factor 4 (IRF4) in immune cell development. Arch Pharm Res 2016; 39(11): 1548–1555

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (624KB)

Supplementary files

FMD-21012-OF-RRB_suppl_1

3388

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/