Challenges and opportunities in improving left ventricular remodelling and clinical outcome following surgical and trans-catheter aortic valve replacement

Xu Yu Jin, Mario Petrou, Jiang Ting Hu, Ed D Nicol, John R Pepper

PDF(3822 KB)
PDF(3822 KB)
Front. Med. ›› 2021, Vol. 15 ›› Issue (3) : 416-437. DOI: 10.1007/s11684-021-0852-7
REVIEW
REVIEW

Challenges and opportunities in improving left ventricular remodelling and clinical outcome following surgical and trans-catheter aortic valve replacement

Author information +
History +

Abstract

Over the last half century, surgical aortic valve replacement (SAVR) has evolved to offer a durable and efficient valve haemodynamically, with low procedural complications that allows favourable remodelling of left ventricular (LV) structure and function. The latter has become more challenging among elderly patients, particularly following trans-catheter aortic valve implantation (TAVI). Precise understanding of myocardial adaptation to pressure and volume overloading and its responses to valve surgery requires comprehensive assessments from aortic valve energy loss, valvular-vascular impedance to myocardial activation, force-velocity relationship, and myocardial strain. LV hypertrophy and myocardial fibrosis remains as the structural and morphological focus in this endeavour. Early intervention in asymptomatic aortic stenosis or regurgitation along with individualised management of hypertension and atrial fibrillation is likely to improve patient outcome. Physiological pacing via the His-Purkinje system for conduction abnormalities, further reduction in para-valvular aortic regurgitation along with therapy of angiotensin receptor blockade will improve patient outcome by facilitating hypertrophy regression, LV coordinate contraction, and global vascular function. TAVI leaflet thromboses require anticoagulation while impaired access to coronary ostia risks future TAVI-in-TAVI or coronary interventions. Until comparable long-term durability and the resolution of TAVI related complications become available, SAVR remains the first choice for lower risk younger patients.

Keywords

surgical aortic valve replacement / trans-catheter aortic valve implantation / left ventricular hypertrophy and fibrosis / myocardial force-velocity relationship / His-Purkinje pacing / renin-angiotensin system inhibitors / coronary access impairment

Cite this article

Download citation ▾
Xu Yu Jin, Mario Petrou, Jiang Ting Hu, Ed D Nicol, John R Pepper. Challenges and opportunities in improving left ventricular remodelling and clinical outcome following surgical and trans-catheter aortic valve replacement. Front. Med., 2021, 15(3): 416‒437 https://doi.org/10.1007/s11684-021-0852-7

References

[1]
Glaser N, Persson M, Jackson V, Holzmann MJ, Franco-Cereceda A, Sartipy U. Loss in life expectancy after surgical aortic valve replacement: SWEDEHEART Study. J Am Coll Cardiol 2019; 74(1): 26–33PMID:31272548
CrossRef Google scholar
[2]
Parikh R, Goodman AL, Barr T, Sabik JF, Svensson LG, Rodriguez LL, Lytle BW, Grimm RA, Griffin BP, Desai MY. Outcomes of surgical aortic valve replacement for severe aortic stenosis: Incorporation of left ventricular systolic function and stroke volume index. J Thorac Cardiovasc Surg 2015; 149(6): 1558–66.e1
CrossRef Pubmed Google scholar
[3]
Jin XY, Pepper JR, Brecker SJ, Carey JA, Gibson DG. Early changes in left ventricular function after aortic valve replacement for isolated aortic stenosis. Am J Cardiol 1994; 74(11): 1142–1146
CrossRef Pubmed Google scholar
[4]
Jin XY, Pepper JR, Gibson DG, Yacoub MH. Early changes in the time course of myocardial contraction after correcting aortic regurgitation. Ann Thorac Surg 1999; 67(1): 139–145
CrossRef Pubmed Google scholar
[5]
Jin XY, Pepper JR, Gibson DG. Effects of incoordination on left ventricular force-velocity relation in aortic stenosis. Heart 1996; 76(6): 495–501
CrossRef Pubmed Google scholar
[6]
Ito S, Pislaru C, Miranda WR, Nkomo VT, Connolly HM, Pislaru SV, Pellikka PA, Lewis BR, Carabello BA, Oh JK. Left ventricular contractility and wall stress in patients with aortic stenosis with preserved or reduced ejection fraction. JACC Cardiovasc Imaging 2020; 13(2 Pt 1): 357–369
CrossRef Pubmed Google scholar
[7]
Prihadi EA, Vollema EM, Ng ACT, Ajmone Marsan N, Bax JJ, Delgado V. Determinants and prognostic implications of left ventricular mechanical dispersion in aortic stenosis. Eur Heart J Cardiovasc Imaging 2019; 20(7): 740–748
CrossRef Pubmed Google scholar
[8]
Slimani A, Melchior J, de Meester C, Pierard S, Roy C, Amzulescu M, Bouzin C, Maes F, Pasquet A, Pouleur AC, Vancraeynest D, Gerber B, El Khoury G, Vanoverschelde JL. Relative contribution of afterload and interstitial fibrosis to myocardial function in severe aortic stenosis. JACC Cardiovasc Imaging 2020; 13(2 Pt 2): 589–600
CrossRef Pubmed Google scholar
[9]
Reichek N. Afterload and fibrosis: aortic stenosis co-conspirators. JACC Cardiovasc Imaging 2020; 13(2 Pt 2): 601–603
CrossRef Pubmed Google scholar
[10]
Hess OM, Villari B, Krayenbuehl HP. Diastolic dysfunction in aortic stenosis. Circulation 1993; 87(5 Suppl): IV73–IV76
Pubmed
[11]
Thaden JJ, Balakrishnan M, Sanchez J, Adigun R, Nkomo VT, Eleid M, Dahl J, Scott C, Pislaru S, Oh JK, Schaff H, Pellikka PA. Left ventricular filling pressure and survival following aortic valve replacement for severe aortic stenosis. Heart 2020; 106(11): 830–837
CrossRef Pubmed Google scholar
[12]
Ong G, Pibarot P, Redfors B, Weissman NJ, Jaber WA, Makkar RR, Lerakis S, Gopal D, Khalique O, Kodali SK, Thourani VH, Anwaruddin S, McAndrew T, Zhang Y, Alu MC, Douglas PS, Hahn RT. Diastolic function and clinical outcomes after transcatheter aortic valve replacement: PARTNER 2 SAPIEN 3 Registry. J Am Coll Cardiol 2020; 76(25): 2940–2951
CrossRef Pubmed Google scholar
[13]
Villari B, Sossalla S, Ciampi Q, Petruzziello B, Turina J, Schneider J, Turina M, Hess OM. Persistent diastolic dysfunction late after valve replacement in severe aortic regurgitation. Circulation 2009; 120(23): 2386–2392
CrossRef Pubmed Google scholar
[14]
Gjertsson P, Caidahl K, Farasati M, Odén A, Bech-Hanssen O. Preoperative moderate to severe diastolic dysfunction: a novel Doppler echocardiographic long-term prognostic factor in patients with severe aortic stenosis. J Thorac Cardiovasc Surg 2005; 129(4): 890–896
CrossRef Pubmed Google scholar
[15]
Lund O, Emmertsen K, Dørup I, Jensen FT, Flø C. Regression of left ventricular hypertrophy during 10 years after valve replacement for aortic stenosis is related to the preoperative risk profile. Eur Heart J 2003; 24(15): 1437–1446
CrossRef Pubmed Google scholar
[16]
Head SJ, Mokhles MM, Osnabrugge RL, Pibarot P, Mack MJ, Takkenberg JJ, Bogers AJ, Kappetein AP. The impact of prosthesis-patient mismatch on long-term survival after aortic valve replacement: a systematic review and meta-analysis of 34 observational studies comprising 27 186 patients with 133 141 patient-years. Eur Heart J 2012; 33(12): 1518–1529
CrossRef Pubmed Google scholar
[17]
Mohty D, Dumesnil JG, Echahidi N, Mathieu P, Dagenais F, Voisine P, Pibarot P. Impact of prosthesis-patient mismatch on long-term survival after aortic valve replacement: influence of age, obesity, and left ventricular dysfunction. J Am Coll Cardiol 2009; 53(1): 39–47
CrossRef Pubmed Google scholar
[18]
Jin XY, Westaby S. In vivo hemodynamic characteristics of porcine stentless aortic valves. Semin Thorac Cardiovasc Surg 2001; 13(4 Suppl 1): 67–74
Pubmed
[19]
Pillai R, Ratnatunga C, Soon JL, Kattach H, Khalil A, Jin XY. 3f prosthesis aortic cusp replacement: implantation technique and early results. Asian Cardiovasc Thorac Ann 2010; 18(1): 13–16
CrossRef Pubmed Google scholar
[20]
Jin XY, Westaby S. Aortic root geometry and stentless porcine valve competence. Semin Thorac Cardiovasc Surg 1999; 11(4 Suppl 1): 145–150
Pubmed
[21]
Liao YB, Li YJ, Jun-Li L, Zhao ZG, Wei X, Tsauo JY, Xiong TY, Xu YN, Feng Y, Chen M. Incidence, predictors and outcome of prosthesis-patient mismatch after transcatheter aortic valve replacement: a systematic review and meta-analysis. Sci Rep 2017; 7(1): 15014
CrossRef Pubmed Google scholar
[22]
Pibarot P, Weissman NJ, Stewart WJ, Hahn RT, Lindman BR, McAndrew T, Kodali SK, Mack MJ, Thourani VH, Miller DC, Svensson LG, Herrmann HC, Smith CR, Rodés-Cabau J, Webb J, Lim S, Xu K, Hueter I, Douglas PS, Leon MB. Incidence and sequelae of prosthesis-patient mismatch in transcatheter versus surgical valve replacement in high-risk patients with severe aortic stenosis: a PARTNER trial cohort—a analysis. J Am Coll Cardiol 2014; 64(13): 1323–1334
CrossRef Pubmed Google scholar
[23]
Poulin F, Yingchoncharoen T, Wilson WM, Horlick EM, Généreux P, Tuzcu EM, Stewart W, Osten MD, Woo A, Thavendiranathan P. Impact of prosthesis-patient mismatch on left ventricular myocardial mechanics after transcatheter aortic valve replacement. J Am Heart Assoc 2016; 5(2): e002866
CrossRef Pubmed Google scholar
[24]
Ngo A, Hassager C, Thyregod HGH, Søndergaard L, Olsen PS, Steinbrüchel D, Hansen PB, Kjærgaard J, Winther-Jensen M, Ihlemann N. Differences in left ventricular remodelling in patients with aortic stenosis treated with transcatheter aortic valve replacement with corevalve prostheses compared to surgery with porcine or bovine biological prostheses. Eur Heart J Cardiovasc Imaging 2018; 19(1): 39–46
CrossRef Pubmed Google scholar
[25]
Jin XY, Zhang ZM, Gibson DG, Yacoub MH, Pepper JR. Effects of valve substitute on changes in left ventricular function and hypertrophy after aortic valve replacement. Ann Thorac Surg 1996; 62(3): 683–690
CrossRef Pubmed Google scholar
[26]
Kunadian B, Vijayalakshmi K, Thornley AR, de Belder MA, Hunter S, Kendall S, Graham R, Stewart M, Thambyrajah J, Dunning J. Meta-analysis of valve hemodynamics and left ventricular mass regression for stentless versus stented aortic valves. Ann Thorac Surg 2007; 84(1): 73–78
CrossRef Pubmed Google scholar
[27]
Jin XY, Ratnatunga C. Invited commentary. Ann Thorac Surg 2007; 84(1): 78–79
CrossRef Pubmed Google scholar
[28]
Jin XY. Elucidation of cardiac physiology in aortic valve replacement: what should we know? J Heart Valve Dis 2004; 13(Suppl 1): S70–S75
Pubmed
[29]
Beach JM, Mihaljevic T, Rajeswaran J, Marwick T, Edwards ST, Nowicki ER, Thomas J, Svensson LG, Griffin B, Gillinov AM, Blackstone EH. Ventricular hypertrophy and left atrial dilatation persist and are associated with reduced survival after valve replacement for aortic stenosis. J Thorac Cardiovasc Surg 2014; 147(1): 362–369.e8PMID:23312984
CrossRef Google scholar
[30]
Gonzales H, Douglas PS, Pibarot P, Hahn RT, Khalique OK, Jaber WA, Cremer P, Weissman NJ, Asch FM, Zhang Y, Gertz ZM, Elmariah S, Clavel MA, Thourani VH, Daubert M, Alu MC, Leon MB, Lindman BR. Left ventricular hypertrophy and clinical outcomes over 5 years after TAVR: an analysis of the PARTNER trials and registries. JACC Cardiovasc Interv 2020; 13(11): 1329–1339
CrossRef Pubmed Google scholar
[31]
Chau KH, Douglas PS, Pibarot P, Hahn RT, Khalique OK, Jaber WA, Cremer P, Weissman NJ, Asch FM, Zhang Y, Gertz ZM, Elmariah S, Clavel MA, Thourani VH, Daubert M, Alu MC, Leon MB, Lindman BR. Regression of left ventricular mass after transcatheter aortic valve replacement: the PARTNER trials and registries. J Am Coll Cardiol 2020; 75(19): 2446–2458
CrossRef Pubmed Google scholar
[32]
Jin XY, Pillai R, Westaby S. Medium-term determinants of left ventricular mass index after stentless aortic valve replacement. Ann Thorac Surg 1999; 67(2): 411–416
CrossRef Pubmed Google scholar
[33]
van Dalen BM, Tzikas A, Soliman OI, Kauer F, Heuvelman HJ, Vletter WB, ten Cate FJ, Geleijnse ML. Left ventricular twist and untwist in aortic stenosis. Int J Cardiol 2011; 148(3): 319–324
CrossRef Pubmed Google scholar
[34]
Carasso S, Cohen O, Mutlak D, Adler Z, Lessick J, Aronson D, Reisner SA, Rakowski H, Bolotin G, Agmon Y. Relation of myocardial mechanics in severe aortic stenosis to left ventricular ejection fraction and response to aortic valve replacement. Am J Cardiol 2011; 107(7): 1052–1057
CrossRef Pubmed Google scholar
[35]
Meyer CG, Frick M, Lotfi S, Altiok E, Koos R, Kirschfink A, Lehrke M, Autschbach R, Hoffmann R. Regional left ventricular function after transapical vs. transfemoral transcatheter aortic valve implantation analysed by cardiac magnetic resonance feature tracking. Eur Heart J Cardiovasc Imaging 2014; 15(10): 1168–1176
CrossRef Pubmed Google scholar
[36]
Deng MD, Wei X, Zhang XL, Li XD, Liu GY, Zhu D, Guo YQ, Tang H. Changes in left ventricular function in patients with aortic regurgitation 12 months after transapical transcatheter aortic valve implantation. Int J Cardiovasc Imaging 2019; 35(1): 99–105
CrossRef Pubmed Google scholar
[37]
Ribeiro HB, Dahou A, Urena M, Carrasco JL, Mohammadi S, Doyle D, Le Ven F, Allende R, Amat-Santos I, Paradis JM, DeLarochellière R, Puri R, Abdul-Jawad Altisent O, del Trigo M, Campelo-Parada F, Pibarot P, Dumont É, Rodés-Cabau J. Myocardial injury after transaortic versus transapical transcatheter aortic valve replacement. Ann Thorac Surg 2015; 99(6): 2001–2009PMID:25863732
CrossRef Google scholar
[38]
Ribeiro HB, Nombela-Franco L, Muñoz-García AJ, Lemos PA, Amat-Santos I, Serra V, de Brito FS Jr, Abizaid A, Sarmento-Leite R, Puri R, Cheema AN, Ruel M, Nietlispach F, Maisano F, Moris C, Del Valle R, Urena M, Abdul Jawad Altisent O, Del Trigo M, Campelo-Parada F, Jimenez Quevedo P, Alonso-Briales JH, Gutiérrez H, García Del Blanco B, Perin MA, Siqueira D, Bernardi G, Dumont É, Côté M, Pibarot P, Rodés-Cabau J. Predictors and impact of myocardial injury after transcatheter aortic valve replacement: a multicenter registry. J Am Coll Cardiol 2015; 66(19): 2075–2088
CrossRef Pubmed Google scholar
[39]
Elmariah S, Fearon WF, Inglessis I, Vlahakes GJ, Lindman BR, Alu MC, Crowley A, Kodali S, Leon MB, Svensson L, Pibarot P, Hahn RT, Thourani VH, Palacios IF, Miller DC, Douglas PS, Passeri JJ; PARTNER Trial Investigators and PARTNER Publications Office. Transapical transcatheter aortic valve replacement is associated with increased cardiac mortality in patients with left ventricular dysfunction: insights from the PARTNER I trial. JACC Cardiovasc Interv 2017; 10(23): 2414–2422
CrossRef Pubmed Google scholar
[40]
Modolo R, Chang CC, Abdelghani M, Kawashima H, Ono M, Tateishi H, Miyazaki Y, Pighi M, Wykrzykowska JJ, de Winter RJ, Ruck A, Chieffo A, van Mourik MS, Yamaji K, Richardt G, de Brito FS Jr, Lemos PA, Al-Kassou B, Piazza N, Tchetche D, Sinning JM, Abdel-Wahab M, Soliman O, Søndergaard L, Mylotte D, Onuma Y, Van Mieghem NM, Serruys PW. Quantitative assessment of acute regurgitation following TAVR: a multicenter pooled analysis of 2,258 valves. JACC Cardiovasc Interv 2020; 13(11): 1303–1311
CrossRef Pubmed Google scholar
[41]
Rampat R, Khawaja MZ, Byrne J, MacCarthy P, Blackman DJ, Krishnamurthy A, Gunarathne A, Kovac J, Banning A, Kharbanda R, Firoozi S, Brecker S, Redwood S, Bapat V, Mullen M, Aggarwal S, Manoharan G, Spence MS, Khogali S, Dooley M, Cockburn J, de Belder A, Trivedi U, Hildick-Smith D. Transcatheter aortic valve replacement using the repositionable LOTUS valve: United Kingdom experience. JACC Cardiovasc Interv 2016; 9(4): 367–372
CrossRef Pubmed Google scholar
[42]
Kalra SS, Firoozi S, Yeh J, Blackman DJ, Rashid S, Davies S, Moat N, Dalby M, Kabir T, Khogali SS, Anderson RA, Groves PH, Mylotte D, Hildick-Smith D, Rampat R, Kovac J, Gunarathne A, Laborde JC, Brecker SJ. Initial experience of a second-generation self-expanding transcatheter aortic valve: the UK & Ireland Evolut R Implanters’ Registry. JACC Cardiovasc Interv 2017; 10(3): 276–282
CrossRef Pubmed Google scholar
[43]
Thiele H, Kurz T, Feistritzer HJ, Stachel G, Hartung P, Eitel I, Marquetand C, Nef H, Doerr O, Lauten A, Landmesser U, Abdel-Wahab M, Sandri M, Holzhey D, Borger M, Ince H, Öner A, Meyer-Saraei R, Wienbergen H, Fach A, Frey N, König IR, Vonthein R, Rückert Y, Funkat AK, de Waha-Thiele S, Desch S. Comparison of newer generation self-expandable vs. balloon-expandable valves in transcatheter aortic valve implantation: the randomized SOLVE-TAVI trial. Eur Heart J 2020; 41(20): 1890–1899
CrossRef Pubmed Google scholar
[44]
Poulin F, Carasso S, Horlick EM, Rakowski H, Lim KD, Finn H, Feindel CM, Greutmann M, Osten MD, Cusimano RJ, Woo A. Recovery of left ventricular mechanics after transcatheter aortic valve implantation: effects of baseline ventricular function and postprocedural aortic regurgitation. J Am Soc Echocardiogr 2014; 27(11): 1133–1142
CrossRef Pubmed Google scholar
[45]
Kodali SK, Williams MR, Smith CR, Svensson LG, Webb JG, Makkar RR, Fontana GP, Dewey TM, Thourani VH, Pichard AD, Fischbein M, Szeto WY, Lim S, Greason KL, Teirstein PS, Malaisrie SC, Douglas PS, Hahn RT, Whisenant B, Zajarias A, Wang D, Akin JJ, Anderson WN, Leon MB; the PARTNER Trial Investigators. Two-year outcomes after transcatheter or surgical aortic-valve replacement. N Engl J Med 2012; 366(18): 1686–1695
CrossRef Pubmed Google scholar
[46]
Yoshijima N, Yanagisawa R, Hase H, Tanaka M, Tsuruta H, Shimizu H, Fukuda K, Naganuma T, Mizutani K, Araki M, Tada N, Yamanaka F, Shirai S, Tabata M, Ueno H, Takagi K, Higashimori A, Watanabe Y, Yamamoto M, Hayashida K; the OCEAN‐TAVI investigators. Update on the clinical impact of mild aortic regurgitation after transcatheter aortic valve implantation: insights from the Japanese multicenter OCEAN-TAVI registry. Catheter Cardiovasc Interv 2020; 95(1): 35–44
CrossRef Pubmed Google scholar
[47]
Greason KL, Lahr BD, Stulak JM, Cha YM, Rea RF, Schaff HV, Dearani JA. Long-term mortality effect of early pacemaker implantation after surgical aortic valve replacement. Ann Thorac Surg 2017; 104(4): 1259–1264
CrossRef Pubmed Google scholar
[48]
Poels TT, Houthuizen P, Van Garsse LA, Soliman Hamad MA, Maessen JG, Prinzen FW, Van Straten AH. Frequency and prognosis of new bundle branch block induced by surgical aortic valve replacement. Eur J Cardiothorac Surg 2015; 47(2): e47–e53
CrossRef Pubmed Google scholar
[49]
Hwang YM, Kim J, Lee JH, Kim M, Hwang J, Kim JB, Jung SH, Choo SJ, Nam GB, Choi KJ, Chung CH, Lee JW, Kim YH. Conduction disturbance after isolated surgical aortic valve replacement in degenerative aortic stenosis. J Thorac Cardiovasc Surg 2017; 154(5): 1556–1565.e1
CrossRef Pubmed Google scholar
[50]
Romano MA, Koeckert M, Mumtaz MA, Slachman FN, Patel HJ, Chitwood WR Jr, Barnhart GR, Grossi EA; the TRANSFORM Trial Investigators. Permanent pacemaker implantation after rapid deployment aortic valve replacement. Ann Thorac Surg 2018; 106(3): 685–690
CrossRef Pubmed Google scholar
[51]
Sohn SH, Jang MJ, Hwang HY, Kim KH. Rapid deployment or sutureless versus conventional bioprosthetic aortic valve replacement: a meta-analysis. J Thorac Cardiovasc Surg 2018; 155(6): 2402–2412.e5
CrossRef Pubmed Google scholar
[52]
Coti I, Schukro C, Drevinja F, Haberl T, Kaider A, Kocher A, Laufer G, Andreas M. Conduction disturbances following surgical aortic valve replacement with a rapid-deployment bioprosthesis. J Thorac Cardiovasc Surg. 2020; [Epub ahead of print] doi: 10.1016/j.jtcvs.2020.01.083
CrossRef Google scholar
[53]
Lam KY, Akca F, Verberkmoes NJ, van Dijk C, Claessens A, Soliman Hamad MA, van Straten AHM. Conduction disorders and impact on survival after sutureless aortic valve replacement compared to conventional stented bioprostheses. Eur J Cardiothorac Surg 2019; 55(6): 1168–1173
CrossRef Pubmed Google scholar
[54]
Dizon JM, Nazif TM, Hess PL, Biviano A, Garan H, Douglas PS, Kapadia S, Babaliaros V, Herrmann HC, Szeto WY, Jilaihawi H, Fearon WF, Tuzcu EM, Pichard AD, Makkar R, Williams M, Hahn RT, Xu K, Smith CR, Leon MB, Kodali SK; the PARTNER Publications Office. Chronic pacing and adverse outcomes after transcatheter aortic valve implantation. Heart 2015; 101(20): 1665–1671
CrossRef Pubmed Google scholar
[55]
Klaeboe LG, Brekke PH, Lie ØH, Aaberge L, Haugaa KH, Edvardsen T. Classical mechanical dyssynchrony is rare in transcatheter aortic valve implantation-induced left bundle branch block. Eur Heart J Cardiovasc Imaging 2019; 20(3): 271–278
CrossRef Pubmed Google scholar
[56]
Calle S, Coeman M, Desmet K, De Backer T, De Buyzere M, De Pooter J, Timmermans F. Septal flash is a prevalent and early dyssynchrony marker in transcatheter aortic valve replacement-induced left bundle branch block. Int J Cardiovasc Imaging 2020; 36(6): 1041–1050
CrossRef Pubmed Google scholar
[57]
Klaeboe LG, Brekke PH, Aaberge L, Haugaa K, Edvardsen T. Impact of transcatheter aortic valve implantation on mechanical dispersion. Open Heart 2020; 7(1): e001199
CrossRef Pubmed Google scholar
[58]
Faroux L, Chen S, Muntané-Carol G, Regueiro A, Philippon F, Sondergaard L, Jørgensen TH, Lopez-Aguilera J, Kodali S, Leon M, Nazif T, Rodés-Cabau J. Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis. Eur Heart J 2020; 41(29): 2771–2781
CrossRef Pubmed Google scholar
[59]
Jørgensen TH, De Backer O, Gerds TA, Bieliauskas G, Svendsen JH, Søndergaard L. Mortality and heart failure hospitalization in patients with conduction abnormalities after transcatheter aortic valve replacement. JACC Cardiovasc Interv 2019; 12(1): 52–61
CrossRef Pubmed Google scholar
[60]
Muntané-Carol G, Guimaraes L, Ferreira-Neto AN, Wintzer-Wehekind J, Junquera L, Del Val D, Faroux L, Philippon F, Rodés-Cabau J. How does new-onset left bundle branch block affect the outcomes of transcatheter aortic valve repair? Expert Rev Med Devices 2019; 16(7): 589–602
CrossRef Pubmed Google scholar
[61]
Moriña-Vázquez P, Moraleda-Salas MT, Manovel-Sánchez AJ, Fernández-Gómez JM, Arce-Léon Á, Venegas-Gamero J, Barba-Pichardo R. Early improvement of left ventricular ejection fraction by cardiac resynchronization through His bundle pacing in patients with heart failure. Europace 2020; 22(1): 125–132
Pubmed
[62]
Sharma PS, Subzposh FA, Ellenbogen KA, Vijayaraman P. Permanent His-bundle pacing in patients with prosthetic cardiac valves. Heart Rhythm 2017; 14(1): 59–64
CrossRef Pubmed Google scholar
[63]
De Pooter J, Gauthey A, Calle S, Noel A, Kefer J, Marchandise S, Coeman M, Philipsen T, Kayaert P, Gheeraert P, Jordaens L, Timmermans F, Van Heuverswyn F, Bordachar P, le Polain de Waroux JB. Feasibility of His-bundle pacing in patients with conduction disorders following transcatheter aortic valve replacement. J Cardiovasc Electrophysiol 2020; 31(4): 813–821
CrossRef Pubmed Google scholar
[64]
Vijayaraman P, Cano Ó, Koruth JS, Subzposh FA, Nanda S, Pugliese J, Ravi V, Naperkowski A, Sharma PS. His-Purkinje conduction system pacing following transcatheter aortic valve replacement: feasibility and safety. JACC Clin Electrophysiol 2020; 6(6): 649–657
CrossRef Pubmed Google scholar
[65]
Knöll R, Iaccarino G, Tarone G, Hilfiker-Kleiner D, Bauersachs J, Leite-Moreira AF, Sugden PH, Balligand JL. Towards a re-definition of ‘cardiac hypertrophy’ through a rational characterization of left ventricular phenotypes: a position paper of the Working Group ‘Myocardial Function’ of the ESC. Eur J Heart Fail 2011; 13(8): 811–819
CrossRef Pubmed Google scholar
[66]
Olivetti G, Melissari M, Capasso JM, Anversa P. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ Res 1991; 68(6): 1560–1568
CrossRef Pubmed Google scholar
[67]
van Straten AH, Soliman Hamad MA, Peels KC, van den Broek KC, ter Woorst JF, Elenbaas TW, van Dantzig JM. Increased septum wall thickness in patients undergoing aortic valve replacement predicts worse late survival. Ann Thorac Surg 2012; 94(1): 66–71
CrossRef Pubmed Google scholar
[68]
Puls M, Beuthner BE, Topci R, Vogelgesang A, Bleckmann A, Sitte M, Lange T, Backhaus SJ, Schuster A, Seidler T, Kutschka I, Toischer K, Zeisberg EM, Jacobshagen C, Hasenfuß G. Impact of myocardial fibrosis on left ventricular remodelling, recovery, and outcome after transcatheter aortic valve implantation in different haemodynamic subtypes of severe aortic stenosis. Eur Heart J 2020; 41(20): 1903–1914
CrossRef Pubmed Google scholar
[69]
Weidemann F, Herrmann S, Störk S, Niemann M, Frantz S, Lange V, Beer M, Gattenlöhner S, Voelker W, Ertl G, Strotmann JM. Impact of myocardial fibrosis in patients with symptomatic severe aortic stenosis. Circulation 2009; 120(7): 577–584
CrossRef Pubmed Google scholar
[70]
Herrmann S, Fries B, Salinger T, Liu D, Hu K, Gensler D, Strotmann J, Christa M, Beer M, Gattenlöhner S, Störk S, Voelker W, Bening C, Lorenz K, Leyh R, Frantz S, Ertl G, Weidemann F, Nordbeck P. Myocardial fibrosis predicts 10-year survival in patients undergoing aortic valve replacement. Circ Cardiovasc Imaging 2018; 11(8): e007131
CrossRef Pubmed Google scholar
[71]
Hwang IC, Kim HK, Park JB, Park EA, Lee W, Lee SP, Kim YJ, Sohn DW, Oh JK. Aortic valve replacement-induced changes in native T1 are related to prognosis in severe aortic stenosis: T1 mapping cardiac magnetic resonance imaging study. Eur Heart J Cardiovasc Imaging 2020; 21(6): 653–663
CrossRef Pubmed Google scholar
[72]
Chin CW, Messika-Zeitoun D, Shah AS, Lefevre G, Bailleul S, Yeung EN, Koo M, Mirsadraee S, Mathieu T, Semple SI, Mills NL, Vahanian A, Newby DE, Dweck MR. A clinical risk score of myocardial fibrosis predicts adverse outcomes in aortic stenosis. Eur Heart J 2016; 37(8): 713–723
CrossRef Pubmed Google scholar
[73]
Kearney LG, Lu K, Ord M, Patel SK, Profitis K, Matalanis G, Burrell LM, Srivastava PM. Global longitudinal strain is a strong independent predictor of all-cause mortality in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 2012; 13(10): 827–833
CrossRef Pubmed Google scholar
[74]
Dulgheru R, Magne J, Davin L, Nchimi A, Oury C, Pierard LA, Lancellotti P. Left ventricular regional function and maximal exercise capacity in aortic stenosis. Eur Heart J Cardiovasc Imaging 2016; 17(2): 217–224
CrossRef Pubmed Google scholar
[75]
Levy-Neuman S, Meledin V, Gandelman G, Goland S, Zilberman L, Edri O, Shneider N, Abaeh N, Bdolah-Abram T, George J, Shimoni S. The association between longitudinal strain at rest and stress and outcome in asymptomatic patients with moderate and severe aortic stenosis. J Am Soc Echocardiogr 2019; 32(6): 722–729
CrossRef Pubmed Google scholar
[76]
Zhu D, Ito S, Miranda WR, Nkomo VT, Pislaru SV, Villarraga HR, Pellikka PA, Crusan DJ, Oh JK. Left ventricular global longitudinal strain is associated with long-term outcomes in moderate aortic stenosis. Circ Cardiovasc Imaging 2020; 13(4): e009958
CrossRef Pubmed Google scholar
[77]
Eleid MF, Sorajja P, Michelena HI, Malouf JF, Scott CG, Pellikka PA. Flow-gradient patterns in severe aortic stenosis with preserved ejection fraction: clinical characteristics and predictors of survival. Circulation 2013; 128(16): 1781–1789
CrossRef Pubmed Google scholar
[78]
Zheng Q, Djohan AH, Lim E, Ding ZP, Ling LH, Shi L, Chan ES, Chin CWL. Effects of aortic valve replacement on severe aortic stenosis and preserved systolic function: systematic review and network meta-analysis. Sci Rep 2017; 7(1): 5092
CrossRef Pubmed Google scholar
[79]
Altes A, Ringle A, Bohbot Y, Bouchot O, Appert L, Guerbaai RA, Gun M, Ennezat PV, Tribouilloy C, Maréchaux S. Clinical significance of energy loss index in patients with low-gradient severe aortic stenosis and preserved ejection fraction. Eur Heart J Cardiovasc Imaging 2020; 21(6): 608–615
CrossRef Pubmed Google scholar
[80]
Hachicha Z, Dumesnil JG, Pibarot P. Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J Am Coll Cardiol 2009; 54(11): 1003–1011
CrossRef Pubmed Google scholar
[81]
Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P. Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 2007; 115(22): 2856–2864
CrossRef Pubmed Google scholar
[82]
Cramariuc D, Cioffi G, Rieck AE, Devereux RB, Staal EM, Ray S, Wachtell K, Gerdts E. Low-flow aortic stenosis in asymptomatic patients: valvular-arterial impedance and systolic function from the SEAS Substudy. JACC Cardiovasc Imaging 2009; 2(4): 390–399
CrossRef Pubmed Google scholar
[83]
Nuis RJ, Goudzwaard JA, de Ronde-Tillmans MJAG, Kroon H, Ooms JF, van Wiechen MP, Geleijnse ML, Zijlstra F, Daemen J, Van Mieghem NM, Mattace-Raso FUS, Lenzen MJ, de Jaegere PPT. Impact of valvulo-arterial impedance on long-term quality of life and exercise performance after transcatheter aortic valve replacement. Circ Cardiovasc Interv 2020; 13(1): e008372
CrossRef Pubmed Google scholar
[84]
Kang DH, Park SJ, Lee SA, Lee S, Kim DH, Kim HK, Yun SC, Hong GR, Song JM, Chung CH, Song JK, Lee JW, Park SW. Early surgery or conservative care for asymptomatic aortic stenosis. N Engl J Med 2020; 382(2): 111–119
CrossRef Pubmed Google scholar
[85]
Lancellotti P, Vannan MA. Timing of intervention in aortic stenosis. N Engl J Med 2020; 382(2): 191–193
CrossRef Pubmed Google scholar
[86]
Nadir MA, Wei L, Elder DH, Libianto R, Lim TK, Pauriah M, Pringle SD, Doney AD, Choy AM, Struthers AD, Lang CC. Impact of renin-angiotensin system blockade therapy on outcome in aortic stenosis. J Am Coll Cardiol 2011; 58(6): 570–576
CrossRef Pubmed Google scholar
[87]
Bull S, Loudon M, Francis JM, Joseph J, Gerry S, Karamitsos TD, Prendergast BD, Banning AP, Neubauer S, Myerson SG. A prospective, double-blind, randomized controlled trial of the angiotensin-converting enzyme inhibitor ramipril in aortic stenosis (RIAS trial). Eur Heart J Cardiovasc Imaging 2015; 16(8): 834–841
CrossRef Pubmed Google scholar
[88]
Ding Q, Zhang Z, Liu H, Nie H, Berguson M, Goldhammer JE, Young N, Boyd D, Morris R, Sun J. Perioperative use of renin-angiotensin system inhibitors and outcomes in patients undergoing cardiac surgery. Nat Commun 2019; 10(1): 4202
CrossRef Pubmed Google scholar
[89]
Dahl JS, Videbaek L, Poulsen MK, Pellikka PA, Veien K, Andersen LI, Haghfelt T, Møller JE. Effect of candesartan treatment on left ventricular remodeling after aortic valve replacement for aortic stenosis. Am J Cardiol 2010; 106(5): 713–719
CrossRef Pubmed Google scholar
[90]
Benedetto U, Melina G, Refice S, di Bartolomeo R, Roscitano A, Angeloni E, Sinatra R. Dual renin-angiotensin system blockade for patients with prosthesis-patient mismatch. Ann Thorac Surg 2010; 90(6): 1899–1903
CrossRef Pubmed Google scholar
[91]
Goel SS, Aksoy O, Gupta S, Houghtaling PL, Tuzcu EM, Marwick T, Mihaljevic T, Svensson L, Blackstone EH, Griffin BP, Stewart WJ, Barzilai B, Menon V, Kapadia SR. Renin-angiotensin system blockade therapy after surgical aortic valve replacement for severe aortic stenosis: a cohort study. Ann Intern Med 2014; 161(10): 699–710
CrossRef Pubmed Google scholar
[92]
Magne J, Guinot B, Le Guyader A, Bégot E, Marsaud JP, Mohty D, Aboyans V. Relation between renin-angiotensin system blockers and survival following isolated aortic valve replacement for aortic stenosis. Am J Cardiol 2018; 121(4): 455–460
CrossRef Pubmed Google scholar
[93]
Ochiai T, Saito S, Yamanaka F, Shishido K, Tanaka Y, Yamabe T, Shirai S, Tada N, Araki M, Naganuma T, Watanabe Y, Yamamoto M, Hayashida K. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation. Heart 2018; 104(8): 644–651
CrossRef Pubmed Google scholar
[94]
Inohara T, Manandhar P, Kosinski AS, Matsouaka RA, Kohsaka S, Mentz RJ, Thourani VH, Carroll JD, Kirtane AJ, Bavaria JE, Cohen DJ, Kiefer TL, Gaca JG, Kapadia SR, Peterson ED, Vemulapalli S. Association of renin-angiotensin inhibitor treatment with mortality and heart failure readmission in patients with transcatheter aortic valve replacement. JAMA 2018; 320(21): 2231–2241
CrossRef Pubmed Google scholar
[95]
Rodriguez-Gabella T, Catalá P, Muñoz-García AJ, Nombela-Franco L, Del Valle R, Gutiérrez E, Regueiro A, Jimenez-Diaz VA, Ribeiro HB, Rivero F, Fernandez-Diaz JA, Pibarot P, Alonso-Briales JH, Tirado-Conte G, Moris C, Diez Del Hoyo F, Jiménez-Britez G, Zaderenko N, Alfonso F, Gómez I, Carrasco-Moraleja M, Rodés-Cabau J, San Román Calvar JA, Amat-Santos IJ. Renin-angiotensin system inhibition following transcatheter aortic valve replacement. J Am Coll Cardiol 2019; 74(5): 631–641
CrossRef Pubmed Google scholar
[96]
Biviano AB, Nazif T, Dizon J, Garan H, Fleitman J, Hassan D, Kapadia S, Babaliaros V, Xu K, Parvataneni R, Rodes-Cabau J, Szeto WY, Fearon WF, Dvir D, Dewey T, Williams M, Mack MJ, Webb JG, Miller DC, Smith CR, Leon MB, Kodali S. Atrial fibrillation is associated with increased mortality in patients undergoing transcatheter aortic valve replacement: insights from the placement of aortic transcatheter valve (PARTNER) trial. Circ Cardiovasc Interv 2016; 9(1): e002766
CrossRef Pubmed Google scholar
[97]
Mentias A, Saad M, Girotra S, Desai M, Elbadawi A, Briasoulis A, Alvarez P, Alqasrawi M, Giudici M, Panaich S, Horwitz PA, Jneid H, Kapadia S, Vaughan Sarrazin M. Impact of pre-existing and new-onset atrial fibrillation on outcomes after transcatheter aortic valve replacement. JACC Cardiovasc Interv 2019; 12(21): 2119–2129
CrossRef Pubmed Google scholar
[98]
Gaudino M, Alessandrini F, Glieca F, Luciani N, Cellini C, Pragliola C, Morelli M, Canosa C, Nasso G, Possati G. Survival after aortic valve replacement for aortic stenosis: does left ventricular mass regression have a clinical correlate? Eur Heart J 2005; 26(1): 51–57
CrossRef Pubmed Google scholar
[99]
Westaby S, Jin XY, Katsumata T, Arifi A, Braidley P. Valve replacement with a stentless bioprosthesis: versatility of the porcine aortic root. J Thorac Cardiovasc Surg 1998; 116(3): 477–484
CrossRef Pubmed Google scholar
[100]
Imanaka K, Kohmoto O, Nishimura S, Yokote Y, Kyo S. Impact of postoperative blood pressure control on regression of left ventricular mass following valve replacement for aortic stenosis. Eur J Cardiothorac Surg 2005; 27(6): 994–999
CrossRef Pubmed Google scholar
[101]
Lindman BR, Goel K, Bermejo J, Beckman J, O’Leary J, Barker CM, Kaiser C, Cavalcante JL, Elmariah S, Huang J, Hickey GL, Adams DH, Popma JJ, Reardon MJ. Lower blood pressure after transcatheter or surgical aortic valve replacement is associated with increased mortality. J Am Heart Assoc 2019; 8(21): e014020
CrossRef Pubmed Google scholar
[102]
Mack MJ, Leon MB, Thourani VH, Makkar R, Kodali SK, Russo M, Kapadia SR, Malaisrie SC, Cohen DJ, Pibarot P, Leipsic J, Hahn RT, Blanke P, Williams MR, McCabe JM, Brown DL, Babaliaros V, Goldman S, Szeto WY, Genereux P, Pershad A, Pocock SJ, Alu MC, Webb JG, Smith CR; the PARTNER 3 Investigators. Transcatheter aortic-valve replacement with a balloon-expandable valve in low-risk patients. N Engl J Med 2019; 380(18): 1695–1705
CrossRef Pubmed Google scholar
[103]
Popma JJ, Deeb GM, Yakubov SJ, Mumtaz M, Gada H, O’Hair D, Bajwa T, Heiser JC, Merhi W, Kleiman NS, Askew J, Sorajja P, Rovin J, Chetcuti SJ, Adams DH, Teirstein PS, Zorn GL 3rd, Forrest JK, Tchétché D, Resar J, Walton A, Piazza N, Ramlawi B, Robinson N, Petrossian G, Gleason TG, Oh JK, Boulware MJ, Qiao H, Mugglin AS, Reardon MJ; the Evolut Low Risk Trial Investigators. Transcatheter aortic-valve replacement with a self-expanding valve in low-risk patients. N Engl J Med 2019; 380(18): 1706–1715
CrossRef Pubmed Google scholar
[104]
Blackman DJ, Saraf S, MacCarthy PA, Myat A, Anderson SG, Malkin CJ, Cunnington MS, Somers K, Brennan P, Manoharan G, Parker J, Aldalati O, Brecker SJ, Dowling C, Hoole SP, Dorman S, Mullen M, Kennon S, Jerrum M, Chandrala P, Roberts DH, Tay J, Doshi SN, Ludman PF, Fairbairn TA, Crowe J, Levy RD, Banning AP, Ruparelia N, Spence MS, Hildick-Smith D. Long-term durability of transcatheter aortic valve prostheses. J Am Coll Cardiol 2019; 73(5): 537–545
CrossRef Pubmed Google scholar
[105]
Søndergaard L, Ihlemann N, Capodanno D, Jørgensen TH, Nissen H, Kjeldsen BJ, Chang Y, Steinbrüchel DA, Olsen PS, Petronio AS, Thyregod HGH. Durability of transcatheter and surgical bioprosthetic aortic valves in patients at lower surgical risk. J Am Coll Cardiol 2019; 73(5): 546–553PMID:30732707
CrossRef Google scholar
[106]
Ochiai T, Chakravarty T, Yoon SH, Kaewkes D, Flint N, Patel V, Mahani S, Tiwana R, Sekhon N, Nakamura M, Cheng W, Makkar R. Coronary access after TAVR. JACC Cardiovasc Interv 2020; 13(6): 693–705
CrossRef Pubmed Google scholar
[107]
Buzzatti N, Romano V, De Backer O, Soendergaard L, Rosseel L, Maurovich-Horvat P, Karady J, Merkely B, Ruggeri S, Prendergast B, De Bonis M, Colombo A, Montorfano M, Latib A. Coronary access after repeated transcatheter aortic valve implantation: a glimpse into the future. JACC Cardiovasc Imaging 2020; 13(2 Pt 1): 508–515
CrossRef Pubmed Google scholar
[108]
Nai Fovino L, Scotti A, Massussi M, Cardaioli F, Rodinò G, Matsuda Y, Pavei A, Masiero G, Napodano M, Fraccaro C, Fabris T, Tarantini G. Coronary angiography after transcatheter aortic valve replacement (TAVR) to evaluate the risk of coronary access impairment after TAVR-in-TAVR. J Am Heart Assoc 2020; 9(13): e016446PMID: 32578484
CrossRef Google scholar
[109]
Nalluri N, Atti V, Munir AB, Karam B, Patel NJ, Kumar V, Vemula P, Edla S, Asti D, Paturu A, Gayam S, Spagnola J, Barsoum E, Maniatis GA, Tamburrino F, Kandov R, Lafferty J, Kliger C. Valve in valve transcatheter aortic valve implantation (ViV-TAVI) versus redo-Surgical aortic valve replacement (redo-SAVR): a systematic review and meta-analysis. J Interv Cardiol 2018; 31(5): 661–671PMID: 29781182
CrossRef Google scholar
[110]
Fukuhara S, Brescia AA, Deeb GM. Surgical explantation of transcatheter aortic bioprostheses: an analysis from the Society of Thoracic Surgeons Database. Circulation 2020; 142(23): 2285–2287PMID: 33284653
CrossRef Google scholar
[111]
D’Ascenzo F, Salizzoni S, Saglietto A, Cortese M, Latib A, Franzone A, Barbanti M, Nietlispach F, Holy EW, Burriesci G, De Paoli A, Fonio P, Atzeni F, Moretti C, Perl L, D’Amico M, Rinaldi M, Conrotto F. Incidence, predictors and cerebrovascular consequences of leaflet thrombosis after transcatheter aortic valve implantation: a systematic review and meta-analysis. Eur J Cardiothorac Surg 2019; 56(3): 488–494
CrossRef Pubmed Google scholar
[112]
Rheude T, Pellegrini C, Stortecky S, Marwan M, Xhepa E, Ammon F, Pilgrim T, Mayr NP, Husser O, Achenbach S, Windecker S, Cassese S, Joner M. Meta-analysis of bioprosthetic valve thrombosis after transcatheter aortic valve implantation. Am J Cardiol 2021; 138: 92–99
CrossRef Pubmed Google scholar
[113]
Midha PA, Raghav V, Sharma R, Condado JF, Okafor IU, Rami T, Kumar G, Thourani VH, Jilaihawi H, Babaliaros V, Makkar RR, Yoganathan AP. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neosinus. Circulation 2017; 136(17): 1598–1609
CrossRef Pubmed Google scholar

Acknowledgements

The authors received financial support for the research work in cardiac physiology and aortic valve surgery by research grant from Garfield Weston Trust, London (to Xu Yu Jin and John R Pepper) and from Oxford Hospital Charity, Oxford (to Xu Yu Jin).

Compliance with ethics guideline

Xu Yu Jin, Mario Petrou, Jiang Ting Hu, Ed D Nicol, and John R Pepper declared no potential conflict of interests with respect to the research, authorship and/or publication of this article. This manuscript is a review article and does not involve a research protocols requiring approval by the relevant institutional review board of ethics committee.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2021 The Author(s) 2021. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(3822 KB)

Accesses

Citations

Detail

Sections
Recommended

/