Clinical significance of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression in t(8;21) acute myeloid leukemia
Xueping Li, Yuting Dai, Bing Chen, Jinyan Huang, Saijuan Chen, Lu Jiang
Clinical significance of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression in t(8;21) acute myeloid leukemia
t(8;21)(q22;q22) acute myeloid leukemia (AML) is a highly heterogeneous hematological malignancy with a high relapse rate in China. Two leukemic myeloblast populations (CD34+CD117dim and CD34+CD117bri) were previously identified in t(8;21) AML, and CD34+CD117dim cell proportion was determined as an independent factor for this disease outcome. Here, we examined the impact of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression on t(8;21) AML clinical prognosis. In this study, 85 patients with t(8;21) AML were enrolled. The mRNA expression levels of CD34+CD117dim-associated genes (LGALS1, EMP3, and CRIP1) and CD34+CD117bri-associated genes (TRH, PLAC8, and IGLL1) were measured using quantitative reverse transcription PCR. Associations between gene expression and clinical outcomes were determined using Cox regression models. Results showed that patients with high LGALS1, EMP3, or CRIP1 expression had significantly inferior overall survival (OS), whereas those with high TRH or PLAC8 expression showed relatively favorable prognosis. Univariate analysis revealed that CD19, CD34+CD117dim proportion, KIT mutation, minimal residual disease (MRD), and expression levels of LGALS1, EMP3, CRIP1, TRH and PLAC8 were associated with OS. Multivariate analysis indicated that KIT mutation, MRD and CRIP1 and TRH expression levels were independent prognostic variables for OS. Identifying the clinical relevance of CD34+CD117dim/CD34+CD117bri myeloblast-associated gene expression may provide new clinically prognostic markers for t(8;21) AML.
t(8 / 21)(q22 / q22) AML / CD34+CD117dim/ CD34+CD117bri cell population / gene expression / prognosis
[1] |
Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med 2015; 373(12): 1136–1152
CrossRef
Pubmed
Google scholar
|
[2] |
Wang YY, Zhou GB, Yin T, Chen B, Shi JY, Liang WX, Jin XL, You JH, Yang G, Shen ZX, Chen J, Xiong SM, Chen GQ, Xu F, Liu YW, Chen Z, Chen SJ. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc Natl Acad Sci USA 2005; 102(4): 1104–1109
CrossRef
Pubmed
Google scholar
|
[3] |
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, Levine RL, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz M, Sierra J, Tallman MS, Tien HF, Wei AH, Löwenberg B, Bloomfield CD. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017; 129(4): 424–447
CrossRef
Pubmed
Google scholar
|
[4] |
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, Van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O’Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Döhner K, Schlenk RF, Döhner H, Campbell PJ. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374(23): 2209–2221
CrossRef
Pubmed
Google scholar
|
[5] |
Faber ZJ, Chen X, Gedman AL, Boggs K, Cheng J, Ma J, Radtke I, Chao JR, Walsh MP, Song G, Andersson AK, Dang J, Dong L, Liu Y, Huether R, Cai Z, Mulder H, Wu G, Edmonson M, Rusch M, Qu C, Li Y, Vadodaria B, Wang J, Hedlund E, Cao X, Yergeau D, Nakitandwe J, Pounds SB, Shurtleff S, Fulton RS, Fulton LL, Easton J, Parganas E, Pui CH, Rubnitz JE, Ding L, Mardis ER, Wilson RK, Gruber TA, Mullighan CG, Schlenk RF, Paschka P, Döhner K, Döhner H, Bullinger L, Zhang J, Klco JM, Downing JR. The genomic landscape of core-binding factor acute myeloid leukemias. Nat Genet 2016; 48(12): 1551–1556
CrossRef
Pubmed
Google scholar
|
[6] |
Yushu H, Shougeng B, Zhijian X, Yingchang M, Chao HZ. Acute myeloid leukemia M2b. Haematologica 1999; 84(3): 193–194
Pubmed
|
[7] |
Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK; the National Cancer Research Institute Adult Leukaemia Working Group. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 2010; 116(3): 354–365
CrossRef
Pubmed
Google scholar
|
[8] |
Jiang L, Li XP, Dai YT, Chen B, Weng XQ, Xiong SM, Zhang M, Huang JY, Chen Z, Chen SJ. Multidimensional study of the heterogeneity of leukemia cells in t(8;21) acute myelogenous leukemia identifies the subtype with poor outcome. Proc Natl Acad Sci USA 2020; 117(33): 20117–20126
CrossRef
Pubmed
Google scholar
|
[9] |
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
CrossRef
Pubmed
Google scholar
|
[10] |
The Cancer Genome Atlas Research Network . Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368(22): 2059–2074
CrossRef
Pubmed
Google scholar
|
[11] |
Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM, Castiglioni I, Ceccarelli M, Bontempi G, Noushmehr H. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 2016; 44(8): e71
CrossRef
Pubmed
Google scholar
|
[12] |
Zhu HH, Zhang XH, Qin YZ, Liu DH, Jiang H, Chen H, Jiang Q, Xu LP, Lu J, Han W, Bao L, Wang Y, Chen YH, Wang JZ, Wang FR, Lai YY, Chai JY, Wang LR, Liu YR, Liu KY, Jiang B, Huang XJ. MRD-directed risk stratification treatment may improve outcomes of t(8;21) AML in the first complete remission: results from the AML05 multicenter trial. Blood 2013; 121(20): 4056–4062
CrossRef
Pubmed
Google scholar
|
[13] |
Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W. New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 2003; 102(8): 2746–2755
CrossRef
Pubmed
Google scholar
|
[14] |
Leroy H, de Botton S, Grardel-Duflos N, Darre S, Leleu X, Roumier C, Morschhauser F, Lai JL, Bauters F, Fenaux P, Preudhomme C. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia 2005; 19(3): 367–372
CrossRef
Pubmed
Google scholar
|
[15] |
Gale RE, Hills R, Pizzey AR, Kottaridis PD, Swirsky D, Gilkes AF, Nugent E, Mills KI, Wheatley K, Solomon E, Burnett AK, Linch DC, Grimwade D; the NCRI Adult Leukaemia Working Party. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood 2005; 106(12): 3768–3776
CrossRef
Pubmed
Google scholar
|
[16] |
Noguera NI, Breccia M, Divona M, Diverio D, Costa V, De Santis S, Avvisati G, Pinazzi MB, Petti MC, Mandelli F, Lo Coco F. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia 2002; 16(11): 2185–2189
CrossRef
Pubmed
Google scholar
|
[17] |
Kuchenbauer F, Schoch C, Kern W, Hiddemann W, Haferlach T, Schnittger S. Impact of FLT3 mutations and promyelocytic leukaemia-breakpoint on clinical characteristics and prognosis in acute promyelocytic leukaemia. Br J Haematol 2005; 130(2): 196–202
CrossRef
Pubmed
Google scholar
|
[18] |
Jiao B, Wu CF, Liang Y, Chen HM, Xiong SM, Chen B, Shi JY, Wang YY, Wang JH, Chen Y, Li JM, Gu LJ, Tang JY, Shen ZX, Gu BW, Zhao WL, Chen Z, Chen SJ. AML1-ETO9a is correlated with C-KIT overexpression/mutations and indicates poor disease outcome in t(8;21) acute myeloid leukemia-M2. Leukemia 2009; 23(9): 1598–1604
CrossRef
Pubmed
Google scholar
|
[19] |
Willekens C, Blanchet O, Renneville A, Cornillet-Lefebvre P, Pautas C, Guieze R, Ifrah N, Dombret H, Jourdan E, Preudhomme C, Boissel N. Prospective long-term minimal residual disease monitoring using RQ-PCR in RUNX1-RUNX1T1-positive acute myeloid leukemia: results of the French CBF-2006 trial. Haematologica 2016; 101(3): 328–335
CrossRef
Pubmed
Google scholar
|
[20] |
Christen F, Hoyer K, Yoshida K, Hou HA, Waldhueter N, Heuser M, Hills RK, Chan W, Hablesreiter R, Blau O, Ochi Y, Klement P, Chou WC, Blau IW, Tang JL, Zemojtel T, Shiraishi Y, Shiozawa Y, Thol F, Ganser A, Löwenberg B, Linch DC, Bullinger L, Valk PJM, Tien HF, Gale RE, Ogawa S, Damm F. Genomic landscape and clonal evolution of acute myeloid leukemia with t(8;21): an international study on 331 patients. Blood 2019; 133(10): 1140–1151
CrossRef
Pubmed
Google scholar
|
[21] |
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868(1): 199–211
CrossRef
Pubmed
Google scholar
|
[22] |
Çiftçiler R, Haznedaroğlu IC, Sayınalp N, Özcebe O, Aksu S, Demiroğlu H, Göker H, Malkan UY, Büyükaşık Y. The impact of early versus late platelet and neutrophil recovery after induction chemotherapy on survival outcomes of patients with acute myeloid leukemia. Turk J Haematol 2020; 37(2): 116–120
Pubmed
|
[23] |
He G, Zhu H, Yao Y, Chai H, Wang Y, Zhao W, Fu S, Wang Y. Cysteine-rich intestinal protein 1 silencing alleviates the migration and invasive capability enhancement induced by excessive zinc supplementation in colorectal cancer cells. Am J Transl Res 2019; 11(6): 3578–3588
Pubmed
|
[24] |
Li HG, Zhao LH, Zhang ZH, Liu JZ, Ren K, Li SY, Su ZJ. The impact of cysteine-rich intestinal protein 1 (CRIP1) on thyroid carcinoma. Cell Physiol Biochem 2017; 43(5): 2037–2046
CrossRef
Pubmed
Google scholar
|
[25] |
Zhang L, Zhou R, Zhang W, Yao X, Li W, Xu L, Sun X, Zhao L. Cysteine-rich intestinal protein 1 suppresses apoptosis and chemosensitivity to 5-fluorouracil in colorectal cancer through ubiquitin-mediated Fas degradation. J Exp Clin Cancer Res 2019; 38(1): 120
CrossRef
Pubmed
Google scholar
|
[26] |
Ye C, Ma S, Xia B, Zheng C. Weighted gene coexpression network analysis identifies cysteine-rich intestinal protein 1 (CRIP1) as a prognostic gene associated with relapse in patients with acute myeloid leukemia. Med Sci Monit 2019; 25: 7396–7406
CrossRef
Pubmed
Google scholar
|
[27] |
Chou FC, Chen HY, Kuo CC, Sytwu HK. Role of galectins in tumors and in clinical immunotherapy. Int J Mol Sci 2018; 19(2): E430
CrossRef
Pubmed
Google scholar
|
[28] |
Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, Peng W, Zhang C, Zhang D, Sun Y, Xu Z. TGM3 functions as a tumor suppressor by repressing epithelialtomesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep 2020; 43(3): 864–876
CrossRef
Pubmed
Google scholar
|
[29] |
Wang YS, Li H, Li Y, Zhang S, Jin YH. (20S)G-Rh2 inhibits NF-kB regulated epithelial-mesenchymal transition by targeting annexin A2. Biomolecules 2020; 10(4): E528
CrossRef
Pubmed
Google scholar
|
[30] |
Schliekelman MJ, Taguchi A, Zhu J, Dai X, Rodriguez J, Celiktas M, Zhang Q, Chin A, Wong CH, Wang H, McFerrin L, Selamat SA, Yang C, Kroh EM, Garg KS, Behrens C, Gazdar AF, Laird-Offringa IA, Tewari M, Wistuba II, Thiery JP, Hanash SM. Molecular portraits of epithelial, mesenchymal, and hybrid states in lung adenocarcinoma and their relevance to survival. Cancer Res 2015; 75(9): 1789–1800
CrossRef
Pubmed
Google scholar
|
[31] |
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704–715
CrossRef
Pubmed
Google scholar
|
[32] |
Rahimi M, Sharifi-Zarchi A, Firouzi J, Azimi M, Zarghami N, Alizadeh E, Ebrahimi M. An integrated analysis to predict micro-RNAs targeting both stemness and metastasis in breast cancer stem cells. J Cell Mol Med 2019; 23(4): 2442–2456
CrossRef
Pubmed
Google scholar
|
[33] |
Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, Shen L, Fan Y, Giri U, Tumula PK, Nilsson MB, Gudikote J, Tran H, Cardnell RJ, Bearss DJ, Warner SL, Foulks JM, Kanner SB, Gandhi V, Krett N, Rosen ST, Kim ES, Herbst RS, Blumenschein GR, Lee JJ, Lippman SM, Ang KK, Mills GB, Hong WK, Weinstein JN, Wistuba II, Coombes KR, Minna JD, Heymach JV. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res 2013; 19(1): 279–290
CrossRef
Pubmed
Google scholar
|
[34] |
Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY, Thiery JP. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 2014; 6(10): 1279–1293
CrossRef
Pubmed
Google scholar
|
[35] |
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178–196
CrossRef
Pubmed
Google scholar
|
[36] |
Stavropoulou V, Kaspar S, Brault L, Sanders MA, Juge S, Morettini S, Tzankov A, Iacovino M, Lau IJ, Milne TA, Royo H, Kyba M, Valk PJM, Peters AHFM, Schwaller J. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell 2016; 30(1): 43–58
CrossRef
Pubmed
Google scholar
|
[37] |
Bullinger L, Rücker FG, Kurz S, Du J, Scholl C, Sander S, Corbacioglu A, Lottaz C, Krauter J, Fröhling S, Ganser A, Schlenk RF, Döhner K, Pollack JR, Döhner H. Gene-expression profiling identifies distinct subclasses of core binding factor acute myeloid leukemia. Blood 2007; 110(4): 1291–1300
CrossRef
Pubmed
Google scholar
|
[38] |
Hsu CH, Nguyen C, Yan C, Ries RE, Chen QR, Hu Y, Ostronoff F, Stirewalt DL, Komatsoulis G, Levy S, Meerzaman D, Meshinchi S. Transcriptome profiling of pediatric core binding factor AML. PLoS One 2015; 10(9): e0138782
CrossRef
Pubmed
Google scholar
|
[39] |
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, Bernstein BE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396–1401
CrossRef
Pubmed
Google scholar
|
[40] |
Li S, Garrett-Bakelman FE, Chung SS, Sanders MA, Hricik T, Rapaport F, Patel J, Dillon R, Vijay P, Brown AL, Perl AE, Cannon J, Bullinger L, Luger S, Becker M, Lewis ID, To LB, Delwel R, Löwenberg B, Döhner H, Döhner K, Guzman ML, Hassane DC, Roboz GJ, Grimwade D, Valk PJ, D’Andrea RJ, Carroll M, Park CY, Neuberg D, Levine R, Melnick AM, Mason CE. Distinct evolution and dynamics of epigenetic and genetic heterogeneity in acute myeloid leukemia. Nat Med 2016; 22(7): 792–799
CrossRef
Pubmed
Google scholar
|
[41] |
Jia Y, Ying X, Zhou J, Chen Y, Luo X, Xie S, Wang QC, Hu W, Wang L. The novel KLF4/PLAC8 signaling pathway regulates lung cancer growth. Cell Death Dis 2018; 9(6): 603
CrossRef
Pubmed
Google scholar
|
[42] |
Zou L, Chai J, Gao Y, Guan J, Liu Q, Du JJ. Down-regulated PLAC8 promotes hepatocellular carcinoma cell proliferation by enhancing PI3K/Akt/GSK3β/Wnt/β-catenin signaling. Biomed Pharmacother 2016; 84: 139–146
CrossRef
Pubmed
Google scholar
|
[43] |
Mao M, Chen Y, Jia Y, Yang J, Wei Q, Li Z, Chen L, Chen C, Wang L. PLCA8 suppresses breast cancer apoptosis by activating the PI3k/AKT/NF-kB pathway. J Cell Mol Med 2019; 23(10): 6930–6941
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |