Repurposing clinical drugs is a promising strategy to discover drugs against Zika virus infection
Weibao Song, Hongjuan Zhang, Yu Zhang, Rui Li, Yanxing Han, Yuan Lin, Jiandong Jiang
Repurposing clinical drugs is a promising strategy to discover drugs against Zika virus infection
Zika virus (ZIKV) is an emerging pathogen associated with neurological complications, such as Guillain–Barré syndrome in adults and microcephaly in fetuses and newborns. This mosquito-borne flavivirus causes important social and sanitary problems owing to its rapid dissemination. However, the development of antivirals against ZIKV is lagging. Although various strategies have been used to study anti-ZIKV agents, approved drugs or vaccines for the treatment (or prevention) of ZIKV infections are currently unavailable. Repurposing clinically approved drugs could be an effective approach to quickly respond to an emergency outbreak of ZIKV infections. The well-established safety profiles and optimal dosage of these clinically approved drugs could provide an economical, safe, and efficacious approach to address ZIKV infections. This review focuses on the recent research and development of agents against ZIKV infection by repurposing clinical drugs. Their characteristics, targets, and potential use in anti-ZIKV therapy are presented. This review provides an update and some successful strategies in the search for anti-ZIKV agents are given.
Zika virus / clinical drugs / ZIKV inhibitors / antivirals / repurposing
[1] |
Musso D, Gubler DJ. Zika virus. Clin Microbiol Rev 2016; 29(3): 487–524
CrossRef
Pubmed
Google scholar
|
[2] |
Cao-Lormeau VM, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawché F. Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 2016; 387(10027): 1531–1539
CrossRef
Pubmed
Google scholar
|
[3] |
Blohm GM, Lednicky JA, Márquez M, White SK, Loeb JC, Pacheco CA, Nolan DJ, Paisie T, Salemi M, Rodríguez-Morales AJ, Glenn Morris J Jr, Pulliam JRC, Paniz-Mondolfi AE. Evidence for mother-to-child transmission of Zika virus through breast milk. Clin Infect Dis 2018; 66(7): 1120–1121
CrossRef
Pubmed
Google scholar
|
[4] |
Heymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, Althabe F, Baruah K, Mahmud G, Kandun N, Vasconcelos PF, Bino S, Menon KU. Zika virus and microcephaly: why is this situation a PHEIC? Lancet 2016; 387(10020): 719–721
CrossRef
Pubmed
Google scholar
|
[5] |
Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 2012; 6(2): e1477
CrossRef
Pubmed
Google scholar
|
[6] |
Sinigaglia A, Riccetti S, Trevisan M, Barzon L. In silico approaches to Zika virus drug discovery. Expert Opin Drug Discov 2018; 13(9): 825–835
CrossRef
Pubmed
Google scholar
|
[7] |
Baz M, Boivin G. Antiviral agents in development for Zika virus infections. Pharmaceuticals (Basel) 2019; 12(3): E101
CrossRef
Pubmed
Google scholar
|
[8] |
Mastrangelo E, Milani M, Bollati M, Selisko B, Peyrane F, Pandini V, Sorrentino G, Canard B, Konarev PV, Svergun DI, de Lamballerie X, Coutard B, Khromykh AA, Bolognesi M. Crystal structure and activity of Kunjin virus NS3 helicase; protease and helicase domain assembly in the full length NS3 protein. J Mol Biol 2007; 372(2): 444–455
CrossRef
Pubmed
Google scholar
|
[9] |
Lei J, Hansen G, Nitsche C, Klein CD, Zhang L, Hilgenfeld R. Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 2016; 353(6298): 503–505
CrossRef
Pubmed
Google scholar
|
[10] |
Zhao B, Yi G, Du F, Chuang YC, Vaughan RC, Sankaran B, Kao CC, Li P. Structure and function of the Zika virus full-length NS5 protein. Nat Commun 2017; 8(1): 14762
CrossRef
Pubmed
Google scholar
|
[11] |
Phoo WW, Li Y, Zhang Z, Lee MY, Loh YR, Tan YB, Ng EY, Lescar J, Kang C, Luo D. Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat Commun 2016; 7(1): 13410
CrossRef
Pubmed
Google scholar
|
[12] |
Onorati M, Li Z, Liu F, Sousa AMM, Nakagawa N, Li M, Dell’Anno MT, Gulden FO, Pochareddy S, Tebbenkamp ATN, Han W, Pletikos M, Gao T, Zhu Y, Bichsel C, Varela L, Szigeti-Buck K, Lisgo S, Zhang Y, Testen A, Gao XB, Mlakar J, Popovic M, Flamand M, Strittmatter SM, Kaczmarek LK, Anton ES, Horvath TL, Lindenbach BD, Sestan N. Zika virus disrupts phospho-TBK1 localization and mitosis in human neuroepithelial stem cells and radial glia. Cell Rep 2016; 16(10): 2576–2592
CrossRef
Pubmed
Google scholar
|
[13] |
Zou J, Shi PY. Strategies for Zika drug discovery. Curr Opin Virol 2019; 35: 19–26
CrossRef
Pubmed
Google scholar
|
[14] |
Shiryaev SA, Farhy C, Pinto A, Huang CT, Simonetti N, Elong Ngono A, Dewing A, Shresta S, Pinkerton AB, Cieplak P, Strongin AY, Terskikh AV. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Res 2017; 143: 218–229
CrossRef
Pubmed
Google scholar
|
[15] |
Elfiky AA, Elshemey WM. Molecular dynamics simulation revealed binding of nucleotide inhibitors to ZIKV polymerase over 444 nanoseconds. J Med Virol 2018; 90(1): 13–18
CrossRef
Pubmed
Google scholar
|
[16] |
Gadea G, Bos S, Krejbich-Trotot P, Clain E, Viranaicken W, El-Kalamouni C, Mavingui P, Desprès P. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology 2016; 497: 157–162
CrossRef
Pubmed
Google scholar
|
[17] |
Xie X, Zou J, Shan C, Yang Y, Kum DB, Dallmeier K, Neyts J, Shi PY. Zika virus replicons for drug discovery. EBioMedicine 2016; 12: 156–160
CrossRef
Pubmed
Google scholar
|
[18] |
Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, Galarza-Muñoz G, McGrath EL, Urrabaz-Garza R, Gao J, Wu P, Menon R, Saade G, Fernandez-Salas I, Rossi SL, Vasilakis N, Routh A, Bradrick SS, Garcia-Blanco MA. A screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe 2016; 20(2): 259–270
CrossRef
Pubmed
Google scholar
|
[19] |
Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X, Tcw J, Kouznetsova J, Ogden SC, Hammack C, Jacob F, Nguyen HN, Itkin M, Hanna C, Shinn P, Allen C, Michael SG, Simeonov A, Huang W, Christian KM, Goate A, Brennand KJ, Huang R, Xia M, Ming GL, Zheng W, Song H, Tang H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 2016; 22(10): 1101–1107
CrossRef
Pubmed
Google scholar
|
[20] |
Wilder-Smith A, Vannice K, Durbin A, Hombach J, Thomas SJ, Thevarjan I, Simmons CP. Zika vaccines and therapeutics: landscape analysis and challenges ahead. BMC Med 2018; 16(1): 84
CrossRef
Pubmed
Google scholar
|
[21] |
Diamond MS, Ledgerwood JE, Pierson TC. Zika virus vaccine development: progress in the face of new challenges. Annu Rev Med 2019; 70(1): 121–135
CrossRef
Pubmed
Google scholar
|
[22] |
Allison M. NCATS launches drug repurposing program. Nat Biotechnol 2012; 30(7): 571–572
CrossRef
Pubmed
Google scholar
|
[23] |
Konreddy AK, Rani GU, Lee K, Choi Y. Recent drug-repurposing-driven advances in the discovery of novel antibiotics. Curr Med Chem 2019; 26(28): 5363–5388
CrossRef
Pubmed
Google scholar
|
[24] |
Dandu K, Kallamadi PR, Thakur SS, Rao CM. Drug repurposing for retinoblastoma: recent advances. Curr Top Med Chem 2019; 19(17): 1535–1544
CrossRef
Pubmed
Google scholar
|
[25] |
Han Y, Mesplède T. Investigational drugs for the treatment of Zika virus infection: a preclinical and clinical update. Expert Opin Investig Drugs 2018; 27(12): 951–962
CrossRef
Pubmed
Google scholar
|
[26] |
Devillers J. Repurposing drugs for use against Zika virus infection. SAR QSAR Environ Res 2018; 29(2): 103–115
CrossRef
Pubmed
Google scholar
|
[27] |
Schlitzer M. Malaria chemotherapeutics part I: history of antimalarial drug development, currently used therapeutics, and drugs in clinical development. ChemMedChem 2007; 2(7): 944–986
CrossRef
Pubmed
Google scholar
|
[28] |
Delvecchio R, Higa LM, Pezzuto P, Valadão AL, Garcez PP, Monteiro FL, Loiola EC, Dias AA, Silva FJ, Aliota MT, Caine EA, Osorio JE, Bellio M, O’Connor DH, Rehen S, de Aguiar RS, Savarino A, Campanati L, Tanuri A. Chloroquine, an endocytosis blocking agent, inhibits Zika virus infection in different cell models. Viruses 2016; 8(12): E322
CrossRef
Pubmed
Google scholar
|
[29] |
Sacramento CQ, de Melo GR, de Freitas CS, Rocha N, Hoelz LV, Miranda M, Fintelman-Rodrigues N, Marttorelli A, Ferreira AC, Barbosa-Lima G, Abrantes JL, Vieira YR, Bastos MM, de Mello Volotão E, Nunes EP, Tschoeke DA, Leomil L, Loiola EC, Trindade P, Rehen SK, Bozza FA, Bozza PT, Boechat N, Thompson FL, de Filippis AM, Brüning K, Souza TM. The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci Rep 2017; 7(1): 40920
CrossRef
Pubmed
Google scholar
|
[30] |
Li Z, Brecher M, Deng YQ, Zhang J, Sakamuru S, Liu B, Huang R, Koetzner CA, Allen CA, Jones SA, Chen H, Zhang NN, Tian M, Gao F, Lin Q, Banavali N, Zhou J, Boles N, Xia M, Kramer LD, Qin CF, Li H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 2017; 27(8): 1046–1064
CrossRef
Pubmed
Google scholar
|
[31] |
Patel MN, Halling-Brown MD, Tym JE, Workman P, Al-Lazikani B. Objective assessment of cancer genes for drug discovery. Nat Rev Drug Discov 2013; 12(1): 35–50
CrossRef
Pubmed
Google scholar
|
[32] |
Napolitano F, Zhao Y, Moreira VM, Tagliaferri R, Kere J, D’Amato M, Greco D. Drug repositioning: a machine-learning approach through data integration. J Cheminform 2013; 5(1): 30
CrossRef
Pubmed
Google scholar
|
[33] |
Pujol A, Mosca R, Farrés J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 2010; 31(3): 115–123
CrossRef
Pubmed
Google scholar
|
[34] |
Bullard-Feibelman KM, Govero J, Zhu Z, Salazar V, Veselinovic M, Diamond MS, Geiss BJ. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res 2017; 137: 134–140
CrossRef
Pubmed
Google scholar
|
[35] |
Mehrotra PK, Kitchlu S, Dwivedi A, Agnihotri PK, Srivastava S, Roy R, Bhaduri AP. Emetine ditartrate: a possible lead for emergency contraception. Contraception 2004; 69(5): 379–387
CrossRef
Pubmed
Google scholar
|
[36] |
Novac N. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 2013; 34(5): 267–272
CrossRef
Pubmed
Google scholar
|
[37] |
Chopra D, Bhandari B. Sofosbuvir: really meets the unmet needs for hepatitis C treatment? Infect Disord Drug Targets 2020; 20(1): 2–15
CrossRef
Pubmed
Google scholar
|
[38] |
Bhatia HK, Singh H, Grewal N, Natt NK. Sofosbuvir: a novel treatment option for chronic hepatitis C infection. J Pharmacol Pharmacother 2014; 5(4): 278–284
CrossRef
Pubmed
Google scholar
|
[39] |
Murakami E, Tolstykh T, Bao H, Niu C, Steuer HM, Bao D, Chang W, Espiritu C, Bansal S, Lam AM, Otto MJ, Sofia MJ, Furman PA. Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J Biol Chem 2010; 285(45): 34337–34347
CrossRef
Pubmed
Google scholar
|
[40] |
Herbst DA Jr, Reddy KR. Sofosbuvir, a nucleotide polymerase inhibitor, for the treatment of chronic hepatitis C virus infection. Expert Opin Investig Drugs 2013; 22(4): 527–536
CrossRef
Pubmed
Google scholar
|
[41] |
Liu J, Du J, Wang P, Nagarathnam D, Espiritu CL, Bao H, Murakami E, Furman PA, Sofia MJA. A 2′-deoxy-2′-fluoro-2′-C-methyl uridine cyclopentyl carbocyclic analog and its phosphoramidate prodrug as inhibitors of HCV NS5B polymerase. Nucleosides Nucleotides Nucleic Acids 2012; 31(4): 277–285
CrossRef
Pubmed
Google scholar
|
[42] |
Mumtaz N, Jimmerson LC, Bushman LR, Kiser JJ, Aron G, Reusken CBEM, Koopmans MPG, van Kampen JJA. Cell-line dependent antiviral activity of sofosbuvir against Zika virus. Antiviral Res 2017; 146: 161–163
CrossRef
Pubmed
Google scholar
|
[43] |
Xu HT, Hassounah SA, Colby-Germinario SP, Oliveira M, Fogarty C, Quan Y, Han Y, Golubkov O, Ibanescu I, Brenner B, Stranix BR, Wainberg MA. Purification of Zika virus RNA-dependent RNA polymerase and its use to identify small-molecule Zika inhibitors. J Antimicrob Chemother 2017; 72(3): 727–734
CrossRef
Pubmed
Google scholar
|
[44] |
Matthews H, Usman-Idris M, Khan F, Read M, Nirmalan N. Drug repositioning as a route to anti-malarial drug discovery: preliminary investigation of the in vitro anti-malarial efficacy of emetine dihydrochloride hydrate. Malar J 2013; 12(1): 359
CrossRef
Pubmed
Google scholar
|
[45] |
Krstin S, Mohamed T, Wang X, Wink M. How do the alkaloids emetine and homoharringtonine kill trypanosomes? An insight into their molecular modes of action. Phytomedicine 2016; 23(14): 1771–1777
CrossRef
Pubmed
Google scholar
|
[46] |
Saif M. Treatment of amoebiasis. J Egypt Public Health Assoc 1973; 48(3): 159–166
Pubmed
|
[47] |
Yang S, Xu M, Lee EM, Gorshkov K, Shiryaev SA, He S, Sun W, Cheng YS, Hu X, Tharappel AM, Lu B, Pinto A, Farhy C, Huang CT, Zhang Z, Zhu W, Wu Y, Zhou Y, Song G, Zhu H, Shamim K, Martínez-Romero C, García-Sastre A, Preston RA, Jayaweera DT, Huang R, Huang W, Xia M, Simeonov A, Ming G, Qiu X, Terskikh AV, Tang H, Song H, Zheng W. Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discov 2018; 4(1): 31
CrossRef
Pubmed
Google scholar
|
[48] |
Lin Y, Zhang H, Song W, Si S, Han Y, Jiang J. Identification and characterization of Zika virus NS5 RNA-dependent RNA polymerase inhibitors. Int J Antimicrob Agents 2019; 54(4): 502–506
CrossRef
Pubmed
Google scholar
|
[49] |
Helms S, Miller A. Natural treatment of chronic rhinosinusitis. Altern Med Rev 2006; 11(3): 196–207
Pubmed
|
[50] |
Julander JG, Siddharthan V, Evans J, Taylor R, Tolbert K, Apuli C, Stewart J, Collins P, Gebre M, Neilson S, Van Wettere A, Lee YM, Sheridan WP, Morrey JD, Babu YS. Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model. Antiviral Res 2017; 137: 14–22
CrossRef
Pubmed
Google scholar
|
[51] |
Munjal A, Khandia R, Dhama K, Sachan S, Karthik K, Tiwari R, Malik YS, Kumar D, Singh RK, Iqbal HMN, Joshi SK. Advances in developing therapies to combat Zika virus: current knowledge and future perspectives. Front Microbiol 2017; 8: 1469
CrossRef
Pubmed
Google scholar
|
[52] |
Kumar A, Liang B, Aarthy M, Singh SK, Garg N, Mysorekar IU, Giri R. Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS Omega 2018; 3(12): 18132–18141
CrossRef
Pubmed
Google scholar
|
[53] |
Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2008; 6(9): 699–708
CrossRef
Pubmed
Google scholar
|
[54] |
Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, Vasudevan SG, Hommel U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 2006; 13(4): 372–373
CrossRef
Pubmed
Google scholar
|
[55] |
Kang C, Keller TH, Luo D. Zika virus protease: an antiviral drug target. Trends Microbiol 2017; 25(10): 797–808
CrossRef
Pubmed
Google scholar
|
[56] |
Li Z, Brecher M, Deng YQ, Zhang J, Sakamuru S, Liu B, Huang R, Koetzner CA, Allen CA, Jones SA, Chen H, Zhang NN, Tian M, Gao F, Lin Q, Banavali N, Zhou J, Boles N, Xia M, Kramer LD, Qin CF, Li H. Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 2017; 27(8): 1046–1064
CrossRef
Pubmed
Google scholar
|
[57] |
Yakavets I, Lassalle HP, Scheglmann D, Wiehe A, Zorin V, Bezdetnaya L. Temoporfin-in-cyclodextrin-in-liposome—a new approach for anticancer drug delivery: the optimization of composition. Nanomaterials (Basel) 2018; 8(10): E847
CrossRef
Pubmed
Google scholar
|
[58] |
Rossignol JF. Nitazoxanide: a first-in-class broad-spectrum antiviral agent. Antiviral Res 2014; 110: 94–103
CrossRef
Pubmed
Google scholar
|
[59] |
Shi Z, Wei J, Deng X, Li S, Qiu Y, Shao D, Li B, Zhang K, Xue F, Wang X, Ma Z. Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. Virol J 2014; 11(1): 10
CrossRef
Pubmed
Google scholar
|
[60] |
Rizk OH, Bekhit MG, Hazzaa AAB, El-Khawass EM, Abdelwahab IA. Synthesis, antibacterial evaluation, and DNA gyrase inhibition profile of some new quinoline hybrids. Arch Pharm (Weinheim) 2019; 352(10): e1900086
CrossRef
Pubmed
Google scholar
|
[61] |
Yuan S, Chan JF, den-Haan H, Chik KK, Zhang AJ, Chan CC, Poon VK, Yip CC, Mak WW, Zhu Z, Zou Z, Tee KM, Cai JP, Chan KH, de la Peña J, Pérez-Sánchez H, Cerón-Carrasco JP, Yuen KY. Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antiviral Res 2017; 145: 33–43
CrossRef
Pubmed
Google scholar
|
[62] |
Flatman RH, Eustaquio A, Li SM, Heide L, Maxwell A. Structure-activity relationships of aminocoumarin-type gyrase and topoisomerase IV inhibitors obtained by combinatorial biosynthesis. Antimicrob Agents Chemother 2006; 50(4): 1136–1142
CrossRef
Pubmed
Google scholar
|
[63] |
Chan JF, Chik KK, Yuan S, Yip CC, Zhu Z, Tee KM, Tsang JO, Chan CC, Poon VK, Lu G, Zhang AJ, Lai KK, Chan KH, Kao RY, Yuen KY. Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antiviral Res 2017; 141: 29–37
CrossRef
Pubmed
Google scholar
|
[64] |
Ginther OJ, Santos VG, Mir RA, Beg MA. Role of LH in the progesterone increase during the bromocriptine-induced prolactin decrease in heifers. Theriogenology 2012; 78(9): 1969–1976
CrossRef
Pubmed
Google scholar
|
[65] |
Li Y, Zhang Z, Phoo WW, Loh YR, Li R, Yang HY, Jansson AE, Hill J, Keller TH, Nacro K, Luo D, Kang C. Structural insights into the inhibition of Zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure 2018; 26(4): 555–564.e3
CrossRef
Pubmed
Google scholar
|
[66] |
Geng Y, Kohli L, Klocke BJ, Roth KA. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro Oncol 2010; 12(5): 473–481
Pubmed
|
[67] |
Zhu X, Pan Y, Li Y, Jiang Y, Shang H, Gowda DC, Cui L, Cao Y. Targeting Toll-like receptors by chloroquine protects mice from experimental cerebral malaria. Int Immunopharmacol 2012; 13(4): 392–397
CrossRef
Pubmed
Google scholar
|
[68] |
Browning DJ. Pharmacology of chloroquine and hydroxychloroquine. In: Hydroxychloroquine and Chloroquine Retinopathy. New York: Springer, 2014: 35–63
CrossRef
Google scholar
|
[69] |
Tsai WP, Nara PL, Kung HF, Oroszlan S. Inhibition of human immunodeficiency virus infectivity by chloroquine. AIDS Res Hum Retroviruses 1990; 6(4): 481–489
CrossRef
Pubmed
Google scholar
|
[70] |
Farias KJ, Machado PR, da Fonseca BA. Chloroquine inhibits dengue virus type 2 replication in Vero cells but not in C6/36 cells. ScientificWorldJournal 2013; 2013: 282734
CrossRef
Pubmed
Google scholar
|
[71] |
Zhu YZ, Xu QQ, Wu DG, Ren H, Zhao P, Lao WG, Wang Y, Tao QY, Qian XJ, Wei YH, Cao MM, Qi ZT. Japanese encephalitis virus enters rat neuroblastoma cells via a pH-dependent, dynamin and caveola-mediated endocytosis pathway. J Virol 2012; 86(24): 13407–13422
CrossRef
Pubmed
Google scholar
|
[72] |
Ooi EE, Chew JS, Loh JP, Chua RC. In vitro inhibition of human influenza A virus replication by chloroquine. Virol J 2006; 3(1): 39
CrossRef
Pubmed
Google scholar
|
[73] |
Zhu Y, Lin Y, Liu X, Hu W, Wang Y. Identification of AcAP5 as a novel factor Xa inhibitor with both direct and allosteric inhibition. Biochem Biophys Res Commun 2017; 483(1): 495–501
CrossRef
Pubmed
Google scholar
|
[74] |
Shiryaev SA, Mesci P, Pinto A, Fernandes I, Sheets N, Shresta S, Farhy C, Huang CT, Strongin AY, Muotri AR, Terskikh AV. Repurposing of the anti-malaria drug chloroquine for Zika virus treatment and prophylaxis. Sci Rep 2017; 7(1): 15771
CrossRef
Pubmed
Google scholar
|
[75] |
Han Y, Mesplède T, Xu H, Quan Y, Wainberg MA. The antimalarial drug amodiaquine possesses anti-Zika virus activities. J Med Virol 2018; 90(5): 796–802
CrossRef
Pubmed
Google scholar
|
[76] |
Law I, Ilett KF, Hackett LP, Page-Sharp M, Baiwog F, Gomorrai S, Mueller I, Karunajeewa HA, Davis TM. Transfer of chloroquine and desethylchloroquine across the placenta and into milk in Melanesian mothers. Br J Clin Pharmacol 2008; 65(5): 674–679
CrossRef
Pubmed
Google scholar
|
[77] |
Ruiz-Irastorza G, Khamashta MA. Hydroxychloroquine: the cornerstone of lupus therapy. Lupus 2008; 17(4): 271–273
CrossRef
Pubmed
Google scholar
|
[78] |
Dörner T. Hydroxychloroquine in SLE: old drug, new perspectives. Nat Rev Rheumatol 2010; 6(1): 10–11
CrossRef
Pubmed
Google scholar
|
[79] |
Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol 2012; 42(2): 145–153
CrossRef
Pubmed
Google scholar
|
[80] |
Berliner RW, Earle DP Jr, Taggart JV, Zubrod CG, Welch WJ, Conan NJ, Bauman E, Scudder ST, Shannon JA. Studies on the chemotherapy of the human malarias; of the human malarias the physiological disposition, antimalarial activity, and toxicity of several derivatives of 4-aminoquinoline. J Clin Invest 1948; 27(3): 98–107
CrossRef
Pubmed
Google scholar
|
[81] |
Tzekov R. Ocular toxicity due to chloroquine and hydroxychloroquine: electrophysiological and visual function correlates. Doc Ophthalmol 2005; 110(1): 111–120
CrossRef
Pubmed
Google scholar
|
[82] |
Titus EO. Recent developments in the understanding of the pharmacokinetics and mechanism of action of chloroquine. Ther Drug Monit 1989; 11(4): 369–379
CrossRef
Pubmed
Google scholar
|
[83] |
O’Neill PM, Bray PG, Hawley SR, Ward SA, Park BK. 4-Aminoquinolines—past, present, and future: a chemical perspective. Pharmacol Ther 1998; 77(1): 29–58
CrossRef
Pubmed
Google scholar
|
[84] |
Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents 2007; 30(4): 297–308
CrossRef
Pubmed
Google scholar
|
[85] |
Cao B, Parnell LA, Diamond MS, Mysorekar IU. Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. J Exp Med 2017; 214(8): 2303–2313
CrossRef
Pubmed
Google scholar
|
[86] |
Kaplan YC, Ozsarfati J, Nickel C, Koren G. Reproductive outcomes following hydroxychloroquine use for autoimmune diseases: a systematic review and meta-analysis. Br J Clin Pharmacol 2016; 81(5): 835–848
CrossRef
Pubmed
Google scholar
|
[87] |
Pukrittayakamee S, Imwong M, Looareesuwan S, White NJ. Therapeutic responses to antimalarial and antibacterial drugs in vivax malaria. Acta Trop 2004; 89(3): 351–356
CrossRef
Pubmed
Google scholar
|
[88] |
Palmer KJ, Holliday SM, Brogden RN. Mefloquine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1993; 45(3): 430–475
CrossRef
Pubmed
Google scholar
|
[89] |
Liu Y, Chen S, Xue R, Zhao J, Di M. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway. Biochem Biophys Res Commun 2016; 470(2): 350–355
CrossRef
Pubmed
Google scholar
|
[90] |
Krieger D, Vesenbeckh S, Schönfeld N, Bettermann G, Bauer TT, Rüssmann H, Mauch H. Mefloquine as a potential drug against multidrug-resistant tuberculosis. Eur Respir J 2015; 46(5): 1503–1505
CrossRef
Pubmed
Google scholar
|
[91] |
Brickelmaier M, Lugovskoy A, Kartikeyan R, Reviriego-Mendoza MM, Allaire N, Simon K, Frisque RJ, Gorelik L. Identification and characterization of mefloquine efficacy against JC virus in vitro. Antimicrob Agents Chemother 2009; 53(5): 1840–1849
CrossRef
Pubmed
Google scholar
|
[92] |
Barbosa-Lima G, Moraes AM, Araújo ADS, da Silva ET, de Freitas CS, Vieira YR, Marttorelli A, Neto JC, Bozza PT, de Souza MVN, Souza TML. 2,8-bis(trifluoromethyl)quinoline analogs show improved anti-Zika virus activity, compared to mefloquine. Eur J Med Chem 2017; 127: 334–340
CrossRef
Pubmed
Google scholar
|
[93] |
Qiao S, Tao S, Rojo de la Vega M, Park SL, Vonderfecht AA, Jacobs SL, Zhang DD, Wondrak GT. The antimalarial amodiaquine causes autophagic-lysosomal and proliferative blockade sensitizing human melanoma cells to starvation- and chemotherapy-induced cell death. Autophagy 2013; 9(12): 2087–2102
CrossRef
Pubmed
Google scholar
|
[94] |
Zhou T, Tan L, Cederquist GY, Fan Y, Hartley BJ, Mukherjee S, Tomishima M, Brennand KJ, Zhang Q, Schwartz RE, Evans T, Studer L, Chen S. High-content screening in hPSC-neural progenitors identifies drug candidates that inhibit Zika virus infection in fetal-like organoids and adult brain. Cell Stem Cell 2017; 21(2): 274–283.e5
CrossRef
Pubmed
Google scholar
|
[95] |
Zilbermintz L, Leonardi W, Jeong SY, Sjodt M, McComb R, Ho CL, Retterer C, Gharaibeh D, Zamani R, Soloveva V, Bavari S, Levitin A, West J, Bradley KA, Clubb RT, Cohen SN, Gupta V, Martchenko M. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting. Sci Rep 2015; 5(1): 13476
CrossRef
Pubmed
Google scholar
|
[96] |
Parhizgar AR, Tahghighi A. Introducing new antimalarial analogues of chloroquine and amodiaquine: a narrative review. Iran J Med Sci 2017; 42(2): 115–128
Pubmed
|
[97] |
Sarkar M, Woodland C, Koren G, Einarson AR. Pregnancy outcome following gestational exposure to azithromycin. BMC Pregnancy Childbirth 2006; 6(1): 18
CrossRef
Pubmed
Google scholar
|
[98] |
Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, Sandoval-Espinosa C, Mancia Leon WR, Krencik R, Ullian EM, Spatazza J, Pollen AA, Mandel-Brehm C, Nowakowski TJ, Kriegstein AR, DeRisi JL. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci USA 2016; 113(50): 14408–14413
CrossRef
Pubmed
Google scholar
|
[99] |
Ramsey PS, Vaules MB, Vasdev GM, Andrews WW, Ramin KD. Maternal and transplacental pharmacokinetics of azithromycin. Am J Obstet Gynecol 2003; 188(3): 714–718
CrossRef
Pubmed
Google scholar
|
[100] |
Kemp MW, Miura Y, Payne MS, Jobe AH, Kallapur SG, Saito M, Stock SJ, Spiller OB, Ireland DJ, Yaegashi N, Clarke M, Hahne D, Rodger J, Keelan JA, Newnham JP. Maternal intravenous administration of azithromycin results in significant fetal uptake in a sheep model of second trimester pregnancy. Antimicrob Agents Chemother 2014; 58(11): 6581–6591
CrossRef
Pubmed
Google scholar
|
[101] |
Enoch DA, Bygott JM, Daly ML, Karas JA. Daptomycin. J Infect 2007; 55(3): 205–213
CrossRef
Pubmed
Google scholar
|
[102] |
Eisenstein BI. Lipopeptides, focusing on daptomycin, for the treatment of Gram-positive infections. Expert Opin Investig Drugs 2004; 13(9): 1159–1169
CrossRef
Pubmed
Google scholar
|
[103] |
Shoemaker DM, Simou J, Roland WE. A review of daptomycin for injection (Cubicin) in the treatment of complicated skin and skin structure infections. Ther Clin Risk Manag 2006; 2(2): 169–174
CrossRef
Pubmed
Google scholar
|
[104] |
Dei Cas M, Casagni E, Gambaro V, Cesari E, Roda G. Determination of daptomycin in human plasma and breast milk by UPLC/MS-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1116: 38–43
CrossRef
Pubmed
Google scholar
|
[105] |
McCall M, Toso C, Emamaullee J, Pawlick R, Edgar R, Davis J, Maciver A, Kin T, Arch R, Shapiro AM. The caspase inhibitor IDN-6556 (PF3491390) improves marginal mass engraftment after islet transplantation in mice. Surgery 2011; 150(1): 48–55
CrossRef
Pubmed
Google scholar
|
[106] |
Haddad JJ. Current opinion on 3-[2-[(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid, an investigational drug targeting caspases and caspase-like proteases: the clinical trials in sight and recent anti-inflammatory advances. Recent Pat Inflamm Allergy Drug Discov 2013; 7(3): 229–258
CrossRef
Pubmed
Google scholar
|
[107] |
Hoglen NC, Chen LS, Fisher CD, Hirakawa BP, Groessl T, Contreras PC. Characterization of IDN-6556 (3-[2-(2-tert-butyl-phenylaminooxalyl)-amino]-propionylamino]-4-oxo-5-(2,3,5,6-tetrafluoro-phenoxy)-pentanoic acid): a liver-targeted caspase inhibitor. J Pharmacol Exp Ther 2004; 309(2): 634–640
CrossRef
Pubmed
Google scholar
|
[108] |
Barreyro FJ, Holod S, Finocchietto PV, Camino AM, Aquino JB, Avagnina A, Carreras MC, Poderoso JJ, Gores GJ. The pan-caspase inhibitor emricasan (IDN-6556) decreases liver injury and fibrosis in a murine model of non-alcoholic steatohepatitis. Liver Int 2015; 35(3): 953–966
CrossRef
Pubmed
Google scholar
|
[109] |
Shiffman ML, Pockros P, McHutchison JG, Schiff ER, Morris M, Burgess G. Clinical trial: the efficacy and safety of oral PF-03491390, a pancaspase inhibitor — a randomized placebo-controlled study in patients with chronic hepatitis C. Aliment Pharmacol Ther 2010; 31(9): 969–978
CrossRef
Pubmed
Google scholar
|
[110] |
Duke BO. The effects of drugs on Onchocerca volvulus. 3. Trials of suramin at different dosages and a comparison of the brands Antrypol, Moranyl and Naganol. Bull World Health Organ 1968; 39(2): 157–167
Pubmed
|
[111] |
Albulescu IC, Kovacikova K, Tas A, Snijder EJ, van Hemert MJ. Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles. Antiviral Res 2017; 143: 230–236
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |