Distinct gene expression pattern of RUNX1 mutations coordinated by target repression and promoter hypermethylation in acute myeloid leukemia

Jingming Li, Wen Jin, Yun Tan, Beichen Wang, Xiaoling Wang, Ming Zhao, Kankan Wang

PDF(1675 KB)
PDF(1675 KB)
Front. Med. ›› 2022, Vol. 16 ›› Issue (4) : 627-636. DOI: 10.1007/s11684-020-0815-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Distinct gene expression pattern of RUNX1 mutations coordinated by target repression and promoter hypermethylation in acute myeloid leukemia

Author information +
History +

Abstract

Runt-related transcription factor 1 (RUNX1) is an essential regulator of normal hematopoiesis. Its dysfunction, caused by either fusions or mutations, is frequently reported in acute myeloid leukemia (AML). However, RUNX1 mutations have been largely under-explored compared with RUNX1 fusions mainly due to their elusive genetic characteristics. Here, based on 1741 patients with AML, we report a unique expression pattern associated with RUNX1 mutations in AML. This expression pattern was coordinated by target repression and promoter hypermethylation. We first reanalyzed a joint AML cohort that consisted of three public cohorts and found that RUNX1 mutations were mainly distributed in the Runt domain and almost mutually exclusive with NPM1 mutations. Then, based on RNA-seq data from The Cancer Genome Atlas AML cohort, we developed a 300-gene signature that significantly distinguished the patients with RUNX1 mutations from those with other AML subtypes. Furthermore, we explored the mechanisms underlying this signature from the transcriptional and epigenetic levels. Using chromatin immunoprecipitation sequencing data, we found that RUNX1 target genes tended to be repressed in patients with RUNX1 mutations. Through the integration of DNA methylation array data, we illustrated that hypermethylation on the promoter regions of RUNX1-regulated genes also contributed to dysregulation in RUNX1-mutated AML. This study revealed the distinct gene expression pattern of RUNX1 mutations and the underlying mechanisms in AML development.

Keywords

RUNX1 / gene mutation / acute myeloid leukemia / transcriptional repression / DNA methylation

Cite this article

Download citation ▾
Jingming Li, Wen Jin, Yun Tan, Beichen Wang, Xiaoling Wang, Ming Zhao, Kankan Wang. Distinct gene expression pattern of RUNX1 mutations coordinated by target repression and promoter hypermethylation in acute myeloid leukemia. Front. Med., 2022, 16(4): 627‒636 https://doi.org/10.1007/s11684-020-0815-4

References

[1]
Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 2016; 17(9): 551–565
CrossRef Pubmed Google scholar
[2]
Guo H, Ma O, Speck NA, Friedman AD. Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis. Blood 2012; 119(19): 4408–4418
CrossRef Pubmed Google scholar
[3]
Tober J, Yzaguirre AD, Piwarzyk E, Speck NA. Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development 2013; 140(18): 3765–3776
CrossRef Pubmed Google scholar
[4]
Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood 2017; 129(15): 2070–2082
CrossRef Pubmed Google scholar
[5]
Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, Huang SY, Ko BS, Hsu SC, Wu SJ, Tsay W, Chen YC, Lin LI, Tien HF. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood 2009; 114(26): 5352–5361
CrossRef Pubmed Google scholar
[6]
Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Röck J, Paschka P, Corbacioglu A, Krauter J, Schlegelberger B, Ganser A, Späth D, Kündgen A, Schmidt-Wolf IG, Götze K, Nachbaur D, Pfreundschuh M, Horst HA, Döhner H, Döhner K. RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML study group. J Clin Oncol 2011; 29(10): 1364–1372
CrossRef Pubmed Google scholar
[7]
Mendler JH, Maharry K, Radmacher MD, Mrózek K, Becker H, Metzeler KH, Schwind S, Whitman SP, Khalife J, Kohlschmidt J, Nicolet D, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. RUNX1 mutations are associated with poor outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and microRNA expression signatures. J Clin Oncol 2012; 30(25): 3109–3118
CrossRef Pubmed Google scholar
[8]
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 127(20): 2391–2405
CrossRef Pubmed Google scholar
[9]
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, Gundem G, Van Loo P, Martincorena I, Ganly P, Mudie L, McLaren S, O’Meara S, Raine K, Jones DR, Teague JW, Butler AP, Greaves MF, Ganser A, Döhner K, Schlenk RF, Döhner H, Campbell PJ. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med 2016; 374(23): 2209–2221
CrossRef Pubmed Google scholar
[10]
Gerstung M, Papaemmanuil E, Martincorena I, Bullinger L, Gaidzik VI, Paschka P, Heuser M, Thol F, Bolli N, Ganly P, Ganser A, McDermott U, Döhner K, Schlenk RF, Döhner H, Campbell PJ. Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 2017; 49(3): 332–340
CrossRef Pubmed Google scholar
[11]
Love MI, Anders S, Kim V, Huber W. RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000 Res 2015; 4: 1070
CrossRef Pubmed Google scholar
[12]
Langmead B, Wilks C, Antonescu V, Charles R. Scaling read aligners to hundreds of threads on general-purpose processors. Bioinformatics 2019; 35(3): 421–432
CrossRef Pubmed Google scholar
[13]
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25(16): 2078–2079
CrossRef Pubmed Google scholar
[14]
Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, Liu XS. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9(9): R137
CrossRef Pubmed Google scholar
[15]
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010; 26(6): 841–842
CrossRef Pubmed Google scholar
[16]
Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X, Taing L, Liu T, Brown M, Meyer CA, Liu XS. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res 2017; 45(D1): D658–D662
CrossRef Pubmed Google scholar
[17]
Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, Lee CM, Lee BT, Hinrichs AS, Gonzalez JN, Gibson D, Diekhans M, Clawson H, Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res 2019; 47(D1): D853–D858
CrossRef Pubmed Google scholar
[18]
The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med 2013; 368(22): 2059–2074
CrossRef Pubmed Google scholar
[19]
Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res 2017; 45(4): e22
Pubmed
[20]
Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, Irizarry RA. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014; 30(10): 1363–1369
CrossRef Pubmed Google scholar
[21]
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47
CrossRef Pubmed Google scholar
[22]
Peters TJ, Buckley MJ, Statham AL, Pidsley R, Samaras K, V Lord R, Clark SJ, Molloy PL. De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin 2015; 8(1): 6
CrossRef Pubmed Google scholar
[23]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284–287
CrossRef Pubmed Google scholar
[24]
Duployez N, Marceau-Renaut A, Boissel N, Petit A, Bucci M, Geffroy S, Lapillonne H, Renneville A, Ragu C, Figeac M, Celli-Lebras K, Lacombe C, Micol JB, Abdel-Wahab O, Cornillet P, Ifrah N, Dombret H, Leverger G, Jourdan E, Preudhomme C. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood 2016; 127(20): 2451–2459
CrossRef Pubmed Google scholar
[25]
Fukunaga J, Nomura Y, Tanaka Y, Amano R, Tanaka T, Nakamura Y, Kawai G, Sakamoto T, Kozu T. The Runt domain of AML1 (RUNX1) binds a sequence-conserved RNA motif that mimics a DNA element. RNA 2013; 19(7): 927–936
CrossRef Pubmed Google scholar
[26]
Gerritsen M, Yi G, Tijchon E, Kuster J, Schuringa JJ, Martens JHA, Vellenga E. RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Adv 2019; 3(3): 320–332
CrossRef Pubmed Google scholar
[27]
Jin W, Wu K, Li YZ, Yang WT, Zou B, Zhang F, Zhang J, Wang KK. AML1-ETO targets and suppresses cathepsin G, a serine protease, which is able to degrade AML1-ETO in t(8;21) acute myeloid leukemia. Oncogene 2013; 32(15): 1978–1987
CrossRef Pubmed Google scholar
[28]
Kutok JL, Yang X, Folkerth R, Adra CN. Characterization of the expression of HTm4 (MS4A3), a cell cycle regulator, in human peripheral blood cells and normal and malignant tissues. J Cell Mol Med 2011; 15(1): 86–93
CrossRef Pubmed Google scholar
[29]
Khan M, Cortes J, Kadia T, Naqvi K, Brandt M, Pierce S, Patel KP, Borthakur G, Ravandi F, Konopleva M, Kornblau S, Kantarjian H, Bhalla K, DiNardo CD. Clinical outcomes and co-occurring mutations in patients with RUNX1-mutated acute myeloid leukemia. Int J Mol Sci 2017; 18(8): E1618
CrossRef Pubmed Google scholar
[30]
O’Brien EC, Brewin J, Chevassut T. DNMT3A: the DioNysian MonsTer of acute myeloid leukaemia. Ther Adv Hematol 2014; 5(6): 187–196
CrossRef Pubmed Google scholar
[31]
Ok CY, Loghavi S, Sui D, Wei P, Kanagal-Shamanna R, Yin CC, Zuo Z, Routbort MJ, Tang G, Tang Z, Jorgensen JL, Luthra R, Ravandi F, Kantarjian HM, DiNardo CD, Medeiros LJ, Wang SA, Patel KP. Persistent IDH1/2 mutations in remission can predict relapse in patients with acute myeloid leukemia. Haematologica 2019; 104(2): 305–311
CrossRef Pubmed Google scholar
[32]
Greif PA, Konstandin NP, Metzeler KH, Herold T, Pasalic Z, Ksienzyk B, Dufour A, Schneider F, Schneider S, Kakadia PM, Braess J, Sauerland MC, Berdel WE, Büchner T, Woermann BJ, Hiddemann W, Spiekermann K, Bohlander SK. RUNX1 mutations in cytogenetically normal acute myeloid leukemia are associated with a poor prognosis and up-regulation of lymphoid genes. Haematologica 2012; 97(12): 1909–1915
CrossRef Pubmed Google scholar
[33]
Suzuki T, Shimizu Y, Furuhata E, Maeda S, Kishima M, Nishimura H, Enomoto S, Hayashizaki Y, Suzuki H. RUNX1 regulates site specificity of DNA demethylation by recruitment of DNA demethylation machineries in hematopoietic cells. Blood Adv 2017; 1(20): 1699–1711
CrossRef Pubmed Google scholar
[34]
Mill CP, Fiskus W, DiNardo CD, Qian Y, Raina K, Rajapakshe K, Perera D, Coarfa C, Kadia TM, Khoury JD, Saenz DT, Saenz DN, Illendula A, Takahashi K, Kornblau SM, Green MR, Futreal AP, Bushweller JH, Crews CM, Bhalla KN. RUNX1-targeted therapy for AML expressing somatic or germline mutation in RUNX1. Blood 2019; 134(1): 59–73
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Nos. 81890994, 81770153, 81530003, and 81911530240) and the National Key Research and Development Program of China (No. 2019YFA0905900).

Compliance with ethics guidelines

Jingming Li, Wen Jin, Yun Tan, Beichen Wang, Xiaoling Wang, Ming Zhao, and Kankan Wang declare that they have no conflict of interest. This article does not contain any studies with human or animal subjects.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-020-0815-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(1675 KB)

Accesses

Citations

Detail

Sections
Recommended

/