Prohibitin regulates mTOR pathway via interaction with FKBP8
Jiahui Zhang, Yanan Yin, Jiahui Wang, Jingjing Zhang, Hua Liu, Weiwei Feng, Wen Yang, Bruce Zetter, Yingjie Xu
Prohibitin regulates mTOR pathway via interaction with FKBP8
The ability of tumor cells to sustain continuous proliferation is one of the major characteristics of cancer. The activation of oncogenes and the mutation or inactivation of tumor suppressor genes ensure the rapid proliferation of tumor cells. The PI3K--Akt--mTOR axis is one of the most frequently modified signaling pathways whose activation sustains cancer growth. Unsurprisingly, it is also one of the most commonly attempted targets for cancer therapy. FK506 binding protein 8 (FKBP8) is an intrinsic inhibitor of mTOR kinase that also exerts an anti-apoptotic function. We aimed to explain these contradictory aspects of FKBP8 in cancer by identifying a “switch” type regulator. We identified through immunoprecipitation--mass spectrometry-based proteomic analysis that the mitochondrial protein prohibitin 1 (PHB1) specifically interacts with FKBP8. Furthermore, the downregulation of PHB1 inhibited the proliferation of ovarian cancer cells and the mTOR signaling pathway, whereas the FKBP8 level in the mitochondria was substantially reduced. Moreover, concomitant with these changes, the interaction between FKBP8 and mTOR substantially increased in the absence of PHB1. Collectively, our finding highlights PHB1 as a potential regulator of FKBP8 because of its subcellular localization and mTOR regulating role.
prohibitin 1 / FKBP8 / mTOR / cell proliferation / cancer
[1] |
Avruch J, Hara K, Lin Y, Liu M, Long X, Ortiz-Vega S, Yonezawa K. Insulin and amino-acid regulation of mTOR signaling and kinase activity through the Rheb GTPase. Oncogene 2006; 25(48): 6361–6372
CrossRef
Pubmed
Google scholar
|
[2] |
Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell 2007; 12(1): 9–22
CrossRef
Pubmed
Google scholar
|
[3] |
Bai X, Ma D, Liu A, Shen X, Wang QJ, Liu Y, Jiang Y. Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38. Science 2007; 318(5852): 977–980
CrossRef
Pubmed
Google scholar
|
[4] |
Barik S. Immunophilins: for the love of proteins. Cell Mol Life Sci 2006; 63(24): 2889–2900
CrossRef
Pubmed
Google scholar
|
[5] |
Edlich F, Lücke C. From cell death to viral replication: the diverse functions of the membrane-associated FKBP38. Curr Opin Pharmacol 2011; 11(4): 348–353
CrossRef
Pubmed
Google scholar
|
[6] |
Shirane-Kitsuji M, Nakayama KI. Mitochondria: FKBP38 and mitochondrial degradation. Int J Biochem Cell Biol 2014; 51: 19–22
CrossRef
Pubmed
Google scholar
|
[7] |
Choi BH, Feng L, Yoon HS. FKBP38 protects Bcl-2 from caspase-dependent degradation. J Biol Chem 2010; 285(13): 9770–9779
CrossRef
Pubmed
Google scholar
|
[8] |
Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit 1995; 17(6): 584–591
CrossRef
Pubmed
Google scholar
|
[9] |
Proud CG. Cell signaling. mTOR, unleashed. Science 2007; 318(5852): 926–927
CrossRef
Pubmed
Google scholar
|
[10] |
Shirane M, Nakayama KI. Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis. Nat Cell Biol 2003; 5(1): 28–37
CrossRef
Pubmed
Google scholar
|
[11] |
Haupt K, Jahreis G, Linnert M, Maestre-Martínez M, Malesevic M, Pechstein A, Edlich F, Lücke C. The FKBP38 catalytic domain binds to Bcl-2 via a charge-sensitive loop. J Biol Chem 2012; 287(23): 19665–19673
CrossRef
Pubmed
Google scholar
|
[12] |
Tavernarakis N, Driscoll M, Kyrpides NC. The SPFH domain: implicated in regulating targeted protein turnover in stomatins and other membrane-associated proteins. Trends Biochem Sci 1999; 24(11): 425–427
CrossRef
Pubmed
Google scholar
|
[13] |
Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends Endocrinol Metab 2009; 20(8): 394–401
CrossRef
Pubmed
Google scholar
|
[14] |
McClung JK, Danner DB, Stewart DA, Smith JR, Schneider EL, Lumpkin CK, Dell’Orco RT, Nuell MJ. Isolation of a cDNA that hybrid selects antiproliferative mRNA from rat liver. Biochem Biophys Res Commun 1989; 164(3): 1316–1322
CrossRef
Pubmed
Google scholar
|
[15] |
Liu P, Xu Y, Zhang W, Li Y, Tang L, Chen W, Xu J, Sun Q, Guan X. Prohibitin promotes androgen receptor activation in ER-positive breast cancer. Cell Cycle 2017; 16(8): 776–784
CrossRef
Pubmed
Google scholar
|
[16] |
Du MD, He KY, Qin G, Chen J, Li JY. Adriamycin resistance-associated prohibitin gene inhibits proliferation of human osteosarcoma MG63 cells by interacting with oncogenes and tumor suppressor genes. Oncol Lett 2016; 12(3):1994–2000
CrossRef
Pubmed
Google scholar
|
[17] |
Liao Q, Guo X, Li X, Xiong W, Li X, Yang J, Chen P, Zhang W, Yu H, Tang H, Deng M, Liang F, Wu M, Luo Z, Wang R, Zeng X, Zeng Z, Li G. Prohibitin is an important biomarker for nasopharyngeal carcinoma progression and prognosis. Eur J Cancer Prev 2013; 22(1): 68–76
CrossRef
Pubmed
Google scholar
|
[18] |
Lu JJ, Lu DZ, Chen YF, Dong YT, Zhang JR, Li T, Tang ZH, Yang Z. Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chin J Nat Med 2015; 13(9): 673–679
CrossRef
Pubmed
Google scholar
|
[19] |
Cao Y, Liang H, Zhang F, Luan Z, Zhao S, Wang XA, Liu S, Bao R, Shu Y, Ma Q, Zhu J, Liu Y. Prohibitin overexpression predicts poor prognosis and promotes cell proliferation and invasion through ERK pathway activation in gallbladder cancer. J Exp Clin Cancer Res 2016; 35: 68
CrossRef
Pubmed
Google scholar
|
[20] |
Jiang L, Dong P, Zhang Z, Li C, Li Y, Liao Y, Li X, Wu Z, Guo S, Mai S, Xie D, Liu Z, Zhou F. Akt phosphorylates prohibitin 1 to mediate its mitochondrial localization and promote proliferation of bladder cancer cells. Cell Death Dis 2015; 6(2): e1660
CrossRef
Pubmed
Google scholar
|
[21] |
Dai Z, Yin J, He H, Li W, Hou C, Qian X, Mao N, Pan L. Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics 2010; 10(21): 3789–3799
CrossRef
Pubmed
Google scholar
|
[22] |
Wu TF, Wu H, Wang YW, Chang TY, Chan SH, Lin YP, Liu HS, Chow NH. Prohibitin in the pathogenesis of transitional cell bladder cancer. Anticancer Res 2007; 27(2): 895–900
Pubmed
|
[23] |
El-Etreby NM, Ghazy AA, Rashad R. Prohibitin: targeting peptide coupled to ovarian cancer, luteinization and TGF-β pathways. J Ovarian Res 2017; 10(1): 28
CrossRef
Pubmed
Google scholar
|
[24] |
Rajalingam K, Wunder C, Brinkmann V, Churin Y, Hekman M, Sievers C, Rapp UR, Rudel T. Prohibitin is required for Ras-induced Raf-MEK-ERK activation and epithelial cell migration. Nat Cell Biol 2005; 7(8): 837–843
CrossRef
Pubmed
Google scholar
|
[25] |
Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme interaction landscape. Cell 2009; 138(2): 389–403
CrossRef
Pubmed
Google scholar
|
[26] |
Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy system. Nature 2010; 466(7302): 68–76
CrossRef
Pubmed
Google scholar
|
[27] |
Saita S, Shirane M, Nakayama KI. Selective escape of proteins from the mitochondria during mitophagy. Nat Commun 2013; 4(1): 1410
CrossRef
Pubmed
Google scholar
|
[28] |
Uhlenbrock K, Weiwad M, Wetzker R, Fischer G, Wittinghofer A, Rubio I. Reassessment of the role of FKBP38 in the Rheb/mTORC1 pathway. FEBS Lett 2009; 583(6): 965–970
CrossRef
Pubmed
Google scholar
|
[29] |
Wang X, Fonseca BD, Tang H, Liu R, Elia A, Clemens MJ, Bommer UA, Proud CG. Re-evaluating the roles of proposed modulators of mammalian target of rapamycin complex 1 (mTORC1) signaling. J Biol Chem 2008; 283(45): 30482–3092
CrossRef
Pubmed
Google scholar
|
[30] |
Hsu FF, Chou YT, Chiang MT, Li FA, Yeh CT, Lee WH, Chau LY. Signal peptide peptidase promotes tumor progression via facilitating FKBP8 degradation. Oncogene 2019; 38(10): 1688–1701
CrossRef
Pubmed
Google scholar
|
[31] |
Fong S, Mounkes L, Liu Y, Maibaum M, Alonzo E, Desprez PY, Thor AD, Kashani-Sabet M, Debs RJ. Functional identification of distinct sets of antitumor activities mediated by the FKBP gene family. Proc Natl Acad Sci U S A 2003; 100(24): 14253–14258
CrossRef
Pubmed
Google scholar
|
[32] |
Barth S, Nesper J, Hasgall PA, Wirthner R, Nytko KJ, Edlich F, Katschinski DM, Stiehl DP, Wenger RH, Camenisch G. The peptidyl prolyl cis/trans isomerase FKBP38 determines hypoxia-inducible transcription factor prolyl-4-hydroxylase PHD2 protein stability. Mol Cell Biol 2007; 27(10): 3758–3768
CrossRef
Pubmed
Google scholar
|
[33] |
Patel N, Chatterjee SK, Vrbanac V, Chung I, Mu CJ, Olsen RR, Waghorne C, Zetter BR. Rescue of paclitaxel sensitivity by repression of prohibitin 1 in drug-resistant cancer cells. Proc Natl Acad Sci U S A 2010; 107(6):2503–2508
CrossRef
Pubmed
Google scholar
|
[34] |
Bhujabal Z, Birgisdottir ÅB, Sjøttem E, Brenne HB, Øvervatn A, Habisov S, Kirkin V, Lamark T, Johansen T. FKBP8 recruits LC3A to mediate Parkin-independent mitophagy. EMBO Rep 2017; 18(6): 947–961PubMed
CrossRef
Pubmed
Google scholar
|
[35] |
Wei Y, Chiang WC, Sumpter R, Jr, Mishra P, Levine B. Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 2017; 168(1–2): 224–238.e10
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |