Recent advances in myeloid-derived suppressor cell biology

Mahmoud Mohammad Yaseen, Nizar Mohammad Abuharfeil, Homa Darmani, Ammar Daoud

PDF(2899 KB)
PDF(2899 KB)
Front. Med. ›› 2021, Vol. 15 ›› Issue (2) : 232-251. DOI: 10.1007/s11684-020-0797-2
REVIEW
REVIEW

Recent advances in myeloid-derived suppressor cell biology

Author information +
History +

Abstract

In recent years, studying the role of myeloid-derived suppressor cells (MDSCs) in many pathological inflammatory conditions has become a very active research area. Although the role of MDSCs in cancer is relatively well established, their role in non-cancerous pathological conditions remains in its infancy resulting in much confusion. Our objectives in this review are to address some recent advances in MDSC research in order to minimize such confusion and to provide an insight into their function in the context of other diseases. The following topics will be specifically focused upon: (1) definition and characterization of MDSCs; (2) whether all MDSC populations consist of immature cells; (3) technical issues in MDSC isolation, estimation and characterization; (4) the origin of MDSCs and their anatomical distribution in health and disease; (5) mediators of MDSC expansion and accumulation; (6) factors that determine the expansion of one MDSC population over the other; (7) the Yin and Yang roles of MDSCs. Moreover, the functions of MDSCs will be addressed throughout the text.

Keywords

non-human primates (rhesus macaques) / myeloid-derived pro-inflammatory cells (MDPCs) / autoimmune disorders / alloimmune responses / pregnancy / mature MDSCs / multiple sclerosis / Yin-Yang law of MDSCs

Cite this article

Download citation ▾
Mahmoud Mohammad Yaseen, Nizar Mohammad Abuharfeil, Homa Darmani, Ammar Daoud. Recent advances in myeloid-derived suppressor cell biology. Front. Med., 2021, 15(2): 232‒251 https://doi.org/10.1007/s11684-020-0797-2

References

[1]
Schwacha MG, Scroggins SR, Montgomery RK, Nicholson SE, Cap AP. Burn injury is associated with an infiltration of the wound site with myeloid-derived suppressor cells. Cell Immunol 2019; 338: 21–26
CrossRef Pubmed Google scholar
[2]
Ahmadi M, Mohammadi M, Ali-Hassanzadeh M, Zare M, Gharesi-Fard B. MDSCs in pregnancy: critical players for a balanced immune system at the feto-maternal interface. Cell Immunol 2019; 346: 103990
CrossRef Pubmed Google scholar
[3]
Ostrand-Rosenberg S, Sinha P, Figley C, Long R, Park D, Carter D, Clements VK. Frontline Science: Myeloid-derived suppressor cells (MDSCs) facilitate maternal-fetal tolerance in mice. J Leukoc Biol 2017; 101(5): 1091–1101
CrossRef Pubmed Google scholar
[4]
Schrijver IT, Théroude C, Roger T. Myeloid-derived suppressor cells in sepsis. Front Immunol 2019; 10: 327
CrossRef Pubmed Google scholar
[5]
Medina E, Hartl D. Myeloid-derived suppressor cells in infection: a general overview. J Innate Immun 2018; 10(5-6): 407–413
CrossRef Pubmed Google scholar
[6]
Salminen A, Kaarniranta K, Kauppinen A. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res Rev 2018; 48: 1–10
CrossRef Pubmed Google scholar
[7]
Nakamura T, Ushigome H. Myeloid-derived suppressor cells as a regulator of immunity in organ transplantation. Int J Mol Sci 2018; 19(8): E2357
CrossRef Pubmed Google scholar
[8]
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57: 100998
CrossRef Pubmed Google scholar
[9]
Guo C, Hu F, Yi H, Feng Z, Li C, Shi L, Li Y, Liu H, Yu X, Wang H, Li J, Li Z, Wang XY. Myeloid-derived suppressor cells have a proinflammatory role in the pathogenesis of autoimmune arthritis. Ann Rheum Dis 2016; 75(1): 278–285
CrossRef Pubmed Google scholar
[10]
Zhang H, Wang S, Huang Y, Wang H, Zhao J, Gaskin F, Yang N, Fu SM. Myeloid-derived suppressor cells are proinflammatory and regulate collagen-induced arthritis through manipulating Th17 cell differentiation. Clin Immunol 2015; 157(2): 175–186
CrossRef Pubmed Google scholar
[11]
Wu H, Zhen Y, Ma Z, Li H, Yu J, Xu ZG, Wang XY, Yi H, Yang YG. Arginase-1-dependent promotion of TH17 differentiation and disease progression by MDSCs in systemic lupus erythematosus. Sci Transl Med 2016; 8(331): 331ra40
CrossRef Pubmed Google scholar
[12]
Gabrilovich DI, Bronte V, Chen SH, Colombo MP, Ochoa A, Ostrand-Rosenberg S, Schreiber H. The terminology issue for myeloid-derived suppressor cells. Cancer Res 2007; 67(1): 425
CrossRef Pubmed Google scholar
[13]
Gabrilovich DI. Myeloid-derived suppressor cells. Cancer Immunol Res 2017; 5(1): 3–8
CrossRef Pubmed Google scholar
[14]
Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol 2016; 37(3): 208–220
CrossRef Pubmed Google scholar
[15]
Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, Rodriguez PC, Sica A, Umansky V, Vonderheide RH, Gabrilovich DI. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 2016; 7(1): 12150
CrossRef Pubmed Google scholar
[16]
Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S. Neutrophils and granulocytic myeloid-derived suppressor cells: immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 2012; 61(8): 1155–1167
CrossRef Pubmed Google scholar
[17]
Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R, Taylor PA, Panoskaltsis-Mortari A, Serody JS, Munn DH, Tolar J, Ochoa AC, Blazar BR. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116(25): 5738–5747
CrossRef Pubmed Google scholar
[18]
Goldmann O, Beineke A, Medina E. Identification of a novel subset of myeloid-derived suppressor cells during chronic staphylococcal infection that resembles immature eosinophils. J Infect Dis 2017; 216(11): 1444–1451
CrossRef Pubmed Google scholar
[19]
Yaseen MM, Yaseen MM, Alqudah MA. Broadly neutralizing antibodies: an approach to control HIV-1 infection. Int Rev Immunol 2017; 36(1): 31–40
CrossRef Pubmed Google scholar
[20]
Bjornson-Hooper ZB, Fragiadakis GK, Spitzer MH, Madhireddy D, McIlwain D, Nolan GP. A comprehensive atlas of immunological differences between humans, mice and non-human primates. Biorxiv 2019; 10.1101/574160
[21]
Grow DA, McCarrey JR, Navara CS. Advantages of nonhuman primates as preclinical models for evaluating stem cell-based therapies for Parkinson’s disease. Stem Cell Res (Amst) 2016; 17(2): 352–366
CrossRef Pubmed Google scholar
[22]
Watson KK, Platt ML. Of mice and monkeys: using non-human primate models to bridge mouse- and human-based investigations of autism spectrum disorders. J Neurodev Disord 2012; 4(1): 21
CrossRef Pubmed Google scholar
[23]
Zahorchak AF, Ezzelarab MB, Lu L, Turnquist HR, Thomson AW. In vivo mobilization and functional characterization of nonhuman primate monocytic myeloid-derived suppressor cells. Am J Transplant 2016; 16(2): 661–671
CrossRef Pubmed Google scholar
[24]
Luyckx A, Schouppe E, Rutgeerts O, Lenaerts C, Fevery S, Devos T, Dierickx D, Waer M, Van Ginderachter JA, Billiau AD. G-CSF stem cell mobilization in human donors induces polymorphonuclear and mononuclear myeloid-derived suppressor cells. Clin Immunol 2012; 143(1): 83–87
CrossRef Pubmed Google scholar
[25]
Hock BD, Mackenzie KA, Cross NB, Taylor KG, Currie MJ, Robinson BA, Simcock JW, McKenzie JL. Renal transplant recipients have elevated frequencies of circulating myeloid-derived suppressor cells. Nephrol Dial Transplant 2012; 27(1): 402–410
CrossRef Pubmed Google scholar
[26]
Zahorchak AF, Perez-Gutierrez A, Ezzelarab MB, Thomson AW. Monocytic myeloid-derived suppressor cells generated from rhesus macaque bone marrow enrich for regulatory T cells. Cell Immunol 2018; 329: 50–55
CrossRef Pubmed Google scholar
[27]
Sui Y, Frey B, Wang Y, Billeskov R, Kulkarni S, McKinnon K, Rourke T, Fritts L, Miller CJ, Berzofsky JA. Paradoxical myeloid-derived suppressor cell reduction in the bone marrow of SIV chronically infected macaques. PLoS Pathog 2017; 13(5): e1006395
CrossRef Pubmed Google scholar
[28]
Lin A, Liang F, Thompson EA, Vono M, Ols S, Lindgren G, Hassett K, Salter H, Ciaramella G, Loré K. Rhesus macaque myeloid-derived suppressor cells demonstrate T cell inhibitory functions and are transiently increased after vaccination. J Immunol 2018; 200(1): 286–294
CrossRef Pubmed Google scholar
[29]
Condamine T, Dominguez GA, Youn JI, Kossenkov AV, Mony S, Alicea-Torres K, Tcyganov E, Hashimoto A, Nefedova Y, Lin C, Partlova S, Garfall A, Vogl DT, Xu X, Knight SC, Malietzis G, Lee GH, Eruslanov E, Albelda SM, Wang X, Mehta JL, Bewtra M, Rustgi A, Hockstein N, Witt R, Masters G, Nam B, Smirnov D, Sepulveda MA, Gabrilovich DI. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci Immunol 2016; 1(2): aaf8943
CrossRef Pubmed Google scholar
[30]
Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid-derived suppressor cells. Oncotarget 2017; 8(2): 3649–3665
CrossRef Pubmed Google scholar
[31]
Sangaletti S, Talarico G, Chiodoni C, Cappetti B, Botti L, Portararo P, Gulino A, Consonni FM, Sica A, Randon G, Di Nicola M, Tripodo C, Colombo MP. SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities. Front Immunol 2019; 10: 1369
CrossRef Pubmed Google scholar
[32]
Young MRI, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 1997; 74(1): 69–74
CrossRef Pubmed Google scholar
[33]
Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR. Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1995; 1(1): 95–103
Pubmed
[34]
Romano A, Parrinello NL, Vetro C, Forte S, Chiarenza A, Figuera A, Motta G, Palumbo GA, Ippolito M, Consoli U, Di Raimondo F. Circulating myeloid-derived suppressor cells correlate with clinical outcome in Hodgkin lymphoma patients treated up-front with a risk-adapted strategy. Br J Haematol 2015; 168(5): 689–700
CrossRef Pubmed Google scholar
[35]
Vasquez-Dunddel D, Pan F, Zeng Q, Gorbounov M, Albesiano E, Fu J, Blosser RL, Tam AJ, Bruno T, Zhang H, Pardoll D, Kim Y. STAT3 regulates arginase-I in myeloid-derived suppressor cells from cancer patients. J Clin Invest 2013; 123(4): 1580–1589
CrossRef Pubmed Google scholar
[36]
Fan H, Cook JA. Molecular mechanisms of endotoxin tolerance. J Endotoxin Res 2004; 10(2): 71–84
CrossRef Pubmed Google scholar
[37]
Sinistro A, Ciaprini C, Natoli S, Sussarello E, Carducci FC, Almerighi C, Capozzi M, Bolacchi F, Rocchi G, Bergamini A. Lipopolysaccharide desensitizes monocytes-macrophages to CD40 ligand stimulation. Immunology 2007; 122(3): 362–370
CrossRef Pubmed Google scholar
[38]
Xiu B, Lin Y, Grote DM, Ziesmer SC, Gustafson MP, Maas ML, Zhang Z, Dietz AB, Porrata LF, Novak AJ, Liang AB, Yang ZZ, Ansell SM. IL-10 induces the development of immunosuppressive CD14+HLA-DRlow/− monocytes in B-cell non-Hodgkin lymphoma. Blood Cancer J 2015; 5(7): e328
CrossRef Pubmed Google scholar
[39]
Landmann R, Ludwig C, Obrist R, Obrecht JP. Effect of cytokines and lipopolysaccharide on CD14 antigen expression in human monocytes and macrophages. J Cell Biochem 1991; 47(4): 317–329
CrossRef Pubmed Google scholar
[40]
Marini O, Costa S, Bevilacqua D, Calzetti F, Tamassia N, Spina C, De Sabata D, Tinazzi E, Lunardi C, Scupoli MT, Cavallini C, Zoratti E, Tinazzi I, Marchetta A, Vassanelli A, Cantini M, Gandini G, Ruzzenente A, Guglielmi A, Missale F, Vermi W, Tecchio C, Cassatella MA, Scapini P. Mature CD10+ and immature CD10 neutrophils present in G-CSF-treated donors display opposite effects on T cells. Blood 2017; 129(10): 1343–1356
CrossRef Pubmed Google scholar
[41]
Carmona-Rivera C, Kaplan MJ. Low-density granulocytes: a distinct class of neutrophils in systemic autoimmunity. Semin Immunopathol 2013; 35(4): 455–463
CrossRef Pubmed Google scholar
[42]
Marini O, Spina C, Mimiola E, Cassaro A, Malerba G, Todeschini G, Perbellini O, Scupoli M, Carli G, Facchinelli D, Cassatella M, Scapini P, Tecchio C. Identification of granulocytic myeloid-derived suppressor cells (G-MDSCs) in the peripheral blood of Hodgkin and non-Hodgkin lymphoma patients. Oncotarget 2016; 7(19): 27676–27688
CrossRef Pubmed Google scholar
[43]
Lang S, Bruderek K, Kaspar C, Höing B, Kanaan O, Dominas N, Hussain T, Droege F, Eyth C, Hadaschik B, Brandau S. Clinical relevance and suppressive capacity of human myeloid-derived suppressor cell subsets. Clin Cancer Res 2018; 24(19): 4834–4844
CrossRef Pubmed Google scholar
[44]
Bergenfelz C, Larsson AM, von Stedingk K, Gruvberger-Saal S, Aaltonen K, Jansson S, Jernström H, Janols H, Wullt M, Bredberg A, Rydén L, Leandersson K. Systemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patients. PLoS One 2015; 10(5): e0127028
CrossRef Pubmed Google scholar
[45]
Poschke I, Mougiakakos D, Hansson J, Masucci GV, Kiessling R. Immature immunosuppressive CD14+HLA-DR−/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res 2010; 70(11): 4335–4345
CrossRef Pubmed Google scholar
[46]
Sunderkötter C, Nikolic T, Dillon MJ, Van Rooijen N, Stehling M, Drevets DA, Leenen PJ. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 2004; 172(7): 4410–4417
CrossRef Pubmed Google scholar
[47]
Mantovani A, Sica A, Allavena P, Garlanda C, Locati M. Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. Hum Immunol 2009; 70(5): 325–330
CrossRef Pubmed Google scholar
[48]
Biswas SK, Lopez-Collazo E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30(10): 475–487
CrossRef Pubmed Google scholar
[49]
Pillay J, Tak T, Kamp VM, Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 2013; 70(20): 3813–3827
CrossRef Pubmed Google scholar
[50]
Obermajer N, Muthuswamy R, Lesnock J, Edwards RP, Kalinski P. Positive feedback between PGE2 and COX2 redirects the differentiation of human dendritic cells toward stable myeloid-derived suppressor cells. Blood 2011; 118(20): 5498–5505
CrossRef Pubmed Google scholar
[51]
Domenis R, Cesselli D, Toffoletto B, Bourkoula E, Caponnetto F, Manini I, Beltrami AP, Ius T, Skrap M, Di Loreto C, Gri G. Systemic T cells immunosuppression of glioma stem cell-derived exosomes is mediated by monocytic myeloid-derived suppressor cells. PLoS One 2017; 12(1): e0169932
CrossRef Pubmed Google scholar
[52]
Obermajer N, Kalinski P. Generation of myeloid-derived suppressor cells using prostaglandin E2. Transplant Res 2012; 1(1): 15
CrossRef Pubmed Google scholar
[53]
Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol 2018; 19(2): 108–119
CrossRef Pubmed Google scholar
[54]
Dufait I, Schwarze JK, Liechtenstein T, Leonard W, Jiang H, Escors D, De Ridder M, Breckpot K. Ex vivo generation of myeloid-derived suppressor cells that model the tumor immunosuppressive environment in colorectal cancer. Oncotarget 2015; 6(14): 12369–12382
CrossRef Pubmed Google scholar
[55]
Casacuberta-Serra S, Parés M, Golbano A, Coves E, Espejo C, Barquinero J. Myeloid-derived suppressor cells can be efficiently generated from human hematopoietic progenitors and peripheral blood monocytes. Immunol Cell Biol 2017; 95(6): 538–548
CrossRef Pubmed Google scholar
[56]
Mao Y, Poschke I, Wennerberg E, Pico de Coaña Y, Egyhazi Brage S, Schultz I, Hansson J, Masucci G, Lundqvist A, Kiessling R. Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res 2013; 73(13): 3877–3887
CrossRef Pubmed Google scholar
[57]
Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, Lin Y, Dietz AB, Forsyth PA, Yong VW, Parney IF. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro-oncol 2010; 12(4): 351–365
CrossRef Pubmed Google scholar
[58]
Moses K, Brandau S. Human neutrophils: their role in cancer and relation to myeloid-derived suppressor cells. Semin Immunol 2016; 28(2): 187–196
CrossRef Pubmed Google scholar
[59]
Li Q, Pan PY, Gu P, Xu D, Chen SH. Role of immature myeloid Gr-1+ cells in the development of antitumor immunity. Cancer Res 2004; 64(3): 1130–1139
CrossRef Pubmed Google scholar
[60]
Narita Y, Wakita D, Ohkur T, Chamoto K, Nishimura T. Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells. Biomed Res 2009; 30(1): 7–15
CrossRef Pubmed Google scholar
[61]
Haverkamp JM, Crist SA, Elzey BD, Cimen C, Ratliff TL. In vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory site. Eur J Immunol 2011; 41(3): 749–759
CrossRef Pubmed Google scholar
[62]
Grützner E, Stirner R, Arenz L, Athanasoulia AP, Schrödl K, Berking C, Bogner JR, Draenert R. Kinetics of human myeloid-derived suppressor cells after blood draw. J Transl Med 2016; 14(1): 2
CrossRef Pubmed Google scholar
[63]
Trellakis S, Bruderek K, Hütte J, Elian M, Hoffmann TK, Lang S, Brandau S. Granulocytic myeloid-derived suppressor cells are cryosensitive and their frequency does not correlate with serum concentrations of colony-stimulating factors in head and neck cancer. Innate Immun 2013; 19(3): 328–336
CrossRef Pubmed Google scholar
[64]
Brandau S, Moses K, Lang S. The kinship of neutrophils and granulocytic myeloid-derived suppressor cells in cancer: cousins, siblings or twins? Semin Cancer Biol 2013; 23(3): 171–182
CrossRef Pubmed Google scholar
[65]
Scapini P, Cassatella MA. Social networking of human neutrophils within the immune system. Blood 2014; 124(5): 710–719
CrossRef Pubmed Google scholar
[66]
Apodaca MC, Wright AE, Riggins AM, Harris WP, Yeung RS, Yu L, Morishima C. Characterization of a whole blood assay for quantifying myeloid-derived suppressor cells. J Immunother Cancer 2019; 7(1): 230
CrossRef Pubmed Google scholar
[67]
Flörcken A, Takvorian A, Singh A, Gerhardt A, Ostendorf BN, Dörken B, Pezzutto A, Westermann J. Myeloid-derived suppressor cells in human peripheral blood: optimized quantification in healthy donors and patients with metastatic renal cell carcinoma. Immunol Lett 2015; 168(2): 260–267
CrossRef Pubmed Google scholar
[68]
Velten L, Haas SF, Raffel S, Blaszkiewicz S, Islam S, Hennig BP, Hirche C, Lutz C, Buss EC, Nowak D, Boch T, Hofmann WK, Ho AD, Huber W, Trumpp A, Essers MA, Steinmetz LM. Human haematopoietic stem cell lineage commitment is a continuous process. Nat Cell Biol 2017; 19(4): 271–281
CrossRef Pubmed Google scholar
[69]
Schultze JL, Mass E, Schlitzer A. Emerging principles in myelopoiesis at homeostasis and during infection and inflammation. Immunity 2019; 50(2): 288–301
CrossRef Pubmed Google scholar
[70]
Kusmartsev S, Gabrilovich DI. Role of immature myeloid cells in mechanisms of immune evasion in cancer. Cancer Immunol Immunother 2006; 55(3): 237–245
CrossRef Pubmed Google scholar
[71]
Zhao F, Obermann S, von Wasielewski R, Haile L, Manns MP, Korangy F, Greten TF. Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 2009; 128(1): 141–149
CrossRef Pubmed Google scholar
[72]
Ilkovitch D, Lopez DM. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 2009; 69(13): 5514–5521
CrossRef Pubmed Google scholar
[73]
Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166(1): 678–689
CrossRef Pubmed Google scholar
[74]
Luan Y, Mosheir E, Menon MC, Wilson D, Woytovich C, Ochando J, Murphy B. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4+ Foxp3+ Treg expansion. Am J Transplant 2013; 13(12): 3123–3131
CrossRef Pubmed Google scholar
[75]
Köstlin N, Schoetensack C, Schwarz J, Spring B, Marmé A, Goelz R, Brodbeck G, Poets CF, Gille C. Granulocytic myeloid-derived suppressor cells (GR-MDSC) in breast milk (BM); GR-MDSC accumulate in human BM and modulate T-cell and monocyte function. Front Immunol 2018; 9: 1098
CrossRef Pubmed Google scholar
[76]
Roussel M, Ferrell PB Jr, Greenplate AR, Lhomme F, Le Gallou S, Diggins KE, Johnson DB, Irish JM. Mass cytometry deep phenotyping of human mononuclear phagocytes and myeloid-derived suppressor cells from human blood and bone marrow. J Leukoc Biol 2017; 102(2): 437–447
CrossRef Pubmed Google scholar
[77]
Görgün GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J, Raje N, Munshi NC, Richardson PG, Anderson KC. Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 2013; 121(15): 2975–2987
CrossRef Pubmed Google scholar
[78]
Porembka MR, Mitchem JB, Belt BA, Hsieh CS, Lee HM, Herndon J, Gillanders WE, Linehan DC, Goedegebuure P. Pancreatic adenocarcinoma induces bone marrow mobilization of myeloid-derived suppressor cells which promote primary tumor growth. Cancer Immunol Immunother 2012; 61(9): 1373–1385
CrossRef Pubmed Google scholar
[79]
Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM. Blood CD33(+)HLA-DR(−) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 2013; 93(4): 633–637
CrossRef Pubmed Google scholar
[80]
Flores RR, Clauson CL, Cho J, Lee BC, McGowan SJ, Baker DJ, Niedernhofer LJ, Robbins PD. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-kB-dependent mechanism. Aging Cell 2017; 16(3): 480–487
CrossRef Pubmed Google scholar
[81]
Bulterijs S, Hull RS, Björk VC, Roy AG. It is time to classify biological aging as a disease. Front Genet 2015; 6: 205
CrossRef Pubmed Google scholar
[82]
Gavrilov LA, Gavrilova NS. Is aging a disease? Biodemographers’ point of view. Adv Gerontol 2017; 30(6): 841–842 (in Russian)
Pubmed
[83]
The Lancet Diabetes Endocrinology. Opening the door to treating ageing as a disease. Lancet Diabetes Endocrinol 2018; 6(8): 587
CrossRef Google scholar
[84]
Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007; 13(2): 721s–726s
CrossRef Pubmed Google scholar
[85]
Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, Lush RM, Antonia S, Gabrilovich DI. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006; 66(18): 9299–9307
CrossRef Pubmed Google scholar
[86]
Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58(1): 49–59
CrossRef Pubmed Google scholar
[87]
Goñi O, Alcaide P, Fresno M. Immunosuppression during acute Trypanosoma cruzi infection: involvement of Ly6G(Gr1+)CD11b+ immature myeloid suppressor cells. Int Immunol 2002; 14(10): 1125–1134
CrossRef Pubmed Google scholar
[88]
Brudecki L, Ferguson DA, McCall CE, El Gazzar M. Myeloid-derived suppressor cells evolve during sepsis and can enhance or attenuate the systemic inflammatory response. Infect Immun 2012; 80(6): 2026–2034
CrossRef Pubmed Google scholar
[89]
Marhaba R, Vitacolonna M, Hildebrand D, Baniyash M, Freyschmidt-Paul P, Zöller M. The importance of myeloid-derived suppressor cells in the regulation of autoimmune effector cells by a chronic contact eczema. J Immunol 2007; 179(8): 5071–5081
CrossRef Pubmed Google scholar
[90]
Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, Buer J, Liblau R, Manns MP, Korangy F, Greten TF. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 2008; 135(3): 871–881e5
CrossRef Google scholar
[91]
Zhang ZN, Yi N, Zhang TW, Zhang LL, Wu X, Liu M, Fu YJ, He SJ, Jiang YJ, Ding HB, Chu ZX, Shang H. Myeloid-derived suppressor cells associated with disease progression in primary HIV infection: PD-L1 blockade attenuates inhibition. J Acquir Immune Defic Syndr 2017; 76(2): 200–208
CrossRef Pubmed Google scholar
[92]
Tacke RS, Lee HC, Goh C, Courtney J, Polyak SJ, Rosen HR, Hahn YS. Myeloid suppressor cells induced by hepatitis C virus suppress T-cell responses through the production of reactive oxygen species. Hepatology 2012; 55(2): 343–353
CrossRef Pubmed Google scholar
[93]
Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O’Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, Swan R, Chung CS, Atkinson MA, Ramphal R, Gabrilovich DI, Reeves WH, Ayala A, Phillips J, Laface D, Heyworth PG, Clare-Salzler M, Moldawer LL. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 2007; 204(6): 1463–1474
CrossRef Pubmed Google scholar
[94]
Bosiljcic M, Cederberg RA, Hamilton MJ, LePard NE, Harbourne BT, Collier JL, Halvorsen EC, Shi R, Franks SE, Kim AY, Banáth JP, Hamer M, Rossi FM, Bennewith KL. Targeting myeloid-derived suppressor cells in combination with primary mammary tumor resection reduces metastatic growth in the lungs. Breast Cancer Res 2019; 21(1): 103
CrossRef Pubmed Google scholar
[95]
Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol 2008; 181(8): 5791–5802
CrossRef Pubmed Google scholar
[96]
Sarkar D, Srivastava MK, Zhu L, Harris-White M, Kar UK, Huang M, Johnson MF, Lee JM, Elashoff D, Strieter R, Dubinett S, Sharma S. Correction: myeloid suppressor cell depletion augments antitumor activity in lung cancer. PLoS One 2012; 7(7): e40677
CrossRef Google scholar
[97]
Heine A, Held SAE, Schulte-Schrepping J, Wolff JFA, Klee K, Ulas T, Schmacke NA, Daecke SN, Riethausen K, Schultze JL, Brossart P. Generation and functional characterization of MDSC-like cells. OncoImmunology 2017; 6(4): e1295203
CrossRef Pubmed Google scholar
[98]
Julier Z, Park AJ, Briquez PS, Martino MM. Promoting tissue regeneration by modulating the immune system. Acta Biomater 2017; 53: 13–28
CrossRef Pubmed Google scholar
[99]
Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32(1): 19–25
CrossRef Pubmed Google scholar
[100]
Condamine T, Mastio J, Gabrilovich DI. Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol 2015; 98(6): 913–922
CrossRef Pubmed Google scholar
[101]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9(3): 162–174
CrossRef Pubmed Google scholar
[102]
Lechner MG, Liebertz DJ, Epstein AL. Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 2010; 185(4): 2273–2284
CrossRef Pubmed Google scholar
[103]
Jimenez RV, Kuznetsova V, Connelly AN, Hel Z, Szalai AJ. C-reactive protein promotes the expansion of myeloid derived cells with suppressor functions. Front Immunol 2019; 10: 2183
CrossRef Pubmed Google scholar
[104]
Youn JI, Gabrilovich DI. The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 2010; 40(11): 2969–2975
CrossRef Pubmed Google scholar
[105]
Abad C, Nobuta H, Li J, Kasai A, Yong WH, Waschek JA. Targeted STAT3 disruption in myeloid cells alters immunosuppressor cell abundance in a murine model of spontaneous medulloblastoma. J Leukoc Biol 2014; 95(2): 357–367
CrossRef Pubmed Google scholar
[106]
Tu SP, Jin H, Shi JD, Zhu LM, Suo Y, Lu G, Liu A, Wang TC, Yang CS. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev Res (Phila) 2012; 5(2): 205–215
CrossRef Pubmed Google scholar
[107]
Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L, Ugel S, Sonda N, Bicciato S, Falisi E, Calabrese F, Basso G, Zanovello P, Cozzi E, Mandruzzato S, Bronte V. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010; 32(6): 790–802
CrossRef Pubmed Google scholar
[108]
Abbasi K, Fadaei Araghi M, Zafarghandi M, Karimi A, Ahmadi H, Marzban M, Movahedi N, Abbasi SH, Moshtaghi N. Concomitant carotid endarterectomy and coronary artery bypass grafting versus staged carotid stenting followed by coronary artery bypass grafting. J Cardiovasc Surg (Torino) 2008; 49(2): 285–288
Pubmed
[109]
Youn JI, Kumar V, Collazo M, Nefedova Y, Condamine T, Cheng P, Villagra A, Antonia S, McCaffrey JC, Fishman M, Sarnaik A, Horna P, Sotomayor E, Gabrilovich DI. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 2013; 14(3): 211–220
CrossRef Pubmed Google scholar
[110]
Casbon AJ, Reynaud D, Park C, Khuc E, Gan DD, Schepers K, Passegué E, Werb Z. Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci USA 2015; 112(6): E566–E575
CrossRef Pubmed Google scholar
[111]
Ryzhov S, Novitskiy SV, Goldstein AE, Biktasova A, Blackburn MR, Biaggioni I, Dikov MM, Feoktistov I. Adenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cells. J Immunol 2011; 187(11): 6120–6129
CrossRef Pubmed Google scholar
[112]
Damuzzo V, Pinton L, Desantis G, Solito S, Marigo I, Bronte V, Mandruzzato S. Complexity and challenges in defining myeloid-derived suppressor cells. Cytometry B Clin Cytom 2015; 88(2): 77–91
CrossRef Pubmed Google scholar
[113]
Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 2009; 16(3): 183–194
CrossRef Pubmed Google scholar
[114]
Cimen Bozkus C, Elzey BD, Crist SA, Ellies LG, Ratliff TL. Expression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunity. J Immunol 2015; 195(11): 5237–5250
CrossRef Pubmed Google scholar
[115]
Netherby CS, Messmer MN, Burkard-Mandel L, Colligan S, Miller A, Cortes Gomez E, Wang J, Nemeth MJ, Abrams SI. The granulocyte progenitor stage is a key target of IRF8-mediated regulation of myeloid-derived suppressor cell production. J Immunol 2017; 198(10): 4129–4139
CrossRef Pubmed Google scholar
[116]
Dai J, Kumbhare A, Williams DA, Youssef D, Yao ZQ, McCall CE, El Gazzar M. Nfia deletion in myeloid cells blocks expansion of myeloid-derived suppressor cells during sepsis. Innate Immun 2018; 24(1): 54–65
CrossRef Pubmed Google scholar
[117]
Tian X, Tian J, Tang X, Rui K, Zhang Y, Ma J, Wang Y, Xu H, Lu L, Wang S. Particulate b-glucan regulates the immunosuppression of granulocytic myeloid-derived suppressor cells by inhibiting NFIA expression. OncoImmunology 2015; 4(9): e1038687
CrossRef Pubmed Google scholar
[118]
Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, Mancini M, Nanni M, Cimino G, Lo-Coco F, Grignani F, Nervi C. Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood 2012; 119(17): 4034–4046
CrossRef Pubmed Google scholar
[119]
Zheng Y, Tian X, Wang T, Xia X, Cao F, Tian J, Xu P, Ma J, Xu H, Wang S. Long noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Mol Cancer 2019; 18(1): 61
CrossRef Pubmed Google scholar
[120]
Budhwar S, Verma P, Verma R, Rai S, Singh K. The Yin and Yang of myeloid derived suppressor cells. Front Immunol 2018; 9: 2776
CrossRef Pubmed Google scholar
[121]
Giordanengo L, Guiñazú N, Stempin C, Fretes R, Cerbán F, Gea S. Cruzipain, a major Trypanosoma cruzi antigen, conditions the host immune response in favor of parasite. Eur J Immunol 2002; 32(4): 1003–1011
CrossRef Pubmed Google scholar
[122]
Voisin MB, Buzoni-Gatel D, Bout D, Velge-Roussel F. Both expansion of regulatory GR1+CD11b+ myeloid cells and anergy of T lymphocytes participate in hyporesponsiveness of the lung-associated immune system during acute toxoplasmosis. Infect Immun 2004; 72(9): 5487–5492
CrossRef Pubmed Google scholar
[123]
Terrazas LI, Walsh KL, Piskorska D, McGuire E, Harn DA Jr. The schistosome oligosaccharide lacto-N-neotetraose expands Gr1+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: a potential mechanism for immune polarization in helminth infections. J Immunol 2001; 167(9): 5294–5303
CrossRef Pubmed Google scholar
[124]
Gómez-García L, López-Marín LM, Saavedra R, Reyes JL, Rodríguez-Sosa M, Terrazas LI. Intact glycans from cestode antigens are involved in innate activation of myeloid suppressor cells. Parasite Immunol 2005; 27(10-11): 395–405
CrossRef Pubmed Google scholar
[125]
Brys L, Beschin A, Raes G, Ghassabeh GH, Noël W, Brandt J, Brombacher F, De Baetselier P. Reactive oxygen species and 12/15-lipoxygenase contribute to the antiproliferative capacity of alternatively activated myeloid cells elicited during helminth infection. J Immunol 2005; 174(10): 6095–6104
CrossRef Pubmed Google scholar
[126]
Mencacci A, Montagnoli C, Bacci A, Cenci E, Pitzurra L, Spreca A, Kopf M, Sharpe AH, Romani L. CD80+Gr-1+ myeloid cells inhibit development of antifungal Th1 immunity in mice with candidiasis. J Immunol 2002; 169(6): 3180–3190
CrossRef Pubmed Google scholar
[127]
Ezernitchi AV, Vaknin I, Cohen-Daniel L, Levy O, Manaster E, Halabi A, Pikarsky E, Shapira L, Baniyash M. TCRζ down-regulation under chronic inflammation is mediated by myeloid suppressor cells differentially distributed between various lymphatic organs. J Immunol 2006; 177(7): 4763–4772
CrossRef Pubmed Google scholar
[128]
De Santo C, Salio M, Masri SH, Lee LY, Dong T, Speak AO, Porubsky S, Booth S, Veerapen N, Besra GS, Gröne HJ, Platt FM, Zambon M, Cerundolo V. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 2008; 118(12): 4036–4048
CrossRef Pubmed Google scholar
[129]
Wang L, Zhao J, Ren JP, Wu XY, Morrison ZD, Elgazzar MA, Ning SB, Moorman JP, Yao ZQ. Expansion of myeloid-derived suppressor cells promotes differentiation of regulatory T cells in HIV-1+ individuals. AIDS 2016; 30(10): 1521–1531
CrossRef Pubmed Google scholar
[130]
Crook KR, Liu P. Role of myeloid-derived suppressor cells in autoimmune disease. World J Immunol 2014; 4(1): 26–33
CrossRef Pubmed Google scholar
[131]
Boros P, Ochando J, Zeher M. Myeloid derived suppressor cells and autoimmunity. Hum Immunol 2016; 77(8): 631–636
CrossRef Pubmed Google scholar
[132]
Qin J, Arakawa Y, Morita M, Fung JJ, Qian S, Lu L. C-C chemokine receptor type 2-dependent migration of myeloid-derived suppressor cells in protection of islet transplants. Transplantation 2017; 101(8): 1793–1800
CrossRef Pubmed Google scholar
[133]
Li P, Zheng Y, Chen X. Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol 2017; 8: 460
CrossRef Pubmed Google scholar
[134]
Bereshchenko O, Migliorati G, Bruscoli S, Riccardi C. Glucocorticoid-induced leucine zipper: a novel anti-inflammatory molecule. Front Pharmacol 2019; 10: 308
CrossRef Pubmed Google scholar
[135]
Patil KR, Mahajan UB, Unger BS, Goyal SN, Belemkar S, Surana SJ, Ojha S, Patil CR. Animal models of inflammation for screening of anti-inflammatory drugs: implications for the discovery and development of phytopharmaceuticals. Int J Mol Sci 2019; 20(18): E4367
CrossRef Pubmed Google scholar
[136]
van Niekerk G, Mabin T, Engelbrecht AM. Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology 2019; 27(1): 39–46
CrossRef Pubmed Google scholar
[137]
Toubi E, Vadasz Z. Innate immune-responses and their role in driving autoimmunity. Autoimmun Rev 2019; 18(3): 306–311
CrossRef Pubmed Google scholar
[138]
Yoo IH, Kim MJ, Kim J, Sung JJ, Park ST, Ahn SW. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci 2019; 34(28): e197
CrossRef Pubmed Google scholar
[139]
Chen Z, Bozec A, Ramming A, Schett G. Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nat Rev Rheumatol 2019; 15(1): 9–17
CrossRef Pubmed Google scholar
[140]
Kumar P, Saini S, Khan S, Surendra Lele S, Prabhakar BS. Restoring self-tolerance in autoimmune diseases by enhancing regulatory T-cells. Cell Immunol 2019; 339: 41–49
CrossRef Pubmed Google scholar
[141]
Lee CF, Lo YC, Cheng CH, Furtmüller GJ, Oh B, Andrade-Oliveira V, Thomas AG, Bowman CE, Slusher BS, Wolfgang MJ, Brandacher G, Powell JD. Preventing allograft rejection by targeting immune metabolism. Cell Reports 2015; 13(4): 760–770
CrossRef Pubmed Google scholar
[142]
Mori DN, Kreisel D, Fullerton JN, Gilroy DW, Goldstein DR. Inflammatory triggers of acute rejection of organ allografts. Immunol Rev 2014; 258(1): 132–144
CrossRef Pubmed Google scholar
[143]
Lee YS, Zhang T, Bromberg JS, Scalea JR. Myeloid derived suppressor cells (MDSC) home to the allograft and can control t cell responses. Meeting abstract. 2019 American Transplant Congress. 2019. https://atcmeetingabstracts.com/abstract/myeloid-derived-suppressor-cells-mdsc-home-to-the-allograft-and-can-control-t-cell-responses/(accessed December 28, 2019)
[144]
Zhang W, Li J, Qi G, Tu G, Yang C, Xu M. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J Transl Med 2018; 16(1): 19
CrossRef Pubmed Google scholar
[145]
Ochando J, Conde P, Utrero-Rico A, Paz-Artal E. Tolerogenic role of myeloid suppressor cells in organ transplantation. Front Immunol 2019; 10: 374
CrossRef Pubmed Google scholar
[146]
Hock BD, McKenzie JL, Cross NB, Currie MJ. Dynamic changes in myeloid derived suppressor cell subsets following renal transplant: a prospective study. Transpl Immunol 2015; 32(3): 164–171
CrossRef Pubmed Google scholar
[147]
Lee HJ, Park SY, Jeong HJ, Kim HJ, Kim MK, Oh JY. Glucocorticoids induce corneal allograft tolerance through expansion of monocytic myeloid-derived suppressor cells. Am J Transplant 2018; 18(12): 3029–3037
CrossRef Pubmed Google scholar
[148]
Nakao T, Nakamura T, Masuda K, Matsuyama T, Ushigome H, Ashihara E, Yoshimura N. Dexamethasone prolongs cardiac allograft survival in a murine model through myeloid-derived suppressor cells. Transplant Proc 2018; 50(1): 299–304
CrossRef Pubmed Google scholar
[149]
Koehn BH, Apostolova P, Haverkamp JM, Miller JS, McCullar V, Tolar J, Munn DH, Murphy WJ, Brickey WJ, Serody JS, Gabrilovich DI, Bronte V, Murray PJ, Ting JP, Zeiser R, Blazar BR. GVHD-associated, inflammasome-mediated loss of function in adoptively transferred myeloid-derived suppressor cells. Blood 2015; 126(13): 1621–1628
CrossRef Pubmed Google scholar
[150]
Köstlin N, Kugel H, Spring B, Leiber A, Marmé A, Henes M, Rieber N, Hartl D, Poets CF, Gille C. Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur J Immunol 2014; 44(9): 2582–2591
CrossRef Pubmed Google scholar
[151]
Nair RR, Sinha P, Khanna A, Singh K. Reduced myeloid-derived suppressor cells in the blood and endometrium is associated with early miscarriage. Am J Reprod Immunol 2015; 73(6): 479–486
CrossRef Pubmed Google scholar
[152]
Zhu M, Huang X, Yi S, Sun H, Zhou J. High granulocytic myeloid-derived suppressor cell levels in the peripheral blood predict a better IVF treatment outcome. J Matern Fetal Neonatal Med 2019; 32(7): 1092–1097
CrossRef Pubmed Google scholar
[153]
Zhang T, Zhou J, Man GCW, Leung KT, Liang B, Xiao B, Ma X, Huang S, Huang H, Hegde VL, Zhong Y, Li Y, Kong GWS, Yiu AKW, Kwong J, Ng PC, Lessey BA, Nagarkatti PS, Nagarkatti M, Wang CC. MDSCs drive the process of endometriosis by enhancing angiogenesis and are a new potential therapeutic target. Eur J Immunol 2018; 48(6): 1059–1073
CrossRef Pubmed Google scholar
[154]
Casacuberta-Serra S, Costa C, Eixarch H, Mansilla MJ, López-Estévez S, Martorell L, Parés M, Montalban X, Espejo C, Barquinero J. Myeloid-derived suppressor cells expressing a self-antigen ameliorate experimental autoimmune encephalomyelitis. Exp Neurol 2016; 286: 50–60
CrossRef Pubmed Google scholar
[155]
Moliné-Velázquez V, Vila-Del Sol V, de Castro F, Clemente D. Myeloid cell distribution and activity in multiple sclerosis. Histol Histopathol 2016; 31(4): 357–370
Pubmed
[156]
Cantoni C, Cignarella F, Ghezzi L, Mikesell B, Bollman B, Berrien-Elliott MM, Ireland AR, Fehniger TA, Wu GF, Piccio L. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2017; 133(1): 61–77
CrossRef Pubmed Google scholar
[157]
Elliott DM, Singh N, Nagarkatti M, Nagarkatti PS. Cannabidiol attenuates experimental autoimmune encephalomyelitis model of multiple sclerosis through induction of myeloid-derived suppressor cells. Front Immunol 2018; 9: 1782
CrossRef Pubmed Google scholar
[158]
Ioannou M, Alissafi T, Lazaridis I, Deraos G, Matsoukas J, Gravanis A, Mastorodemos V, Plaitakis A, Sharpe A, Boumpas D, Verginis P. Crucial role of granulocytic myeloid-derived suppressor cells in the regulation of central nervous system autoimmune disease. J Immunol 2012; 188(3): 1136–1146
CrossRef Pubmed Google scholar
[159]
Yi H, Guo C, Yu X, Zuo D, Wang XY. Mouse CD11b+Gr-1+ myeloid cells can promote Th17 cell differentiation and experimental autoimmune encephalomyelitis. J Immunol 2012; 189(9): 4295–4304
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Mahmoud Mohammad Yaseen, Nizar Mohammad Abuharfeil, Homa Darmani, and Ammar Daoud declare that this review manuscript was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2899 KB)

Accesses

Citations

Detail

Sections
Recommended

/