Current applications of artificial intelligence for intraoperative decision support in surgery
Allison J. Navarrete-Welton, Daniel A. Hashimoto
Current applications of artificial intelligence for intraoperative decision support in surgery
Research into medical artificial intelligence (AI) has made significant advances in recent years, including surgical applications. This scoping review investigated AI-based decision support systems targeted at the intraoperative phase of surgery and found a wide range of technological approaches applied across several surgical specialties. Within the twenty-one (n=21) included papers, three main categories of motivations were identified for developing such technologies: (1) augmenting the information available to surgeons, (2) accelerating intraoperative pathology, and (3) recommending surgical steps. While many of the proposals hold promise for improving patient outcomes, important methodological shortcomings were observed in most of the reviewed papers that made it difficult to assess the clinical significance of the reported performance statistics. Despite limitations, the current state of this field suggests that a number of opportunities exist for future researchers and clinicians to work on AI for surgical decision support with exciting implications for improving surgical care.
artificial intelligence / decision support / clinical decision support systems / intraoperative / deep learning / computer vision / machine learning / surgery
[1] |
Spencer F. Teaching and measuring surgical techniques: the technical evaluation of competence. Bull Am Coll Surg 1978; 63: 9–12
|
[2] |
Suliburk JW, Buck QM, Pirko CJ, Massarweh NN, Barshes NR, Singh H, Rosengart TK. Analysis of human performance deficiencies associated with surgical adverse events. JAMA Netw Open 2019; 2(7): e198067
CrossRef
Pubmed
Google scholar
|
[3] |
Pugh CM, Santacaterina S, DaRosa DA, Clark RE. Intra-operative decision making: more than meets the eye. J Biomed Inform 2011; 44(3): 486–496
CrossRef
Pubmed
Google scholar
|
[4] |
Hashimoto DA, Axelsson CG, Jones CB, Phitayakorn R, Petrusa E, McKinley SK, Gee D, Pugh C. Surgical procedural map scoring for decision-making in laparoscopic cholecystectomy. Am J Surg 2019; 217(2): 356–361
CrossRef
Pubmed
Google scholar
|
[5] |
Pugh CM, DaRosa DA. Use of cognitive task analysis to guide the development of performance-based assessments for intraoperative decision making. Mil Med 2013; 178(10 Suppl): 22–27
CrossRef
Pubmed
Google scholar
|
[6] |
Flin R, Youngson G, Yule S. How do surgeons make intraoperative decisions? Qual Saf Health Care 2007; 16(3): 235–239
CrossRef
Pubmed
Google scholar
|
[7] |
Hashimoto DA, Rosman G, Witkowski ER, Stafford C, Navarette-Welton AJ, Rattner DW, Lillemoe KD, Rus DL, Meireles OR. Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Ann Surg 2019; 270(3): 414–421
CrossRef
Pubmed
Google scholar
|
[8] |
Hashimoto DA, Rosman G, Rus D, Meireles OR. Artificial intelligence in surgery: promises and perils. Ann Surg 2018; 268(1): 70–76
CrossRef
Pubmed
Google scholar
|
[9] |
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18(8): 500–510
CrossRef
Pubmed
Google scholar
|
[10] |
Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 2019; 16(11): 703–715
CrossRef
Pubmed
Google scholar
|
[11] |
Hogarty DT, Su JC, Phan K, Attia M, Hossny M, Nahavandi S, Lenane P, Moloney FJ, Yazdabadi A. Artificial intelligence in dermatology—where we are and the way to the future: a review. Am J Clin Dermatol 2020; 21(1): 41–47
Pubmed
|
[12] |
Maier-Hein L, Vedula SS, Speidel S, Navab N, Kikinis R, Park A, Eisenmann M, Feussner H, Forestier G, Giannarou S, Hashizume M, Katic D, Kenngott H, Kranzfelder M, Malpani A, März K, Neumuth T, Padoy N, Pugh C, Schoch N, Stoyanov D, Taylor R, Wagner M, Hager GD, Jannin P. Surgical data science for next-generation interventions. Nat Biomed Eng 2017; 1(9): 691–696
CrossRef
Pubmed
Google scholar
|
[13] |
Udelsman R, Donovan P, Shaw C. Cure predictability during parathyroidectomy. World J Surg 2014; 38(3): 525–533
CrossRef
Pubmed
Google scholar
|
[14] |
Harangi B, Hajdu A, Lampe R, Torok P. Recognizing ureter and uterine artery in endoscopic images using a convolutional neural network. In: 2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS). 2017. 726–727. doi: 10.1109/CBMS.2017.137
|
[15] |
André B, Vercauteren T, Buchner AM, Wallace MB, Ayache N. Endomicroscopic video retrieval using mosaicing and visualwords. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2010. doi: 10.1109/isbi.2010.5490265
|
[16] |
André B, Vercauteren T, Buchner AM, Wallace MB, Ayache N. Learning semantic and visual similarity for endomicroscopy video retrieval. IEEE Trans Med Imaging 2012; 31(6): 1276–1288
CrossRef
Pubmed
Google scholar
|
[17] |
André B, Vercauteren T, Perchant A, Buchner A, Wallace M, Ayache N. Endomicroscopic image retrieval and classification using invariant visual features. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. 2009. doi: 10.1109/isbi.2009.5193055
|
[18] |
Kohandani Tafresh M, Linard N, André B, Ayache N, Vercauteren T. Semi-automated query construction for content-based endomicroscopy video retrieval. In: Medical Image Computing and Computer-Assisted Intervention — MICCAI 2014. Springer International Publishing, 2014. 89–96. doi: 10.1007/978-3-319-10404-1_12
|
[19] |
Gu Y, Yang J, Yang GZ. Multi-view multi-modal feature embedding for endomicroscopy mosaic classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2016. 11–19
|
[20] |
Gu Y, Vyas K, Yang J, Yang GZ. Unsupervised feature learning for endomicroscopy image retrieval. In: Medical Image Computing and Computer Assisted Intervention — MICCAI 2017. Springer International Publishing, 2017. 64–71 doi: 10.1007/978-3-319-66179-7_8
|
[21] |
Quellec G, Lamard M, Cazuguel G, Droueche Z, Roux C, Cochener B. Real-time retrieval of similar videos with application to computer-aided retinal surgery. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 4465–4468
CrossRef
Pubmed
Google scholar
|
[22] |
Ritschel K, Pechlivanis I, Winter S. Brain tumor classification on intraoperative contrast-enhanced ultrasound. Int J CARS 2015; 10(5): 531–540
CrossRef
Pubmed
Google scholar
|
[23] |
Ilunga-Mbuyamba E, Lindner D, Avina-Cervantes J, Arlt F, Rostro-Gonzalez H, Cruz-Aceves I, Chalopin C. Fusion of intraoperative 3D B-mode and contrast-enhanced ultrasound data for automatic identification of residual brain tumors. Appl Sci (Basel) 2017; 7(4): 415
CrossRef
Google scholar
|
[24] |
Dollar P, Tu Z, Perona P, Belongie S. Integral channel features. In: Procedings of the British Machine Vision Conference. 2009. doi: 10.5244/c.23.91
|
[25] |
Wan S, Sun S, Bhattacharya S, Kluckner S, Gigler A, Simon E, Fleischer M, Charalampaki P, Chen T, Kamen A. Towards an efficient computational framework for guiding surgical resection through intra-operative endo-microscopic pathology. In: Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015. Springer International Publishing, 2015. 421–429. doi: 10.1007/978-3-319-24553-9_52
|
[26] |
Kamen A, Sun S, Wan S, Kluckner S, Chen T, Gigler AM, Simon E, Fleischer M, Javed M, Daali S, Igressa A, Charalampaki P. Automatic tissue differentiation based on confocal endomicroscopic images for intraoperative guidance in neurosurgery. BioMed Res Int 2016; 2016: 6183218
CrossRef
Pubmed
Google scholar
|
[27] |
Li Y, Charalampaki P, Liu Y, Yang GZ, Giannarou S. Context aware decision support in neurosurgical oncology based on an efficient classification of endomicroscopic data. Int J CARS 2018; 13(8): 1187–1199
CrossRef
Pubmed
Google scholar
|
[28] |
Couceiro S, Barreto JP, Freire P, Figueiredo P. Description and classification of confocal endomicroscopic images for the automatic diagnosis of inflammatory bowel disease. In: Machine Learning in Medical Imaging. Springer Berlin Heidelberg, 2012. 144–151. doi: 10.1007/978-3-642-35428-1_18
|
[29] |
Halicek M, Lu G, Little JV, Wang X, Patel M, Griffith CC, El-Deiry MW, Chen AY, Fei B. Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging. J Biomed Opt 2017; 22(6): 60503
CrossRef
Pubmed
Google scholar
|
[30] |
Halicek M, Little JV, Wang X, Patel M, Griffith CC, El-Deiry MW, Chen AY, Fei B. Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks. Proc SPIE Int Soc Opt Eng 2018; 104690X doi: 10.1117/12.2289023
CrossRef
Pubmed
Google scholar
|
[31] |
Fabelo H, Halicek M, Ortega S, Shahedi M, Szolna A, Piñeiro JF, Sosa C, O’Shanahan AJ, Bisshopp S, Espino C, Márquez M, Hernández M, Carrera D, Morera J, Callico GM, Sarmiento R, Fei B. Deep learning-based framework for in vivo identification of glioblastoma tumor using hyperspectral images of human brain. Sensors (Basel) 2019; 19(4): 920
CrossRef
Pubmed
Google scholar
|
[32] |
Hou F, Liang Y, Yang Z, Gu W, Yu Y. Automatic identification of metastatic lymph nodes in OCT images. Proceedings Volume 10867, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIII; 108673G. 2019. doi: 10.1117/12.2511588
CrossRef
Google scholar
|
[33] |
Tian S, Yin XC, Wang ZB, Zhou F, Hao HW. A VidEo-Based Intelligent Recognition and Decision System for the phacoemulsification cataract surgery. Comput Math Methods Med 2015; 2015: 202934
CrossRef
Pubmed
Google scholar
|
[34] |
Fan B, Li HX, Hu Y. An intelligent decision system for intraoperative somatosensory evoked potential monitoring. IEEE Trans Neural Syst Rehabil Eng 2016; 24(2): 300–307
CrossRef
Pubmed
Google scholar
|
[35] |
Gordon L, Grantcharov T, Rudzicz F. Explainable artificial intelligence for safe intraoperative decision support. JAMA Surg 2019; 154(11): 1064
CrossRef
Pubmed
Google scholar
|
[36] |
Lalys F, Jannin P. Surgical process modelling: a review. Int J CARS 2014; 9(3): 495–511
CrossRef
Pubmed
Google scholar
|
[37] |
Krause J, Gulshan V, Rahimy E, Karth P, Widner K, Corrado GS, Peng L, Webster DR. Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 2018; 125(8): 1264–1272
CrossRef
Pubmed
Google scholar
|
[38] |
Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, Ebert SA, Pomerantz SR, Romero JM, Kamalian S, Gonzalez RG, Lev MH, Do S. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019; 3(3): 173–182
CrossRef
Pubmed
Google scholar
|
[39] |
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639): 115–118
CrossRef
Pubmed
Google scholar
|
[40] |
Safdar NM, Banja JD, Meltzer CC. Ethical considerations in artificial intelligence. Eur J Radiol 2020; 122: 108768
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |