Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition
Baokai Dou, Shichun Li, Luyao Wei, Lixin Wang, Shiguo Zhu, Zhengtao Wang, Zunji Ke, Kaixian Chen, Zhifei Wang
Astragaloside IV suppresses post-ischemic natural killer cell infiltration and activation in the brain: involvement of histone deacetylase inhibition
Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2+ NK cell levels in the ischemic brain. Meanwhile, ASIV attenuated NK cell activating receptor NKG2D levels and reduced interferon-γ production. ASIV restored acetylation of histone H3 and the p65 subunit of nuclear factor-κB in the ischemic brain, suggesting inhibition of histone deacetylase (HDAC). Simultaneously, ASIV prevented p65 nuclear translocation. The effects of ASIV on reducing CCL2 production, restoring acetylated p65 levels and preventing p65 nuclear translocation were mimicked by valproate, an HDAC inhibitor, in astrocytes subjected to oxygen-glucose deprivation. Our findings suggest that ASIV inhibits post-ischemic NK cell brain infiltration and activation and reverses NK cell deficiency in the periphery, which together contribute to the beneficial effects of ASIV against brain ischemia. Furthermore, ASIV’s effects on suppressing NK cell brain infiltration and activation may involve HDAC inhibition.
astragaloside IV / brain ischemia / natural killer cells / histone deacetylase / nuclear factor-κB
[1] |
Shi K, Tian DC, Li ZG, Ducruet AF, Lawton MT, Shi FD. Global brain inflammation in stroke. Lancet Neurol 2019; 18(11): 1058–1066
CrossRef
Pubmed
Google scholar
|
[2] |
Fu Y, Liu Q, Anrather J, Shi FD. Immune interventions in stroke. Nat Rev Neurol 2015; 11(9): 524–535
CrossRef
Pubmed
Google scholar
|
[3] |
Iadecola C, Anrather J. The immunology of stroke: from mechanisms to translation. Nat Med 2011; 17(7): 796–808
CrossRef
Pubmed
Google scholar
|
[4] |
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S. Innate or adaptive immunity? The example of natural killer cells. Science 2011; 331(6013): 44–49
CrossRef
Pubmed
Google scholar
|
[5] |
Gan Y, Liu Q, Wu W, Yin JX, Bai XF, Shen R, Wang Y, Chen J, La Cava A, Poursine-Laurent J, Yokoyama W, Shi FD. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc Natl Acad Sci USA 2014; 111(7): 2704–2709
CrossRef
Pubmed
Google scholar
|
[6] |
Zhang Y, Gao Z, Wang D, Zhang T, Sun B, Mu L, Wang J, Liu Y, Kong Q, Liu X, Zhang Y, Zhang H, He J, Li H, Wang G. Accumulation of natural killer cells in ischemic brain tissues and the chemotactic effect of IP-10. J Neuroinflammation 2014; 11(1): 79
CrossRef
Pubmed
Google scholar
|
[7] |
Chen C, Ai QD, Chu SF, Zhang Z, Chen NH. NK cells in cerebral ischemia. Biomed Pharmacother 2019; 109: 547–554
CrossRef
Pubmed
Google scholar
|
[8] |
Hao CZ, Wu F, Shen J, Lu L, Fu DL, Liao WJ, Zheng GQ. Clinical efficacy and safety of Buyang Huanwu Decoction for acute ischemic stroke: a systematic review and meta-analysis of 19 randomized controlled trials. Evid Based Complement Alternat Med 2012; 2012: 630124
CrossRef
Pubmed
Google scholar
|
[9] |
Duan X, Wu J, Wang K, Liu S, Zhang D, Zhang X, Zhang B. Meta-analysis of efficacy of Huangqi Injection in the treatment of cerebral infarction. Chin J Pharmacoepidemiol (Yao Wu Liu Xing Bing Xue Za Zhi) 2017; (9): 607–612 (in Chinese)
|
[10] |
Lai PK, Chan JY, Cheng L, Lau CP, Han SQ, Leung PC, Fung KP, Lau CB. Isolation of anti-inflammatory fractions and compounds from the root of Astragalus membranaceus. Phytother Res 2013; 27(4): 581–587
CrossRef
Pubmed
Google scholar
|
[11] |
Wang HL, Zhou QH, Xu MB, Zhou XL, Zheng GQ. Astragaloside IV for experimental focal cerebral ischemia: preclinical evidence and possible mechanisms. Oxid Med Cell Longev 2017; 2017: 8424326
CrossRef
Pubmed
Google scholar
|
[12] |
Wang YP, Li XY, Song CQ, Hu ZB. Effect of astragaloside IV on T, B lymphocyte proliferation and peritoneal macrophage function in mice. Acta Pharmacol Sin 2002; 23(3): 263–266
Pubmed
|
[13] |
Yang L, Xing F, Han X, Li Q, Wu H, Shi H, Wang Z, Huang F, Wu X. Astragaloside IV regulates differentiation and induces apoptosis of activated CD4+ T cells in the pathogenesis of experimental autoimmune encephalomyelitis. Toxicol Appl Pharmacol 2019; 362: 105–115
CrossRef
Pubmed
Google scholar
|
[14] |
Dou B, Zhou W, Li S, Wang L, Wu X, Li Y, Guan H, Wang C, Zhu S, Ke Z, Huang C, Wang Z. Buyang Huanwu Decoction attenuates infiltration of natural killer cells and protects against ischemic brain injury. Cell Physiol Biochem 2018; 50(4): 1286–1300
CrossRef
Pubmed
Google scholar
|
[15] |
Wang Z, Leng Y, Wang J, Liao HM, Bergman J, Leeds P, Kozikowski A, Chuang DM. Tubastatin A, an HDAC6 inhibitor, alleviates stroke-induced brain infarction and functional deficits: potential roles of α-tubulin acetylation and FGF-21 up-regulation. Sci Rep 2016; 6(1): 19626
CrossRef
Pubmed
Google scholar
|
[16] |
Wang Z, Tsai LK, Munasinghe J, Leng Y, Fessler EB, Chibane F, Leeds P, Chuang DM. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012; 43(9): 2430–2436
CrossRef
Pubmed
Google scholar
|
[17] |
Wang Z, Leng Y, Tsai LK, Leeds P, Chuang DM. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 2011; 31(1): 52–57
CrossRef
Pubmed
Google scholar
|
[18] |
Wang ZF, Tang XC. Huperzine A protects C6 rat glioma cells against oxygen-glucose deprivation-induced injury. FEBS Lett 2007; 581(4): 596–602
CrossRef
Pubmed
Google scholar
|
[19] |
Giorda R, Rudert WA, Vavassori C, Chambers WH, Hiserodt JC, Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science 1990; 249(4974): 1298–1300
CrossRef
Pubmed
Google scholar
|
[20] |
Lehmann J, Härtig W, Seidel A, Füldner C, Hobohm C, Grosche J, Krueger M, Michalski D. Inflammatory cell recruitment after experimental thromboembolic stroke in rats. Neuroscience 2014; 279: 139–154
CrossRef
Pubmed
Google scholar
|
[21] |
Mirabelli-Badenier M, Braunersreuther V, Viviani GL, Dallegri F, Quercioli A, Veneselli E, Mach F, Montecucco F. CC and CXC chemokines are pivotal mediators of cerebral injury in ischaemic stroke. Thromb Haemost 2011; 105(3): 409–420
CrossRef
Pubmed
Google scholar
|
[22] |
Wang X, Yue TL, Barone FC, Feuerstein GZ. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke 1995; 26(4): 661–666
CrossRef
Pubmed
Google scholar
|
[23] |
Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab 2002; 22(3): 308–317
CrossRef
Pubmed
Google scholar
|
[24] |
Dimitrijevic OB, Stamatovic SM, Keep RF, Andjelkovic AV. Absence of the chemokine receptor CCR2 protects against cerebral ischemia/reperfusion injury in mice. Stroke 2007; 38(4): 1345–1353
CrossRef
Pubmed
Google scholar
|
[25] |
Strecker JK, Minnerup J, Schütte-Nütgen K, Gess B, Schäbitz WR, Schilling M. Monocyte chemoattractant protein-1-deficiency results in altered blood-brain barrier breakdown after experimental stroke. Stroke 2013; 44(9): 2536–2544
CrossRef
Pubmed
Google scholar
|
[26] |
Ueda A, Okuda K, Ohno S, Shirai A, Igarashi T, Matsunaga K, Fukushima J, Kawamoto S, Ishigatsubo Y, Okubo T. NF-κB and Sp1 regulate transcription of the human monocyte chemoattractant protein-1 gene. J Immunol 1994; 153(5): 2052–2063
Pubmed
|
[27] |
Huang B, Yang XD, Lamb A, Chen LF. Posttranslational modifications of NF-κB: another layer of regulation for NF-κB signaling pathway. Cell Signal 2010; 22(9): 1282–1290
CrossRef
Pubmed
Google scholar
|
[28] |
Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW. Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23(12): 2369–2380
CrossRef
Pubmed
Google scholar
|
[29] |
Liu Y, Smith PW, Jones DR. Breast cancer metastasis suppressor 1 functions as a corepressor by enhancing histone deacetylase 1-mediated deacetylation of RelA/p65 and promoting apoptosis. Mol Cell Biol 2006; 26(23): 8683–8696
CrossRef
Pubmed
Google scholar
|
[30] |
Chen Lf, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-κB action regulated by reversible acetylation. Science 2001; 293(5535): 1653–1657
CrossRef
Pubmed
Google scholar
|
[31] |
Seto E, Yoshida M. Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 2014; 6(4): a018713
CrossRef
Pubmed
Google scholar
|
[32] |
Yilmaz G, Arumugam TV, Stokes KY, Granger DN. Role of T lymphocytes and interferon-γ in ischemic stroke. Circulation 2006; 113(17): 2105–2112
CrossRef
Pubmed
Google scholar
|
[33] |
Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285(5428): 727–729
CrossRef
Pubmed
Google scholar
|
[34] |
Ellmeier W, Seiser C. Histone deacetylase function in CD4+ T cells. Nat Rev Immunol 2018; 18(10): 617–634
CrossRef
Pubmed
Google scholar
|
[35] |
Bhat J, Dubin S, Dananberg A, Quabius ES, Fritsch J, Dowds CM, Saxena A, Chitadze G, Lettau M, Kabelitz D. Histone deacetylase inhibitor modulates NKG2D receptor expression and memory phenotype of human γ/δ T cells upon interaction with tumor cells. Front Immunol 2019; 10: 569
CrossRef
Pubmed
Google scholar
|
[36] |
López-Cobo S, Pieper N, Campos-Silva C, García-Cuesta EM, Reyburn HT, Paschen A, Valés-Gómez M. Impaired NK cell recognition of vemurafenib-treated melanoma cells is overcome by simultaneous application of histone deacetylase inhibitors. OncoImmunology 2017; 7(2): e1392426
CrossRef
Pubmed
Google scholar
|
[37] |
Ni L, Wang L, Yao C, Ni Z, Liu F, Gong C, Zhu X, Yan X, Watowich SS, Lee DA, Zhu S. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci Rep 2017; 7: 45266
CrossRef
Pubmed
Google scholar
|
[38] |
Ziesché E, Kettner-Buhrow D, Weber A, Wittwer T, Jurida L, Soelch J, Müller H, Newel D, Kronich P, Schneider H, Dittrich-Breiholz O, Bhaskara S, Hiebert SW, Hottiger MO, Li H, Burstein E, Schmitz ML, Kracht M. The coactivator role of histone deacetylase 3 in IL-1-signaling involves deacetylation of p65 NF-κB. Nucleic Acids Res 2013; 41(1): 90–109
CrossRef
Pubmed
Google scholar
|
[39] |
Leus NG, Zwinderman MR, Dekker FJ. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr Opin Chem Biol 2016; 33: 160–168
CrossRef
Pubmed
Google scholar
|
[40] |
Meisel C, Meisel A. Suppressing immunosuppression after stroke. N Engl J Med 2011; 365(22): 2134–2136
CrossRef
Pubmed
Google scholar
|
[41] |
Liu Q, Jin WN, Liu Y, Shi K, Sun H, Zhang F, Zhang C, Gonzales RJ, Sheth KN, La Cava A, Shi FD. Brain ischemia suppresses immunity in the periphery and brain via different neurogenic innervations. Immunity 2017; 46(3): 474–487
CrossRef
Pubmed
Google scholar
|
[42] |
Liu R, Jiang H, Tian Y, Zhao W, Wu X. Astragaloside IV protects against polymicrobial sepsis through inhibiting inflammatory response and apoptosis of lymphocytes. J Surg Res 2016; 200(1): 315–323
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |