Application of artificial intelligence in surgery

Xiao-Yun Zhou , Yao Guo , Mali Shen , Guang-Zhong Yang

Front. Med. ›› 2020, Vol. 14 ›› Issue (4) : 417 -430.

PDF (1005KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (4) : 417 -430. DOI: 10.1007/s11684-020-0770-0
REVIEW
REVIEW

Application of artificial intelligence in surgery

Author information +
History +
PDF (1005KB)

Abstract

Artificial intelligence (AI) is gradually changing the practice of surgery with technological advancements in imaging, navigation, and robotic intervention. In this article, we review the recent successful and influential applications of AI in surgery from preoperative planning and intraoperative guidance to its integration into surgical robots. We conclude this review by summarizing the current state, emerging trends, and major challenges in the future development of AI in surgery.

Keywords

artificial intelligence / surgical autonomy / medical robotics / deep learning

Cite this article

Download citation ▾
Xiao-Yun Zhou, Yao Guo, Mali Shen, Guang-Zhong Yang. Application of artificial intelligence in surgery. Front. Med., 2020, 14(4): 417-430 DOI:10.1007/s11684-020-0770-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vitiello V, Lee SL, Cundy TP, Yang GZ. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng 2013; 6: 111–126

[2]

Troccaz J, Dagnino G, Yang GZ. Frontiers of medical robotics: from concept to systems to clinical translation. Annu Rev Biomed Eng 2019; 21(1): 193–218

[3]

Yang GZ. Body Sensor Networks. New York: Springer, 2014

[4]

Yang GZ. Implantable Sensors and Systems: from Theory to Practice. New York: Springer, 2018

[5]

Shortliffe E. Computer-Based Medical Consultations: MYCIN. Amsterdam: Elsevier, 2012. Vol. 2

[6]

Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS). Lake Tahoe. 2012: 1097–1105

[7]

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42: 60–88

[8]

Khosravi P, Kazemi E, Imielinski M, Elemento O, Hajirasouliha I. Deep convolutional neural networks enable discrimination of heterogeneous digital pathology images. EBioMedicine 2018; 27: 317–328

[9]

Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018; 392(10162): 2388–2396

[10]

Meyer A, Zverinski D, Pfahringer B, Kempfert J, Kuehne T, Sündermann SH, Stamm C, Hofmann T, Falk V, Eickhoff C. Machine learning for real-time prediction of complications in critical care: a retrospective study. Lancet Respir Med 2018; 6(12): 905–914

[11]

Li X, Zhang S, Zhang Q, Wei X, Pan Y, Zhao J, Xin X, Qin C, Wang X, Li J, Yang F, Zhao Y, Yang M, Wang Q, Zheng Z, Zheng X, Yang X, Whitlow CT, Gurcan MN, Zhang L, Wang X, Pasche BC, Gao M, Zhang W, Chen K. Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol 2019; 20(2): 193–201

[12]

Rubinstein E, Salhov M, Nidam-Leshem M, White V, Golan S, Baniel J, Bernstine H, Groshar D, Averbuch A. Unsupervised tumor detection in dynamic PET/CT imaging of the prostate. Med Image Anal 2019; 55: 27–40

[13]

Winkels M, Cohen TS. Pulmonary nodule detection in CT scans with equivariant CNNs. Med Image Anal 2019; 55: 15–26

[14]

Maicas G, Carneiro G, Bradley AP, Nascimento JC, Reid I. Deep reinforcement learning for active breast lesion detection from DCE-MRI. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 665–673

[15]

Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, Ebert SA, Pomerantz SR, Romero JM, Kamalian S, Gonzalez RG, Lev MH, Do S. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019; 3(3): 173–182

[16]

Kamnitsas K, Ledig C, Newcombe VFJ, Simpson JP, Kane AD, Menon DK, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017; 36: 61–78

[17]

Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston. 2015: 3431–3440

[18]

Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2015: 234–241

[19]

Cicek O, Abdulkadir A, Lienkamp SS, Brox T, Ronneberger O. 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2016: 424–432

[20]

Zhou XY, Yang GZ. Normalization in training U-Net for 2D biomedical semantic segmentation. IEEE Robot Autom Lett 2019; 4(2): 1792–1799

[21]

Gibson E, Giganti F, Hu Y, Bonmati E, Bandula S, Gurusamy K, Davidson B, Pereira SP, Clarkson MJ, Barratt DC. Automatic multi-organ segmentation on abdominal CT with dense V-networks. IEEE Trans Med Imaging 2018; 37(8): 1822–1834

[22]

Wang G, Li W, Zuluaga MA, Pratt R, Patel PA, Aertsen M, Doel T, David AL, Deprest J, Ourselin S, Vercauteren T. Interactive medical image segmentation using deep learning with image-specific fine tuning. IEEE Trans Med Imaging 2018; 37(7): 1562–1573

[23]

Laina I, Rieke N, Rupprecht C, Vizca’ıno JP, Eslami A, Tombari F, Navab N. Concurrent segmentation and localization for tracking of surgical instruments. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 664–672

[24]

Feng X, Yang J, Laine AF, Angelini ED. Discriminative localization in CNNs for weakly-supervised segmentation of pulmonary nodules. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 568–576

[25]

Bai W, Chen C, Tarroni G, Duan J, Guitton F, Petersen SE, Guo Y, Matthews PM, Rueckert D. Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: International Conference on Medical Image Computing and Computer Assisted Intervention. New York: Springer, 2019: 541–549

[26]

Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 2019: 38(8): 1788–1800

[27]

Shen Z, Han X, Xu Z, Niethammer M. Networks for joint affine and non-parametric image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach. 2019: 4224–4233

[28]

Hu Y, Modat M, Gibson E, Li W, Ghavami N, Bonmati E, Wang G, Bandula S, Moore CM, Emberton M, Ourselin S, Noble JA, Barratt DC, Vercauteren T. Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal 2018; 49: 1–13

[29]

Miao S, Piat S, Fischer P, Tuysuzoglu A, Mewes P, Mansi T, Liao R. Dilated FCN for multi-agent 2D/3D medical image registration. In: Proceedings of AAAI Conference on Artificial Intelligence. New Orleans. 2018

[30]

Sokooti H, de Vos B, Berendsen F, Lelieveldt BP, Iˇsgum I, Staring M. Nonrigid image registration using multi-scale 3D convolutional neural networks. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 232–239

[31]

Liao R, Miao S, de Tournemire P, Grbic S, Kamen A, Mansi T, Comaniciu D. An artificial agent for robust image registration. In: Proceedings of AAAI Conference on Artificial Intelligence. San Francisco. 2017

[32]

Cool D, Downey D, Izawa J, Chin J, Fenster A. 3D prostate model formation from non-parallel 2D ultrasound biopsy images. Med Image Anal 2006; 10(6): 875–887

[33]

Zhou X, Yang G, Riga C, Lee S. Stent graft shape instantiation for fenestrated endovascular aortic repair. In: The Hamlyn Symposium on Medical Robotics. London. 2017

[34]

Zhou XY, Lin J, Riga C, Yang GZ, Lee SL. Real-time 3D shape instantiation from single fluoroscopy projection for fenestrated stent graft deployment. IEEE Robot Autom Lett 2018; 3(2): 1314–1321

[35]

Zheng JQ, Zhou XY, Riga C, Yang GZ. Real-time 3D shape instantiation for partially deployed stent segments from a single 2D fluoroscopic image in fenestrated endovascular aortic repair. IEEE Robot Autom Lett 2019; 4(4): 3703–3710

[36]

Zhou XY, Riga C, Lee SL, Yang GZ. Towards automatic 3D shape instantiation for deployed stent grafts: 2D multiple-class and class-imbalance marker segmentation with equally-weighted focal U-Net. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1261–1267

[37]

Zheng JQ, Zhou XY, Riga C, Yang GZ. Towards 3D path planning from a single 2D fluoroscopic image for robot assisted fenestrated endovascular aortic repair. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019: 8747–8753

[38]

Lee SL, Chung A, Lerotic M, Hawkins MA, Tait D, Yang GZ. Dynamic shape instantiation for intra-operative guidance. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2010: 69–76

[39]

Zhou XY, Yang GZ, Lee SL. A real-time and registration-free framework for dynamic shape instantiation. Med Image Anal 2018; 44: 86–97

[40]

Zhou XY, Wang ZY, Li P, Zheng JQ, Yang GZ. One stage shape instantiation from a single 2D image to 3D point cloud. In: International Conference on Medical Image Computing and Computer Assisted Intervention. New York: Springer, 2019: 30–38

[41]

Mahmood F, Durr NJ. Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy. Med Image Anal 2018; 48: 230–243

[42]

Mahmood F, Chen R, Durr NJ. Unsupervised reverse domain adaptation for synthetic medical images via adversarial training. IEEE Trans Med Imaging 2018; 37(12): 2572–2581

[43]

Turan M, Ornek EP, Ibrahimli N, Giracoglu C, Almalioglu Y, Yanik MF, Sitti M. Unsupervised odometry and depth learning for endoscopic capsule robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 1801–1807

[44]

Shen M, Gu Y, Liu N, Yang GZ. Context-aware depth and pose estimation for bronchoscopic navigation. IEEE Robot Autom Lett 2019; 4(2): 732–739

[45]

Zhou T, Brown M, Snavely N, Lowe DG. Unsupervised learning of depth and ego-motion from video. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hawaii. 2017

[46]

Zhan H, Garg R, Saroj Weerasekera C, Li K, Agarwal H, Reid I. Unsupervised learning of monocular depth estimation and visual odometry with deep feature reconstruction. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City. 2018

[47]

Ye M, Johns E, Handa A, Zhang L, Pratt P, Yang GZ. Selfsupervised siamese learning on stereo image pairs for depth estimation in robotic surgery. In: The Hamlyn Symposium on Medical Robotics. London. 2017: 27

[48]

Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV). Venice. 2017: 2223–2232

[49]

Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. Deep endovo: a recurrent convolutional neural network (RCNN) based visual odometry approach for endoscopic capsule robots. Neurocomputing 2018; 275: 1861–1870

[50]

Sganga J, Eng D, Graetzel C, Camarillo D. Offsetnet: deep learning for localization in the lung using rendered images. In: 2019 International Conference on Robotics and Automation (ICRA). Montreal: IEEE, 2019: 5046–5052

[51]

Mountney P, Stoyanov D, Davison A, Yang GZ. Simultaneous stereoscope localization and soft-tissue mapping for minimal invasive surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2006: 347–354

[52]

Davison AJ, Reid ID, Molton ND, Stasse O. MonoSLAM: real-time single camera SLAM. IEEE Trans Pattern Anal Mach Intell 2007; 29(6): 1052–1067

[53]

Mountney P, Yang GZ. Motion compensated SLAM for image guided surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2010: 496–504

[54]

Grasa OG, Bernal E, Casado S, Gil I, Montiel JM. Visual SLAM for handheld monocular endoscope. IEEE Trans Med Imaging 2014; 33(1): 135–146

[55]

Turan M, Almalioglu Y, Araujo H, Konukoglu E, Sitti M. A non-rigid map fusion-based direct SLAM method for endoscopic capsule robots. Int J Intell Robot Appl 2017; 1(4): 399–409

[56]

Song J, Wang J, Zhao L, Huang S, Dissanayake G. MISSLAM: real-time large-scale dense deformable SLAM system in minimal invasive surgery based on heterogeneous computing. IEEE Robot Autom Lett 2018; 3(4): 4068–4075

[57]

Zhou XY, Ernst S, Lee SL. Path planning for robot-enhanced cardiac radiofrequency catheter ablation. In: 2016 IEEE international conference on robotics and automation (ICRA). Stockholm: IEEE, 2016: 4172–4177

[58]

Shi C, Giannarou S, Lee SL, Yang GZ. Simultaneous catheter and environment modeling for trans-catheter aortic valve implantation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Chicago: IEEE, 2014: 2024–2029

[59]

Zhao L, Giannarou S, Lee SL, Yang GZ. SCEM+: real-time robust simultaneous catheter and environment modeling for endovascular navigation. IEEE Robot Autom Lett 2016; 1(2): 961–968

[60]

Zhao L, Giannarou S, Lee SL, Yang GZ. Registration-free simultaneous catheter and environment modelling. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2016: 525–533

[61]

Mountney P, Yang GZ. Soft tissue tracking for minimally invasive surgery: learning local deformation online. In: Proceedings of International Conference on Medical Image Computing and ComputerAssisted Intervention (MICCAI). New York: Springer, 2008: 364–372

[62]

Ye M, Giannarou S, Meining A, Yang GZ. Online tracking and retargeting with applications to optical biopsy in gastrointestinal endoscopic examinations. Med Image Anal 2016; 30: 144–157

[63]

Wang R, Zhang M, Meng X, Geng Z, Wang FY. 3D tracking for augmented reality using combined region and dense cues in endoscopic surgery. IEEE J Biomed Health Inform 2018; 22(5): 1540–1551

[64]

Bernhardt S, Nicolau SA, Soler L, Doignon C. The status of augmented reality in laparoscopic surgery as of 2016. Med Image Anal 2017; 37: 66–90

[65]

Wang J, Suenaga H, Hoshi K, Yang L, Kobayashi E, Sakuma I, Liao H. Augmented reality navigation with automatic marker-free image registration using 3-D image overlay for dental surgery. IEEE Trans Biomed Eng 2014; 61(4): 1295–1304

[66]

Pratt P, Ives M, Lawton G, Simmons J, Radev N, Spyropoulou L, Amiras D. Through the HoloLensTM looking glass: augmented reality for extremity reconstruction surgery using 3D vascular models with perforating vessels. Eur Radiol Exp 2018; 2(1): 2

[67]

Zhang X, Wang J, Wang T, Ji X, Shen Y, Sun Z, Zhang X. A markerless automatic deformable registration framework for augmented reality navigation of laparoscopy partial nephrectomy. Int J CARS 2019; 14(8): 1285–1294

[68]

Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25(1): 44–56

[69]

Mirnezami R, Ahmed A. Surgery 3.0, artificial intelligence and the next-generation surgeon. Br J Surg 2018; 105(5): 463–465

[70]

Bouget D, Benenson R, Omran M, Riffaud L, Schiele B, Jannin P. Detecting surgical tools by modelling local appearance and global shape. IEEE Trans Med Imaging 2015; 34(12): 2603–2617

[71]

Shvets AA, Rakhlin A, Kalinin AA, Iglovikov VI. Automatic instrument segmentation in robot-assisted surgery using deep learning. In: Proceedings of IEEE International Conference on Machine Learning and Applications (ICMLA). Stockholm: IEEE, 2018: 624–628

[72]

Islam M, Atputharuban DA, Ramesh R, Ren H. Real-time instrument segmentation in robotic surgery using auxiliary supervised deep adversarial learning. IEEE Robot Autom Lett 2019; 4(2): 2188–2195

[73]

Sznitman R, Richa R, Taylor RH, Jedynak B, Hager GD. Unified detection and tracking of instruments during retinal microsurgery. IEEE Trans Pattern Anal Mach Intell 2013; 35(5): 1263–1273

[74]

Zhang L, Ye M, Chan PL, Yang GZ. Real-time surgical tool tracking and pose estimation using a hybrid cylindrical marker. Int J CARS 2017; 12(6): 921–930

[75]

Ye M, Zhang L, Giannarou S, Yang GZ. Real-time 3D tracking of articulated tools for robotic surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2016: 386–394

[76]

Zhao Z, Voros S, Weng Y, Chang F, Li R. Tracking-by-detection of surgical instruments in minimally invasive surgery via the convolutional neural network deep learning-based method. Comput Assist Surg (Abingdon) 2017; 22(sup1): 26–35

[77]

Nwoye CI, Mutter D, Marescaux J, Padoy N. Weakly supervised convolutional LSTM approach for tool tracking in laparoscopic videos. Int J CARS 2019; 14(6): 1059–1067

[78]

Sarikaya D, Corso JJ, Guru KA. Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans Med Imaging 2017; 36(7): 1542–1549

[79]

Kurmann T, Neila PM, Du X, Fua P, Stoyanov D, Wolf S, Sznitman R. Simultaneous recognition and pose estimation of instruments in minimally invasive surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2017: 505–513

[80]

Padoy N, Hager GD. 3D thread tracking for robotic assistance in tele-surgery. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). San Francisco: IEEE, 2011: 2102–2107

[81]

Hu Y, Gu Y, Yang J, Yang GZ. Multi-stage suture detection for robot assisted anastomosis based on deep learning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Brisbane: IEEE, 2018: 1–8

[82]

Gu Y, Hu Y, Zhang L, Yang J, Yang GZ. Cross-scene suture thread parsing for robot assisted anastomosis based on joint feature learning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 769–776

[83]

Aviles AI, Alsaleh SM, Hahn JK, Casals A. Towards retrieving force feedback in robotic-assisted surgery: a supervised neuro-recurrent-vision approach. IEEE Trans Haptics 2017; 10(3): 431–443

[84]

Marban A, Srinivasan V, Samek W, Ferna’ndez J, Casals A. Estimation of interaction forces in robotic surgery using a semisupervised deep neural network model. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 761–768

[85]

Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng 2017; 64(9): 2025–2041

[86]

Fard MJ, Ameri S, Chinnam RB, Ellis RD. Soft boundary approach for unsupervised gesture segmentation in robotic-assisted surgery. IEEE Robot Autom Lett 2017; 2(1): 171–178

[87]

Krishnan S, Garg A, Patil S, Lea C, Hager G, Abbeel P, Goldberg K. Transition state clustering: unsupervised surgical trajectory segmentation for robot learning. Int J Robot Res 2017; 36(13–14): 1595–1618

[88]

Murali A, Garg A, Krishnan S, Pokorny FT, Abbeel P, Darrell T, Goldberg K. TSC-DL: unsupervised trajectory segmentation of multi-modal surgical demonstrations with deep learning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Stockholm: IEEE, 2016: 4150–4157

[89]

Zappella L, Béjar B, Hager G, Vidal R. Surgical gesture classification from video and kinematic data. Med Image Anal 2013; 17(7): 732–745

[90]

Tao L, Zappella L, Hager GD, Vidal R. Surgical gesture segmentation and recognition. In: Proceedings o International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2013: 339–346

[91]

Despinoy F, Bouget D, Forestier G, Penet C, Zemiti N, Poignet P, Jannin P. Unsupervised trajectory segmentation for surgical gesture recognition in robotic training. IEEE Trans Biomed Eng 2016; 63(6): 1280–1291

[92]

DiPietro R, Ahmidi N, Malpani A, Waldram M, Lee GI, Lee MR, Vedula SS, Hager GD. Segmenting and classifying activities in robot-assisted surgery with recurrent neural networks. Int J CARS 2019; 14(11): 2005–2020

[93]

Liu D, Jiang T. Deep reinforcement learning for surgical gesture segmentation and classification. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2018: 247–255

[94]

Padoy N, Hager GD. Human-machine collaborative surgery using learned models. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011: 5285–5292

[95]

Calinon S, Bruno D, Malekzadeh MS, Nanayakkara T, Caldwell DG. Human-robot skills transfer interfaces for a flexible surgical robot. Comput Methods Programs Biomed 2014; 116(2): 81–96

[96]

Osa T, Sugita N, Mitsuishi M. Online trajectory planning in dynamic environments for surgical task automation. In: Robotics: Science and Systems. Berkeley. 2014: 1–9

[97]

Van Den Berg J, Miller S, Duckworth D, Hu H, Wan A, Fu XY, Goldberg K, Abbeel P. Superhuman performance of surgical tasks by robots using iterative learning from human-guided demonstrations. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Alaska: IEEE, 2010: 2074–2081

[98]

Murali A, Sen S, Kehoe B, Garg A, McFarland S, Patil S, Boyd WD, Lim S, Abbeel P, Goldberg K. Learning by observation for surgical subtasks: multilateral cutting of 3D viscoelastic and 2D orthotropic tissue phantoms. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Seattle: IEEE, 2015: 1202–1209

[99]

Mayer H, Gomez F, Wierstra D, Nagy I, Knoll A, Schmidhuber J. A system for robotic heart surgery that learns to tie knots using recurrent neural networks. Adv Robot 2008; 22(13–14): 1521–1537

[100]

De Momi E, Kranendonk L, Valenti M, Enayati N, Ferrigno G. A neural network-based approach for trajectory planning in robot–human handover tasks. Front Robot AI 2016; 3: 34

[101]

Kober J, Bagnell JA, Peters J. Reinforcement learning in robotics: a survey. Int J Robot Res 2013; 32(11): 1238–1274

[102]

Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement learning. In: Proceedings of International Conference on Machine Learning (ICML). Beijing: ACM, 2004: 1

[103]

Tan X, Chng CB, Su Y, Lim KB, Chui CK. Robotassisted training in laparoscopy using deep reinforcement learning. IEEE Robot Autom Lett 2019; 4(2): 485–492

[104]

Ho J, Ermon S. Generative adversarial imitation learning. In: Proceedings of Advances in Neural Information Processing Systems (NIPS). Barcelona. 2016: 4565–4573

[105]

Levine S, Finn C, Darrell T, Abbeel P. End-to-end training of deep visuomotor policies. J Mach Learn Res 2016; 17(1): 1334–1373

[106]

Thananjeyan B, Garg A, Krishnan S, Chen C, Miller L, Goldberg K. Multilateral surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for tensioning. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA). Singapore: IEEE, 2017: 2371–2378

[107]

Yang GZ, Dempere-Marco L, Hu XP, Rowe A. Visual search: psychophysical models and practical applications. Image Vis Comput 2002; 20(4): 291–305

[108]

Yang GZ, Mylonas GP, Kwok KW, Chung A. Perceptual docking for robotic control. In: International Workshop on Medical Imaging and Virtual Reality. New York: Springer, 2008: 21–30

[109]

Visentini-Scarzanella M, Mylonas GP, Stoyanov D, Yang GZ. I-brush: a gaze-contingent virtual paintbrush for dense 3D reconstruction in robotic assisted surgery. In: Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). New York: Springer, 2009: 353–360

[110]

Fujii K, Gras G, Salerno A, Yang GZ. Gaze gesture based human robot interaction for laparoscopic surgery. Med Image Anal 2018; 44: 196–214

[111]

Nishikawa A, Hosoi T, Koara K, Negoro D, Hikita A, Asano S, Kakutani H, Miyazaki F, Sekimoto M, Yasui M, Miyake Y, Takiguchi S, Monden M. Face mouse: a novel human-machine interface for controlling the position of a laparoscope. IEEE Trans Robot Autom 2003; 19(5): 825–841

[112]

Hong N, Kim M, Lee C, Kim S. Head-mounted interface for intuitive vision control and continuous surgical operation in a surgical robot system. Med Biol Eng Comput 2019; 57(3): 601–614

[113]

Graves A. Mohamed Ar, Hinton G. Speech recognition with deep recurrent neural networks. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013: 6645–6649

[114]

Zinchenko K, Wu CY, Song KT. A study on speech recognition control for a surgical robot. IEEE Trans Industr Inform 2017; 13(2): 607–615

[115]

Jacob MG, Li YT, Akingba GA, Wachs JP. Collaboration with a robotic scrub nurse. Commun ACM 2013; 56(5): 68–75

[116]

Wen R, Tay WL, Nguyen BP, Chng CB, Chui CK. Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Comput Methods Programs Biomed 2014; 116(2): 68–80

[117]

Oyedotun OK, Khashman A. Deep learning in vision-based static hand gesture recognition. Neural Comput Appl 2017; 28(12): 3941–3951

[118]

Hu Y, Zhang L, Li W, Yang GZ. Robotic sewing and knot tying for personalized stent graft manufacturing. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018: 754–760

[119]

Hu Y, Li W, Zhang L, Yang GZ. Designing, prototyping, and testing a flexible suturing robot for transanal endoscopic microsurgery. IEEE Robot Autom Lett 2019; 4(2): 1669–1675

[120]

Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R, Jacobstein N, Kumar V, McNutt M, Merrifield R, Nelson BJ, Scassellati B, Taddeo M, Taylor R, Veloso M, Wang ZL, Wood R. The grand challenges of science robotics. Sc Robot 2018; 3(14): eaar7650

[121]

Yang GZ, Cambias J, Cleary K, Daimler E, Drake J, Dupont PE, Hata N, Kazanzides P, Martel S, Patel RV, Santos VJ, Taylor RH. Medical roboticsregulatory, ethical, and legal considerations for increasing levels of autonomy. Sci Robot 2017; 2(4): 8638

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1005KB)

9128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/