Applications of atomic force microscopy in immunology

Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang

PDF(600 KB)
PDF(600 KB)
Front. Med. ›› 2021, Vol. 15 ›› Issue (1) : 43-52. DOI: 10.1007/s11684-020-0769-6
REVIEW
REVIEW

Applications of atomic force microscopy in immunology

Author information +
History +

Abstract

Cellular mechanics, a major regulating factor of cellular architecture and biological functions, responds to intrinsic stresses and extrinsic forces exerted by other cells and the extracellular matrix in the microenvironment. Cellular mechanics also acts as a fundamental mediator in complicated immune responses, such as cell migration, immune cell activation, and pathogen clearance. The principle of atomic force microscopy (AFM) and its three running modes are introduced for the mechanical characterization of living cells. The peak force tapping mode provides the most delicate and desirable virtues to collect high-resolution images of morphology and force curves. For a concrete description of AFM capabilities, three AFM applications are discussed. These applications include the dynamic progress of a neutrophil-extracellular-trap release by neutrophils, the immunological functions of macrophages, and the membrane pore formation mediated by perforin, streptolysin O, gasdermin D, or membrane attack complex.

Keywords

cellular mechanics / atomic force microscopy / neutrophil extracellular trap / macrophage phagocytosis / pore formation

Cite this article

Download citation ▾
Jiping Li, Yuying Liu, Yidong Yuan, Bo Huang. Applications of atomic force microscopy in immunology. Front. Med., 2021, 15(1): 43‒52 https://doi.org/10.1007/s11684-020-0769-6

References

[1]
Miller CJ, Davidson LA. The interplay between cell signalling and mechanics in developmental processes. Nat Rev Genet 2013; 14(10): 733–744
CrossRef Pubmed Google scholar
[2]
Mohammadi H, Sahai E. Mechanisms and impact of altered tumour mechanics. Nat Cell Biol 2018; 20(7): 766–774
CrossRef Pubmed Google scholar
[3]
Roca-Cusachs P, Conte V, Trepat X. Quantifying forces in cell biology. Nat Cell Biol 2017; 19(7): 742–751
CrossRef Pubmed Google scholar
[4]
Butt HJ, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 2005; 59(1–6): 1–152
CrossRef Google scholar
[5]
Chang KC, Chiang YW, Yang CH, Liou JW. Atomic force microscopy in biology and biomedicine. Tzu Chi Medical J 2012; 24(4): 162–169
CrossRef Google scholar
[6]
Maver U, Velnar T, Gaberšček M, Planinšek O, Finšgar M. Recent progressive use of atomic force microscopy in biomedical applications. Trends Analyt Chem 2016; 80: 96–111
CrossRef Google scholar
[7]
Wu Y, Cai J, Cheng L, Xu Y, Lin Z, Wang C, Chen Y. Atomic force microscope tracking observation of Chinese hamster ovary cell mitosis. Micron 2006; 37(2): 139–145
CrossRef Pubmed Google scholar
[8]
Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature 2010; 463(7280): 485–492
CrossRef Pubmed Google scholar
[9]
Atilla-Gokcumen GE, Muro E, Relat-Goberna J, Sasse S, Bedigian A, Coughlin ML, Garcia-Manyes S, Eggert US. Dividing cells regulate their lipid composition and localization. Cell 2014; 156(3): 428–439
CrossRef Pubmed Google scholar
[10]
Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. Wiley Interdiscip Rev Syst Biol Med 2014; 6(5): 371–388
CrossRef Pubmed Google scholar
[11]
Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch 2008; 456(1): 13–27
CrossRef Pubmed Google scholar
[12]
Braet F, Taatjes DJ, Wisse E. Probing the unseen structure and function of liver cells through atomic force microscopy. Semin Cell Dev Biol 2018; 73: 13–30
CrossRef Pubmed Google scholar
[13]
Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G, Sahai E. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 2013; 15(6): 637–646
CrossRef Pubmed Google scholar
[14]
Wang N, Zhang M, Chang Y, Niu N, Guan Y, Ye M, Li C, Tang J. Directly observing alterations of morphology and mechanical properties of living cancer cells with atomic force microscopy. Talanta 2019; 191: 461–468
CrossRef Pubmed Google scholar
[15]
Alcaraz J, Otero J, Jorba I, Navajas D. Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol 2018; 73: 71–81
CrossRef Pubmed Google scholar
[16]
Harris MJ, Wirtz D, Wu PH. Dissecting cellular mechanics: Implications for aging, cancer, and immunity. Semin Cell Dev Biol 2019; 93: 16–25
CrossRef Pubmed Google scholar
[17]
Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ, Oria R, Kechagia JZ, Rico-Lastres P, Le Roux AL, Shanahan CM, Trepat X, Navajas D, Garcia-Manyes S, Roca-Cusachs P. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 2017; 171(6): 1397–1410.e14
CrossRef Pubmed Google scholar
[18]
Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature 2018; 557(7705): 335–342
CrossRef Pubmed Google scholar
[19]
Krieg M, Dunn AR, Goodman MB. Mechanical control of the sense of touch by β-spectrin. Nat Cell Biol 2014; 16(3): 224–233
CrossRef Pubmed Google scholar
[20]
El-Kirat-Chatel S, Dufrêne YF. Nanoscale imaging of the Candida-macrophage interaction using correlated fluorescence-atomic force microscopy. ACS Nano 2012; 6(12): 10792–10799
CrossRef Pubmed Google scholar
[21]
Pageon SV, Govendir MA, Kempe D, Biro M. Mechanoimmunology: molecular-scale forces govern immune cell functions. Mol Biol Cell 2018; 29(16): 1919–1926
CrossRef Pubmed Google scholar
[22]
Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cell Mol Immunol 2020; 17(1): 1–12
CrossRef Pubmed Google scholar
[23]
Kim YB, Ahn YH, Jung JH, Lee YJ, Lee JH, Kang JL. Programming of macrophages by UV-irradiated apoptotic cancer cells inhibits cancer progression and lung metastasis. Cell Mol Immunol 2019; 16(11): 851–867
CrossRef Pubmed Google scholar
[24]
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol 2017; 14(12): 963–975
CrossRef Pubmed Google scholar
[25]
Li Y, Li Y, Cao X, Jin X, Jin T. Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cell Mol Immunol 2017; 14(1): 80–89
CrossRef Pubmed Google scholar
[26]
Kechagia JZ, Ivaska J, Roca-Cusachs P. Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 2019; 20(8): 457–473
CrossRef Pubmed Google scholar
[27]
Hosseini BH, Louban I, Djandji D, Wabnitz GH, Deeg J, Bulbuc N, Samstag Y, Gunzer M, Spatz JP, Hämmerling GJ. Immune synapse formation determines interaction forces between T cells and antigen-presenting cells measured by atomic force microscopy. Proc Natl Acad Sci USA 2009; 106(42): 17852–17857
CrossRef Pubmed Google scholar
[28]
Leung C, Hodel AW, Brennan AJ, Lukoyanova N, Tran S, House CM, Kondos SC, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I, Saibil HR, Hoogenboom BW. Real-time visualization of perforin nanopore assembly. Nat Nanotechnol 2017; 12(5): 467–473
CrossRef Pubmed Google scholar
[29]
Liu Y, Zhang T, Zhou Y, Li J, Liang X, Zhou N, Lv J, Xie J, Cheng F, Fang Y, Gao Y, Wang N, Huang B. Visualization of perforin/gasdermin/complement-formed pores in real cell membranes using atomic force microscopy. Cell Mol Immunol 2019; 16(6): 611–620
CrossRef Pubmed Google scholar
[30]
Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009; 324(5935): 1673–1677
CrossRef Pubmed Google scholar
[31]
Wu PH, Aroush DRB, Asnacios A, Chen WC, Dokukin ME, Doss BL, Durand-Smet P, Ekpenyong A, Guck J, Guz NV, Janmey PA, Lee JSH, Moore NM, Ott A, Poh YC, Ros R, Sander M, Sokolov I, Staunton JR, Wang N, Whyte G, Wirtz D. A comparison of methods to assess cell mechanical properties. Nat Methods 2018; 15(7): 491–498
CrossRef Pubmed Google scholar
[32]
Li M, Dang D, Liu L, Xi N, Wang Y. Atomic force microscopy in characterizing cell mechanics for biomedical applications: a review. IEEE Trans Nanobioscience 2017; 16(6): 523–540
CrossRef Pubmed Google scholar
[33]
Zhang Y, Wei F, Poh YC, Jia Q, Chen J, Chen J, Luo J, Yao W, Zhou W, Huang W, Yang F, Zhang Y, Wang N. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells. Nat Protoc 2017; 12(7): 1437–1450
CrossRef Pubmed Google scholar
[34]
Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J 2016; 35(16): 1766–1778
CrossRef Pubmed Google scholar
[35]
Pilling M, Gardner P. Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chem Soc Rev 2016; 45(7): 1935–1957
[36]
Cazaux S, Sadoun A, Biarnes-Pelicot M, Martinez M, Obeid S, Bongrand P, Limozin L, Puech PH. Synchronizing atomic force microscopy force mode and fluorescence microscopy in real time for immune cell stimulation and activation studies. Ultramicroscopy 2016; 160: 168–181
CrossRef Pubmed Google scholar
[37]
Knoops B, Becker S, Poncin MA, Glibert J, Derclaye S, Clippe A, Alsteens D. Specific interactions measured by AFM on living cells between peroxiredoxin-5 and TLR4: relevance for mechanisms of innate immunity. Cell Chem Biol 2018; 25(5): 550–559.e3
CrossRef Pubmed Google scholar
[38]
Camesano TA, Liu Y, Datta M. Measuring bacterial adhesion at environmental interfaces with single-cell and single-molecule techniques. Adv Water Resour 2007; 30(6–7): 1470–1491
CrossRef Google scholar
[39]
Rana MS, Pota HR, Petersen IR. Performance of sinusoidal scanning with MPC in AFM imaging. IEEE/ASME Trans Mechatron 2015; 20(1): 73–83
CrossRef Google scholar
[40]
Rana MS, Pota HR, Petersen IR. Spiral scanning with improved control for faster imaging of AFM. IEEE Trans NanoTechnol 2014; 13(3): 541–550
CrossRef Google scholar
[41]
Arildsen T, Oxvig CS, Pedersen PS, Ostergaard J, Larsen T. Reconstruction algorithms in undersampled AFM imaging. IEEE J Sel Top Signal Process 2016; 10(1): 31–46
CrossRef Google scholar
[42]
Heu C, Berquand A, Elie-Caille C, Nicod L. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells. J Struct Biol 2012; 178(1): 1–7
CrossRef Pubmed Google scholar
[43]
Newton R, Müller DJ. Cells stiffen for cytokines. Cell Chem Biol 2018; 25(5): 495–496
CrossRef Pubmed Google scholar
[44]
Salapaka SM, Ramamoorthy A, Salapaka MV. AFM imaging?Reliable or not?: validation and verification of images in atomic force microscopy. Control Systems IEEE 2013; 33(6): 106–118
CrossRef Google scholar
[45]
Smith DA, Robinson C, Kirkham J, Zhang J, Wallwork ML. Chemical force spectroscopy and imaging. Rev Anal Chem 2001; 20(1): 1–26
CrossRef Google scholar
[46]
Zhang X, Wojcikiewicz EP, Moy VT. Dynamic adhesion of T lymphocytes to endothelial cells revealed by atomic force microscopy. Exp Biol Med (Maywood) 2006; 231(8): 1306–1312
CrossRef Pubmed Google scholar
[47]
Drew ME, Konicek AR, Jaroenapibal P, Carpick RW, Yamakoshi Y. Nanocrystalline diamond AFM tips for chemical force spectroscopy: fabrication and photochemical functionalization. J Mater Chem B Mater Biol Med 2012; 22(25): 12682–12688
[48]
Hyonchol K, Hideo A, Toshiya O and ATsushi I. Quantification of cell adhesion interactions by AFM: effects of LPS/PMA on the adhesion of C6 glioma cell to collagen type I. Appl Surf Sci 2002; 188(3–4): 493–498
CrossRef Google scholar
[49]
Hu KH, Butte MJ. T cell activation requires force generation. J Cell Biol 2016; 213(5): 535–542
CrossRef Pubmed Google scholar
[50]
Nikkhah M, Strobl JS, Schmelz EM, Agah M. Evaluation of the influence of growth medium composition on cell elasticity. J Biomech 2011; 44(4): 762–766
CrossRef Pubmed Google scholar
[51]
Neubert E, Meyer D, Rocca F, Günay G, Kwaczala-Tessmann A, Grandke J, Senger-Sander S, Geisler C, Egner A, Schön MP, Erpenbeck L, Kruss S. Chromatin swelling drives neutrophil extracellular trap release. Nat Commun 2018; 9(1): 3767
CrossRef Pubmed Google scholar
[52]
Sheetz MP. Cell control by membrane-cytoskeleton adhesion. Nat Rev Mol Cell Biol 2001; 2(5): 392–396
CrossRef Pubmed Google scholar
[53]
Diz-Muñoz A, Fletcher DA, Weiner OD. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 2013; 23(2): 47–53
CrossRef Pubmed Google scholar
[54]
Maridonneau-Parini I. Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration. Immunol Rev 2014; 262(1): 216–231
CrossRef Pubmed Google scholar
[55]
Bitler A, Dover R, Shai Y. Fractal properties of macrophage membrane studied by AFM. Micron 2012; 43(12): 1239–1245
CrossRef Pubmed Google scholar
[56]
Labernadie A, Bouissou A, Delobelle P, Balor S, Voituriez R, Proag A, Fourquaux I, Thibault C, Vieu C, Poincloux R, Charrière GM, Maridonneau-Parini I. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat Commun 2014; 5(1): 5343
CrossRef Pubmed Google scholar
[57]
Souza ST, Agra LC, Santos CEA, Barreto E, Hickmann JM, Fonseca EJS. Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. Eur Biophys J 2014; 43(12): 573–579
CrossRef Pubmed Google scholar
[58]
Labernadie A, Thibault C, Vieu C, Maridonneau-Parini I, Charrière GM. Dynamics of podosome stiffness revealed by atomic force microscopy. Proc Natl Acad Sci USA 2010; 107(49): 21016–21021
CrossRef Pubmed Google scholar
[59]
Lowin B, Hahne M, Mattmann C, Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature 1994; 370(6491): 650–652
CrossRef Pubmed Google scholar
[60]
Kägi D, Vignaux F, Ledermann B, Bürki K, Depraetere V, Nagata S, Hengartner H, Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science 1994; 265(5171): 528–530
CrossRef Pubmed Google scholar
[61]
Kägi D, Ledermann B, Bürki K, Seiler P, Odermatt B, Olsen KJ, Podack ER, Zinkernagel RM, Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369(6475): 31–37
CrossRef Pubmed Google scholar
[62]
Baran K, Dunstone M, Chia J, Ciccone A, Browne KA, Clarke CJP, Lukoyanova N, Saibil H, Whisstock JC, Voskoboinik I, Trapani JA. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 2009; 30(5): 684–695
CrossRef Pubmed Google scholar
[63]
Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 2016; 535(7610): 111–116
CrossRef Pubmed Google scholar
[64]
Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D, Propheter DC, Rizo J, Grabe M, Jiang QX, Hooper LV. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2014; 505(7481): 103–107
CrossRef Pubmed Google scholar
[65]
Newton R, Delguste M, Koehler M, Dumitru AC, Laskowski PR, Müller DJ, Alsteens D. Combining confocal and atomic force microscopy to quantify single-virus binding to mammalian cell surfaces. Nat Protoc 2017; 12(11): 2275–2292
CrossRef Pubmed Google scholar
[66]
Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 2010; 468(7322): 447–451
CrossRef Pubmed Google scholar
[67]
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015; 517(7534): 311–320
CrossRef Pubmed Google scholar
[68]
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, Lill JR, Roose-Girma M, Warming S, Solon M, Ngu H, Webster JD, Dixit VM. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature 2016; 540(7631): 129–133
CrossRef Pubmed Google scholar
[69]
Eaton P, do Amaral CP, Couto SCP, Oliveira MS, Vasconcelos AG, Borges TKS, Kückelhaus SAS, Leite JRSA, Muniz-Junqueira MI. Atomic force microscopy is a potent technique to study eosinophil activation. Front Physiol 2019; 10: 1261
CrossRef Pubmed Google scholar
[70]
Shen X, Gu H, Ma P, Luo Z, Li M, Hu Y, Cai K. Minocycline-incorporated multilayers on titanium substrates for simultaneous regulation of MSCs and macrophages. Mater Sci Eng C 2019; 102: 696–707
CrossRef Pubmed Google scholar
[71]
Pi J, Cai H, Yang F, Jin H, Liu J, Yang P, Cai J. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages. Anal Bioanal Chem 2016; 408(1): 165–176
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81788101) and the Chinese Academy of Medical Sciences Initiative for Innovative Medicine (CAMS-I2M) (No. 2016-I2M-1-007). This work was partially supported by the project of “Research on the Passive Micro Sensor Components and Systems Applied in SF6 Detection” (No. 54681618002400k0000000).

Compliance with ethics guidelines

Jiping Li, Yuying Liu, Yidong Yuan, and Bo Huang declared no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(600 KB)

Accesses

Citations

Detail

Sections
Recommended

/