Recent advances in “universal” influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head

Yulu Wang, Dan Hu, Yanling Wu, Tianlei Ying

PDF(1261 KB)
PDF(1261 KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (2) : 149-159. DOI: 10.1007/s11684-020-0764-y
REVIEW
REVIEW

Recent advances in “universal” influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head

Author information +
History +

Abstract

Influenza causes seasonal outbreaks yearly and unpredictable pandemics with high morbidity and mortality rates. Despite significant efforts to address influenza, it remains a major threat to human public health. This issue is partially due to the lack of antiviral drugs with potent antiviral activity and broad reactivity against all influenza virus strains and the rapid emergence of drug-resistant variants. Moreover, designing a universal influenza vaccine that is sufficiently immunogenic to induce universal antibodies is difficult. Some novel epitopes hidden in the hemagglutinin (HA) trimeric interface have been discovered recently, and a number of antibodies targeting these epitopes have been found to be capable of neutralizing a broad range of influenza isolates. These findings may have important implications for the development of universal influenza vaccines and antiviral drugs. In this review, we focused on the antibodies targeting these newly discovered epitopes in the HA domain of the influenza virus to promote the development of universal anti-influenza antibodies or vaccines and extend the discovery to other viruses with similar conformational changes in envelope proteins.

Keywords

influenza virus / neutralizing antibody / hemagglutinin / globular head region / trimeric interface

Cite this article

Download citation ▾
Yulu Wang, Dan Hu, Yanling Wu, Tianlei Ying. Recent advances in “universal” influenza virus antibodies: the rise of a hidden trimeric interface in hemagglutinin globular head. Front. Med., 2020, 14(2): 149‒159 https://doi.org/10.1007/s11684-020-0764-y

References

[1]
Zhilinskaia IN, Tets VV, Golubev DB. Genome structure of influenza virus. Vopr Virusol 1978; (4): 387–394 (in Russian)
Pubmed
[2]
Rudneva IA, Sklyanskaya EI, Barulina OS, Yamnikova SS, Kovaleva VP, Tsvetkova IV, Kaverin NV. Phenotypic expression of HA-NA combinations in human-avian influenza A virus reassortants. Arch Virol 1996; 141(6): 1091–1099
CrossRef Pubmed Google scholar
[3]
To J, Torres J. Viroporins in the influenza virus. Cells 2019; 8(7): E654
CrossRef Pubmed Google scholar
[4]
Zambon MC. Epidemiology and pathogenesis of influenza. J Antimicrob Chemother 1999; 44 Suppl B: 3–9
[5]
Krammer F. Emerging influenza viruses and the prospect of a universal influenza virus vaccine. Biotechnol J 2015; 10(5): 690–701
CrossRef Pubmed Google scholar
[6]
Pleschka S. Overview of influenza viruses. In: Swine Influenza. Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 370). Springer: 2013. 1–20
[7]
Grist NR. Epidemiology and pathogenesis of influenza. BMJ 1970; 3(5718): 344–345
CrossRef Pubmed Google scholar
[8]
Saw TA, . Isolation of avian influenza A (H5N1) viruses from humans — Hong Kong, May–December 1997 (Reprinted from MMWR, vol 46, pg 1204–1207, 1997). JAMA 1998; 279(4): 263–264
Pubmed
[9]
Tang RB, Chen HL. An overview of the recent outbreaks of the avian-origin influenza A (H7N9) virus in the human. J Chin Med Assoc 2013; 76(5): 245–248
CrossRef Pubmed Google scholar
[10]
Ding H, Xie L, Sun Z, Kao QJ, Huang RJ, Yang XH, Huang CP, Wen YY, Pan JC, Pu XY, Jin T, Zhou XH, Zheng L, Li J, Wang FJ. Epidemiologic characterization of 30 confirmed cases of human infection with avian influenza A(H7N9) virus in Hangzhou, China. BMC Infect Dis 2014; 14(1): 175
CrossRef Pubmed Google scholar
[11]
Tan W, Li M, Xie ZX. An overview of avian influenza A H10N8 subtype viruses. Pak Vet J 2016; 36(3): 251–257
[12]
Guo Y, Li J, Cheng X. Discovery of men infected by avian influenza A (H9N2) virus. Chin J Exp Clin Viro (Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi) 1999; 13(2): 105–108 (in Chinese)
Pubmed
[13]
Stegeman A, Bouma A, Elbers AR, de Jong MC, Nodelijk G, de Klerk F, Koch G, van Boven M. Avian influenza A virus (H7N7) epidemic in the Netherlands in 2003: course of the epidemic and effectiveness of control measures. J Infect Dis 2004; 190(12): 2088–2095
CrossRef Pubmed Google scholar
[14]
Sautto GA, Kirchenbaum GA, Ross TM. Towards a universal influenza vaccine: different approaches for one goal. Virol J 2018; 15(1): 17
CrossRef Pubmed Google scholar
[15]
Yu F, Song H, Wu Y, Chang SY, Wang L, Li W, Hong B, Xia S, Wang C, Khurana S, Feng Y, Wang Y, Sun Z, He B, Hou D, Manischewitz J, King LR, Song Y, Min JY, Golding H, Ji X, Lu L, Jiang S, Dimitrov DS, Ying T. A potent germline-like human monoclonal antibody targets a pH-sensitive epitope on H7N9 influenza hemagglutinin. Cell Host Microbe 2017; 22(4): 471–483.e5
CrossRef Pubmed Google scholar
[16]
Wu Y, Gao GF. “Breathing” hemagglutinin reveals cryptic epitopes for universal influenza vaccine design. Cell 2019; 177(5): 1086–1088
CrossRef Pubmed Google scholar
[17]
Watanabe A, McCarthy KR, Kuraoka M, Schmidt AG, Adachi Y, Onodera T, Tonouchi K, Caradonna TM, Bajic G, Song S, McGee CE, Sempowski GD, Feng F, Urick P, Kepler TB, Takahashi Y, Harrison SC, Kelsoe G. Antibodies to a conserved influenza head interface epitope protect by an IgG subtype-dependent mechanism. Cell 2019; 177(5): 1124–1135.e16
CrossRef Google scholar
[18]
Turner HL, Pallesen J, Lang S, Bangaru S, Urata S, Li S, Cottrell CA, Bowman CA, Crowe JE Jr, Wilson IA, Ward AB. Potent anti-influenza H7 human monoclonal antibody induces separation of hemagglutinin receptor-binding head domains. PLoS Biol 2019; 17(2): e3000139
CrossRef Pubmed Google scholar
[19]
Pielak RM, Schnell JR, Chou JJ. Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci USA 2009; 106(18): 7379–7384
CrossRef Pubmed Google scholar
[20]
Chizhmakov IV, Geraghty FM, Ogden DC, Hayhurst A, Antoniou M, Hay AJ. Selective proton permeability and pH regulation of the influenza virus M2 channel expressed in mouse erythroleukaemia cells. J Physiol 1996; 494(2): 329–336
CrossRef Pubmed Google scholar
[21]
Saelens X. The role of matrix protein 2 ectodomain in the development of universal influenza vaccines. J Infect Dis 2019; 219(Supplement_1): S68–S74
CrossRef Pubmed Google scholar
[22]
Zhang X, Liu M, Liu C, Du J, Shi W, Sun E, Li H, Li J, Zhang Y. Vaccination with different M2e epitope densities confers partial protection against H5N1 influenza A virus challenge in chickens. Intervirology 2011; 54(5): 290–299
CrossRef Pubmed Google scholar
[23]
Corti D, Cameroni E, Guarino B, Kallewaard NL, Zhu Q, Lanzavecchia A. Tackling influenza with broadly neutralizing antibodies. Curr Opin Virol 2017; 24: 60–69
CrossRef Pubmed Google scholar
[24]
Jones LV, Compans RW, Davis AR, Bos TJ, Nayak DP. Surface expression of influenza virus neuraminidase, an amino-terminally anchored viral membrane glycoprotein, in polarized epithelial cells. Mol Cell Biol 1985; 5(9): 2181–2189
CrossRef Pubmed Google scholar
[25]
Ohmit SE, Petrie JG, Cross RT, Johnson E, Monto AS. Influenza hemagglutination-inhibition antibody titer as a correlate of vaccine-induced protection. J Infect Dis 2011; 204(12): 1879–1885
CrossRef Pubmed Google scholar
[26]
Benjamin E, Wang W, McAuliffe JM, Palmer-Hill FJ, Kallewaard NL, Chen Z, Suzich JA, Blair WS, Jin H, Zhu Q. A broadly neutralizing human monoclonal antibody directed against a novel conserved epitope on the influenza virus H3 hemagglutinin globular head. J Virol 2014; 88(12): 6743–6750
CrossRef Pubmed Google scholar
[27]
Cho A, Wrammert J. Implications of broadly neutralizing antibodies in the development of a universal influenza vaccine. Curr Opin Virol 2016; 17: 110–115
CrossRef Pubmed Google scholar
[28]
Wu NC, Grande G, Turner HL, Ward AB, Xie J, Lerner RA, Wilson IA. In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nat Commun 2017; 8(1): 15371
CrossRef Pubmed Google scholar
[29]
Laursen NS, Wilson IA. Broadly neutralizing antibodies against influenza viruses. Antiviral Res 2013; 98(3): 476–483
CrossRef Pubmed Google scholar
[30]
Hu W, Chen A, Miao Y, Xia S, Ling Z, Xu K, Wang T, Xu Y, Cui J, Wu H, Hu G, Tian L, Wang L, Shu Y, Ma X, Xu B, Zhang J, Lin X, Bian C, Sun B. Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Virology 2013; 435(2): 320–328
CrossRef Pubmed Google scholar
[31]
Skehel JJ, Waterfield MD. Studies on the primary structure of the influenza virus hemagglutinin. Proc Natl Acad Sci USA 1975; 72(1): 93–97
CrossRef Pubmed Google scholar
[32]
Russell CJ, Hu M, Okda FA. Influenza hemagglutinin protein stability, activation, and pandemic risk. Trends Microbiol 2018; 26(10): 841–853
CrossRef Pubmed Google scholar
[33]
Gamblin SJ, Skehel JJ. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 2010; 285(37): 28403–28409
CrossRef Pubmed Google scholar
[34]
Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 2000; 69(1): 531–569
CrossRef Pubmed Google scholar
[35]
Garcia NK, Guttman M, Ebner JL, Lee KK. Dynamic changes during acid-induced activation of influenza hemagglutinin. Structure 2015; 23(4): 665–676
CrossRef Pubmed Google scholar
[36]
Gaudin Y, Ruigrok RW, Brunner J. Low-pH induced conformational changes in viral fusion proteins: implications for the fusion mechanism. J Gen Virol 1995; 76(Pt 7): 1541–1556
CrossRef Pubmed Google scholar
[37]
Zhang Y, Xu C, Zhang H, Liu GD, Xue C, Cao Y. Targeting hemagglutinin: approaches for broad protection against the influenza A virus. Viruses 2019; 11(5): E405
CrossRef Pubmed Google scholar
[38]
Lee PS, Wilson IA. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies. In: Oldstone M, Compans R. Influenza Pathogenesis and Control—Volume II. Current Topics in Microbiology and Immunology, vol 386. Springer, Cham: 2014. 323–341
[39]
Sun X, Shi Y, Lu X, He J, Gao F, Yan J, Qi J, Gao GF. Bat-derived influenza hemagglutinin H17 does not bind canonical avian or human receptors and most likely uses a unique entry mechanism. Cell Rep 2013; 3(3): 769–778
CrossRef Pubmed Google scholar
[40]
Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, Tong S, Paulson JC, Wilson IA. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci USA 2013; 110(4): 1458–1463
CrossRef Pubmed Google scholar
[41]
Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO. New world bats harbor diverse influenza A viruses. PLoS Pathog 2013; 9(10): e1003657
CrossRef Pubmed Google scholar
[42]
Krause JC, Tsibane T, Tumpey TM, Huffman CJ, Albrecht R, Blum DL, Ramos I, Fernandez-Sesma A, Edwards KM, García-Sastre A, Basler CF, Crowe JE Jr. Human monoclonal antibodies to pandemic 1957 H2N2 and pandemic 1968 H3N2 influenza viruses. J Virol 2012; 86(11): 6334–6340
CrossRef Pubmed Google scholar
[43]
Lee PS, Ohshima N, Stanfield RL, Yu W, Iba Y, Okuno Y, Kurosawa Y, Wilson IA. Receptor mimicry by antibody F045-092 facilitates universal binding to the H3 subtype of influenza virus. Nat Commun 2014; 5(1): 3614
CrossRef Pubmed Google scholar
[44]
Brandenburg B, Koudstaal W, Goudsmit J, Klaren V, Tang C, Bujny MV, Korse HJ, Kwaks T, Otterstrom JJ, Juraszek J, van Oijen AM, Vogels R, Friesen RH. Mechanisms of hemagglutinin targeted influenza virus neutralization. PLoS One 2013; 8(12): e80034
CrossRef Pubmed Google scholar
[45]
Raymond DD, Bajic G, Ferdman J, Suphaphiphat P, Settembre EC, Moody MA, Schmidt AG, Harrison SC. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proc Natl Acad Sci USA 2018; 115(1): 168–173
CrossRef Pubmed Google scholar
[46]
Russier M, Yang G, Rehg JE, Wong SS, Mostafa HH, Fabrizio TP, Barman S, Krauss S, Webster RG, Webby RJ, Russell CJ. Molecular requirements for a pandemic influenza virus: an acid-stable hemagglutinin protein. Proc Natl Acad Sci USA 2016; 113(6): 1636–1641
CrossRef Pubmed Google scholar
[47]
Yoshida R, Igarashi M, Ozaki H, Kishida N, Tomabechi D, Kida H, Ito K, Takada A. Cross-protective potential of a novel monoclonal antibody directed against antigenic site B of the hemagglutinin of influenza A viruses. PLoS Pathog 2009; 5(3): e1000350
CrossRef Pubmed Google scholar
[48]
Whittle JRR, Zhang R, Khurana S, King LR, Manischewitz J, Golding H, Dormitzer PR, Haynes BF, Walter EB, Moody MA, Kepler TB, Liao HX, Harrison SC. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci USA 2011; 108(34): 14216–14221
CrossRef Pubmed Google scholar
[49]
Ekiert DC, Kashyap AK, Steel J, Rubrum A, Bhabha G, Khayat R, Lee JH, Dillon MA, O’Neil RE, Faynboym AM, Horowitz M, Horowitz L, Ward AB, Palese P, Webby R, Lerner RA, Bhatt RR, Wilson IA. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 2012; 489(7417): 526–532
CrossRef Pubmed Google scholar
[50]
Ohshima N, Iba Y, Kubota-Koketsu R, Asano Y, Okuno Y, Kurosawa Y. Naturally occurring antibodies in humans can neutralize a variety of influenza virus strains, including H3, H1, H2, and H5. J Virol 2011; 85(21): 11048–11057
CrossRef Pubmed Google scholar
[51]
Matsuda K, Huang J, Zhou T, Sheng Z, Kang BH, Ishida E, Griesman T, Stuccio S, Bolkhovitinov L, Wohlbold TJ, Chromikova V, Cagigi A, Leung K, Andrews S, Cheung CSF, Pullano AA, Plyler J, Soto C, Zhang B, Yang Y, Joyce MG, Tsybovsky Y, Wheatley A, Narpala SR, Guo Y, Darko S, Bailer RT, Poole A, Liang CJ, Smith J, Alexander J, Gurwith M, Migueles SA, Koup RA, Golding H, Khurana S, McDermott AB, Shapiro L, Krammer F, Kwong PD, Connors M. Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Sci Immunol 2019; 4(34): eaau2710
CrossRef Pubmed Google scholar
[52]
Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJ, Geelen E, Sahin Ö, Sieuwerts M, Brakenhoff JP, Vogels R, Li OT, Poon LL, Peiris M, Koudstaal W, Ward AB, Wilson IA, Goudsmit J, Friesen RH. Highly conserved protective epitopes on influenza B viruses. Science 2012; 337(6100): 1343–1348
CrossRef Pubmed Google scholar
[53]
Shen C, Chen J, Li R, Zhang M, Wang G, Stegalkina S, Zhang L, Chen J, Cao J, Bi X, Anderson SF, Alefantis T, Zhang M, Cai X, Yang K, Zheng Q, Fang M, Yu H, Luo W, Zheng Z, Yuan Q, Zhang J, Wai-Kuo Shih J, Kleanthous H, Chen H, Chen Y, Xia N. A multimechanistic antibody targeting the receptor binding site potently cross-protects against influenza B viruses. Sci Transl Med 2017; 9(412): eaam5752
CrossRef Google scholar
[54]
Dreyfus C, Ekiert DC, Wilson IA. Structure of a classical broadly neutralizing stem antibody in complex with a pandemic H2 influenza virus hemagglutinin. J Virol 2013; 87(12): 7149–7154
CrossRef Pubmed Google scholar
[55]
Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA. Antibody recognition of a highly conserved influenza virus epitope. Science 2009; 324(5924): 246–251
CrossRef Pubmed Google scholar
[56]
Yamayoshi S, Uraki R, Ito M, Kiso M, Nakatsu S, Yasuhara A, Oishi K, Sasaki T, Ikuta K, Kawaoka Y. A broadly reactive human anti-hemagglutinin stem monoclonal antibody that inhibits influenza A virus particle release. EBioMedicine 2017; 17: 182–191
CrossRef Pubmed Google scholar
[57]
Kallewaard NL, Corti D, Collins PJ, Neu U, McAuliffe JM, Benjamin E, Wachter-Rosati L, Palmer-Hill FJ, Yuan AQ, Walker PA, Vorlaender MK, Bianchi S, Guarino B, De Marco A, Vanzetta F, Agatic G, Foglierini M, Pinna D, Fernandez-Rodriguez B, Fruehwirth A, Silacci C, Ogrodowicz RW, Martin SR, Sallusto F, Suzich JA, Lanzavecchia A, Zhu Q, Gamblin SJ, Skehel JJ. Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell 2016; 166(3): 596–608
CrossRef Pubmed Google scholar
[58]
Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox NJ, Bankston LA, Donis RO, Liddington RC, Marasco WA. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 2009; 16(3): 265–273
CrossRef Pubmed Google scholar
[59]
Ledgerwood JE, Wei CJ, Hu Z, Gordon IJ, Enama ME, Hendel CS, McTamney PM, Pearce MB, Yassine HM, Boyington JC, Bailer R, Tumpey TM, Koup RA, Mascola JR, Nabel GJ, Graham BS; VRC 306 Study Team. DNA priming and influenza vaccine immunogenicity: two phase 1 open label randomised clinical trials. Lancet Infect Dis 2011; 11(12): 916–924
CrossRef Pubmed Google scholar
[60]
Wheatley AK, Whittle JR, Lingwood D, Kanekiyo M, Yassine HM, Ma SS, Narpala SR, Prabhakaran MS, Matus-Nicodemos RA, Bailer RT, Nabel GJ, Graham BS, Ledgerwood JE, Koup RA, McDermott AB. H5N1 vaccine-elicited memory B cells are genetically constrained by the IGHV locus in the recognition of a neutralizing epitope in the hemagglutinin stem. J Immunol 2015; 195(2): 602–610
CrossRef Pubmed Google scholar
[61]
Whittle JRR, Wheatley AK, Wu L, Lingwood D, Kanekiyo M, Ma SS, Narpala SR, Yassine HM, Frank GM, Yewdell JW, Ledgerwood JE, Wei CJ, McDermott AB, Graham BS, Koup RA, Nabel GJ. Flow cytometry reveals that H5N1 vaccination elicits cross-reactive stem-directed antibodies from multiple Ig heavy-chain lineages. J Virol 2014; 88(8): 4047–4057
CrossRef Pubmed Google scholar
[62]
Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox NJ, Bankston LA, Donis RO, Liddington RC, Marasco WA. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 2009; 16(3): 265–273
CrossRef Pubmed Google scholar
[63]
Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJ, Geelen E, Sahin Ö, Sieuwerts M, Brakenhoff JP, Vogels R, Li OT, Poon LL, Peiris M, Koudstaal W, Ward AB, Wilson IA, Goudsmit J, Friesen RH. Highly conserved protective epitopes on influenza B viruses. Science 2012; 337(6100): 1343–1348
CrossRef Pubmed Google scholar
[64]
Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJ, Brandenburg B, Vogels R, Brakenhoff JP, Kompier R, Koldijk MH, Cornelissen LA, Poon LL, Peiris M, Koudstaal W, Wilson IA, Goudsmit J. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 2011; 333(6044): 843–850
CrossRef Pubmed Google scholar
[65]
Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 2011; 333(6044): 850–856
CrossRef Pubmed Google scholar
[66]
DiLillo DJ, Tan GS, Palese P, Ravetch JV. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgR interactions for protection against influenza virus in vivo. Nat Med 2014; 20(2): 143–151
CrossRef Pubmed Google scholar
[67]
Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 2015; 14(3): 167–182
CrossRef Pubmed Google scholar
[68]
Lee PS, Wilson IA. Structural characterization of viral epitopes recognized by broadly cross-reactive antibodies. Curr Top Microbiol Immunol 2015; 386: 323–341
CrossRef Pubmed Google scholar
[69]
Seok JH, Kim J, Lee DB, Cho KJ, Lee JH, Bae G, Chung MS, Kim KH. Conformational modulation of influenza virus hemagglutinin: characterization and in vivo efficacy of monomeric form. Sci Rep 2017; 7(1): 7540
CrossRef Pubmed Google scholar
[70]
Angeletti D, Kosik I, Santos JJS, Yewdell WT, Boudreau CM, Mallajosyula VVA, Mankowski MC, Chambers M, Prabhakaran M, Hickman HD, McDermott AB, Alter G, Chaudhuri J, Yewdell JW. Outflanking immunodominance to target subdominant broadly neutralizing epitopes. Proc Natl Acad Sci USA 2019; 116(27): 13474–13479
CrossRef Pubmed Google scholar
[71]
Krammer F, Palese P. Advances in the development of influenza virus vaccines. Nat Rev Drug Discov 2015; 14(3): 167–182
CrossRef Pubmed Google scholar
[72]
Raymond DD, Bajic G, Ferdman J, Suphaphiphat P, Settembre EC, Moody MA, Schmidt AG, Harrison SC. Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proc Natl Acad Sci USA 2018; 115(1): 168–173
CrossRef Pubmed Google scholar
[73]
Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V, Connell MJ, Stevens E, Schroeter A, Chen M, Macpherson S, Serra AM, Adachi Y, Holmes MA, Li Y, Klevit RE, Graham BS, Wyatt RT, Baker D, Strong RK, Crowe JE Jr1, Johnson PR, Schief WR. Proof of principle for epitope-focused vaccine design. Nature 2014; 507(7491): 201–206
CrossRef Google scholar
[74]
Haynes BF, Kelsoe G, Harrison SC, Kepler TB. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012; 30(5): 423–433
CrossRef Pubmed Google scholar
[75]
Mascola JR, Haynes BF. HIV-1 neutralizing antibodies: understanding nature’s pathways. Immunol Rev 2013; 254(1): 225–244
CrossRef Pubmed Google scholar
[76]
Bajic G, Maron MJ, Adachi Y, Onodera T, McCarthy KR, McGee CE, Sempowski GD, Takahashi Y, Kelsoe G, Kuraoka M, Schmidt AG. Influenza antigen engineering focuses immune responses to a subdominant but broadly protective viral epitope. Cell Host Microbe 2019; 25(6): 827–835.e6
CrossRef Pubmed Google scholar
[77]
Lavie M, Hanoulle X, Dubuisson J. Glycan shielding and modulation of hepatitis C virus neutralizing antibodies. Front Immunol 2018; 9: 910
CrossRef Pubmed Google scholar
[78]
Watanabe Y, Raghwani J, Allen JD, Seabright GE, Li S, Moser F, Huiskonen JT, Strecker T, Bowden TA, Crispin M. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci USA 2018; 115(28): 7320–7325
CrossRef Pubmed Google scholar
[79]
Hervé PL, Lorin V, Jouvion G, Da Costa B, Escriou N. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology 2015; 486: 134–145
CrossRef Pubmed Google scholar
[80]
Liu WC, Jan JT, Huang YJ, Chen TH, Wu SC. Unmasking stem-specific neutralizing epitopes by abolishing N-linked glycosylation sites of influenza virus hemagglutinin proteins for vaccine design. J Virol 2016; 90(19): 8496–8508
CrossRef Pubmed Google scholar
[81]
Florek NW, Weinfurter JT, Jegaskanda S, Brewoo JN, Powell TD, Young GR, Das SC, Hatta M, Broman KW, Hungnes O, Dudman SG, Kawaoka Y, Kent SJ, Stinchcomb DT, Osorio JE, Friedrich TC. Modified vaccinia virus Ankara encoding influenza virus hemagglutinin induces heterosubtypic immunity in macaques. J Virol 2014; 88(22): 13418–13428
CrossRef Pubmed Google scholar
[82]
Kamlangdee A, Kingstad-Bakke B, Anderson TK, Goldberg TL, Osorio JE. Broad protection against avian influenza virus by using a modified vaccinia Ankara virus expressing a mosaic hemagglutinin gene. J Virol 2014; 88(22): 13300–13309
CrossRef Pubmed Google scholar
[83]
Yewdell JW, Taylor A, Yellen A, Caton A, Gerhard W, Bächi T. Mutations in or near the fusion peptide of the influenza virus hemagglutinin affect an antigenic site in the globular region. J Virol 1993; 67(2): 933–942
CrossRef Pubmed Google scholar
[84]
Yewdell JW, Yellen A, Bächi T. Monoclonal antibodies localize events in the folding, assembly, and intracellular transport of the influenza virus hemagglutinin glycoprotein. Cell 1988; 52(6): 843–852
CrossRef Pubmed Google scholar
[85]
Yewdell JW, Gerhard W, Bachi T. Monoclonal anti-hemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/834-mediated hemolysis. J Virol 1983; 48(1): 239–248
CrossRef Pubmed Google scholar
[86]
Lee J, Boutz DR, Chromikova V, Joyce MG, Vollmers C, Leung K, Horton AP, DeKosky BJ, Lee CH, Lavinder JJ, Murrin EM, Chrysostomou C, Hoi KH, Tsybovsky Y, Thomas PV, Druz A, Zhang B, Zhang Y, Wang L, Kong WP, Park D, Popova LI, Dekker CL, Davis MM, Carter CE, Ross TM, Ellington AD, Wilson PC, Marcotte EM, Mascola JR, Ippolito GC, Krammer F, Quake SR, Kwong PD, Georgiou G. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat Med 2016; 22(12): 1456–1464
CrossRef Pubmed Google scholar
[87]
Bangaru S, Lang S, Schotsaert M, Vanderven HA, Zhu X, Kose N, Bombardi R, Finn JA, Kent SJ, Gilchuk P, Gilchuk I, Turner HL, García-Sastre A, Li S, Ward AB, Wilson IA, Crowe JE Jr. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 2019; 177(5): 1136–1152.e18
CrossRef Pubmed Google scholar
[88]
Das DK, Govindan R, Nikić-Spiegel I, Krammer F, Lemke EA, Munro JB. Direct visualization of the conformational dynamics of single influenza hemagglutinin trimers. Cell 2018; 174(4): 926–937.e12
CrossRef Pubmed Google scholar
[89]
Garcia NK, Lee KK. Dynamic viral glycoprotein machines: approaches for probing transient states that drive membrane fusion. Viruses 2016; 8(1): E15
CrossRef Google scholar
[90]
Puchades C, Kűkrer B, Diefenbach O, Sneekes-Vriese E, Juraszek J, Koudstaal W, Apetri A. Epitope mapping of diverse influenza hemagglutinin drug candidates using HDX-MS. Sci Rep 2019; 9(1): 4735
CrossRef Pubmed Google scholar
[91]
Copeland CS, Doms RW, Bolzau EM, Webster RG, Helenius A. Assembly of influenza hemagglutinin trimers and its role in intracellular transport. J Cell Biol 1986; 103(4): 1179–1191
CrossRef Pubmed Google scholar
[92]
Gething MJ, McCammon K, Sambrook J. Expression of wild-type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 1986; 46(6): 939–950
CrossRef Pubmed Google scholar
[93]
Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 1998; 95(3): 409–417
CrossRef Pubmed Google scholar
[94]
Steinhauer DA. Role of hemagglutinin cleavage for the pathogenicity of influenza virus. Virology 1999; 258(1): 1–20
CrossRef Pubmed Google scholar
[95]
Suzuki K, Grigorova I, Phan TG, Kelly LM, Cyster JG. Visualizing B cell capture of cognate antigen from follicular dendritic cells. J Exp Med 2009; 206(7): 1485–1493
CrossRef Pubmed Google scholar
[96]
Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, Carroll MC. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 2013; 38(6): 1164–1175
CrossRef Pubmed Google scholar
[97]
Pincetic A, Bournazos S, DiLillo DJ, Maamary J, Wang TT, Dahan R, Fiebiger BM, Ravetch JV. Type I and type II Fc receptors regulate innate and adaptive immunity. Nat Immunol 2014; 15(8): 707–716
CrossRef Pubmed Google scholar
[98]
Bohn AB, Nederby L, Harbo T, Skovbo A, Vorup-Jensen T, Krog J, Jakobsen J, Hokland ME. The effect of IgG levels on the number of natural killer cells and their Fc receptors in chronic inflammatory demyelinating polyradiculoneuropathy. Eur J Neurol 2011; 18(6): 919–924
CrossRef Pubmed Google scholar
[99]
Nimmerjahn F. Fc-receptors and innate immune effector cells involved in IgG activity. Immunology 2011; 135: 19
[100]
Munro JB, Lee KK. Probing structural variation and dynamics in the HIV-1 Env fusion glycoprotein. Curr HIV Res 2018; 16(1): 5–12
CrossRef Pubmed Google scholar
[101]
Rey FA, Stiasny K, Vaney MC, Dellarole M, Heinz FX. The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design. EMBO Rep 2018; 19(2): 206–224
CrossRef Pubmed Google scholar
[102]
Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, Lu G, Wu Y, Yan J, Shi Y, Zhang X, Gao GF. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun 2017; 8(1): 15092
CrossRef Pubmed Google scholar
[103]
Wu Y, Li S, Du L, Wang C, Zou P, Hong B, Yuan M, Ren X, Tai W, Kong Y, Zhou C, Lu L, Zhou X, Jiang S, Ying T. Neutralization of Zika virus by germline-like human monoclonal antibodies targeting cryptic epitopes on envelope domain III. Emerg Microbes Infect 2017; 6(10): e89
CrossRef Pubmed Google scholar
[104]
Miller LH, Ackerman HC, Su XZ, Wellems TE. Malaria biology and disease pathogenesis: insights for new treatments. Nat Med 2013; 19(2): 156–167
CrossRef Pubmed Google scholar
[105]
Mozdzanowska K, Feng J, Gerhard W. Virus-neutralizing activity mediated by the Fab fragment of a hemagglutinin-specific antibody is sufficient for the resolution of influenza virus infection in SCID mice. J Virol 2003; 77(15): 8322–8328
CrossRef Pubmed Google scholar
[106]
Wu Y, Jiang S, Ying T. Single-domain antibodies as therapeutics against human viral diseases. Front Immunol 2017; 8: 1802
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 81822027 and 81630090), the National Key R&D Program of China (No. 2019YFA0904400), the National Science and Technology Major Projects of Infectious Disease funds (No. 2018ZX10301403), and the grant from the Chinese Academy of Medical Sciences (No. 2019PT350002).

Compliance with ethics guidelines

Yulu Wang, Dan Hu, Yanling Wu, and Tianlei Ying declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2020 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1261 KB)

Accesses

Citations

Detail

Sections
Recommended

/