Artificial intelligence in radiotherapy: a technological review

Ke Sheng

PDF(2258 KB)
PDF(2258 KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (4) : 431-449. DOI: 10.1007/s11684-020-0761-1
REVIEW
REVIEW

Artificial intelligence in radiotherapy: a technological review

Author information +
History +

Abstract

Radiation therapy (RT) is widely used to treat cancer. Technological advances in RT have occurred in the past 30 years. These advances, such as three-dimensional image guidance, intensity modulation, and robotics, created challenges and opportunities for the next breakthrough, in which artificial intelligence (AI) will possibly play important roles. AI will replace certain repetitive and labor-intensive tasks and improve the accuracy and consistency of others, particularly those with increased complexity because of technological advances. The improvement in efficiency and consistency is important to manage the increasing cancer patient burden to the society. Furthermore, AI may provide new functionalities that facilitate satisfactory RT. The functionalities include superior images for real-time intervention and adaptive and personalized RT. AI may effectively synthesize and analyze big data for such purposes. This review describes the RT workflow and identifies areas, including imaging, treatment planning, quality assurance, and outcome prediction, that benefit from AI. This review primarily focuses on deep-learning techniques, although conventional machine-learning techniques are also mentioned.

Keywords

artificial intelligence / radiation therapy / medical imaging / treatment planning / quality assurance / outcome prediction

Cite this article

Download citation ▾
Ke Sheng. Artificial intelligence in radiotherapy: a technological review. Front. Med., 2020, 14(4): 431‒449 https://doi.org/10.1007/s11684-020-0761-1

References

[1]
Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA. Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 2002; 53(5): 1337–1349
CrossRef Google scholar
[2]
Mutic S, Dempsey JF. The ViewRay system: magnetic resonance-guided and controlled radiotherapy. Semin Radiat Oncol 2014; 24(3): 196–199
CrossRef Google scholar
[3]
Brahme A. Current algorithms for computed electron beam dose planning. Radiother Oncol 1985; 3(4): 347–362
CrossRef Google scholar
[4]
Brahme A, Andreo P. Dosimetry and quality specification of high energy photon beams. Acta Radiol Oncol 1986; 25(3): 213–223
CrossRef Google scholar
[5]
Brahme A, Roos JE, Lax I. Solution of an integral equation encountered in rotation therapy. Phys Med Biol 1982; 27(10): 1221–1229
CrossRef Google scholar
[6]
Brahme A, Agren AK. Optimal dose distribution for eradication of heterogeneous tumours. Acta Oncol 1987; 26(5): 377–385
CrossRef Google scholar
[7]
Woods K, Lee P, Kaprealian T, Yang I, Sheng K. Cochlea-sparing acoustic neuroma treatment with 4π radiation therapy. Adv Radiat Oncol 2018; 3(2): 100–107
CrossRef Google scholar
[8]
Yu VY, Landers A, Woods K, Nguyen D, Cao M, Du D, Chin RK, Sheng K, Kaprealian TB. A prospective 4π radiation therapy clinical study in recurrent high-grade glioma patients. Int J Radiat Oncol Biol Phys 2018; 101(1): 144–151
CrossRef Google scholar
[9]
Murzin VL, Woods K, Moiseenko V, Karunamuni R, Tringale KR, Seibert TM, Connor MJ, Simpson DR, Sheng K, Hattangadi-Gluth JA. 4π plan optimization for cortical-sparing brain radiotherapy. Radiother Oncol 2018; 127(1): 128–135
CrossRef Google scholar
[10]
Tran A, Woods K, Nguyen D, Yu VY, Niu T, Cao M, Lee P, Sheng K. Predicting liver SBRT eligibility and plan quality for VMAT and 4π plans. Radiat Oncol 2017; 12(1): 70
CrossRef Google scholar
[11]
Woods K, Nguyen D, Tran A, Yu VY, Cao M, Niu T, Lee P, Sheng K. Viability of non-coplanar VMAT for liver SBRT as compared to coplanar VMAT and beam orientation optimized 4π IMRT. Adv Radiat Oncol 2016; 1(1): 67–75
CrossRef Google scholar
[12]
Rwigema JC, Nguyen D, Heron DE, Chen AM, Lee P, Wang PC, Vargo JA, Low DA, Huq MS, Tenn S, Steinberg ML, Kupelian P, Sheng K. 4π noncoplanar stereotactic body radiation therapy for head-and-neck cancer: potential to improve tumor control and late toxicity. Int J Radiat Oncol Biol Phys 2015; 91(2): 401–409
CrossRef Google scholar
[13]
Nguyen D, Rwigema JC, Yu VY, Kaprealian T, Kupelian P, Selch M, Lee P, Low DA, Sheng K. Feasibility of extreme dose escalation for glioblastoma multiforme using 4π radiotherapy. Radiat Oncol 2014; 9(1): 239
CrossRef Google scholar
[14]
Dong P, Lee P, Ruan D, Long T, Romeijn E, Low DA, Kupelian P, Abraham J, Yang Y, Sheng K. 4π noncoplanar stereotactic body radiation therapy for centrally located or larger lung tumors. Int J Radiat Oncol Biol Phys 2013; 86(3): 407–413
CrossRef Google scholar
[15]
Dong P, Lee P, Ruan D, Long T, Romeijn E, Yang Y, Low D, Kupelian P, Sheng K. 4π non-coplanar liver SBRT: a novel delivery technique. Int J Radiat Oncol Biol Phys 2013; 85(5): 1360–1366
CrossRef Google scholar
[16]
O’Connor D, Yu V, Nguyen D, Ruan D, Sheng K. Fraction-variant beam orientation optimization for non-coplanar IMRT. Phys Med Biol 2018; 63(4): 045015
CrossRef Google scholar
[17]
Keyrilainen J, Fernandez M, Karjalainen-Lindsberg ML, Virkkunen P, Leidenius M, von Smitten K, Sipila P, Fiedler S, Suhonen H, Suortti P, Bravin A. Toward high-contrast breast CT at low radiation dose. Radiology 2008; 249(1): 321–327
CrossRef Google scholar
[18]
Chen H, Zhang Y, Chen Y, Zhang J, Zhang W, Sun H, Lv Y, Liao P, Zhou J, Wang G. LEARN: learned experts’ assessment-based reconstruction network for sparse-data CT. IEEE Trans Med Imaging 2018; 37(6): 1333–1347
CrossRef Google scholar
[19]
Ha S, Mueller K. A look-up table-based ray integration framework for 2-D/3-D forward and back projection in X-ray CT. IEEE Trans Med Imaging 2018; 37(2): 361–371
CrossRef Google scholar
[20]
He J, Yang Y, Wang Y, Zeng D, Bian Z, Zhang H, Sun J, Xu Z, Ma J. Optimizing a parameterized plug-and-play ADMM for iterative low-dose CT reconstruction. IEEE Trans Med Imaging 2019; 38(2): 371–382
CrossRef Google scholar
[21]
Kang E, Chang W, Yoo J, Ye JC. Deep convolutional framelet denosing for low-dose CT via wavelet residual network. IEEE Trans Med Imaging 2018; 37(6): 1358–1369
CrossRef Google scholar
[22]
Li S, Zeng D, Peng J, Bian Z, Zhang H, Xie Q, Wang Y, Liao Y, Zhang S, Huang J, Meng D, Xu Z, Ma J. An efficient iterative cerebral perfusion CT reconstruction via low-rank tensor decomposition with spatial-temporal total variation regularization. IEEE Trans Med Imaging 2019; 38(2): 360–370
CrossRef Google scholar
[23]
Mechlem K, Ehn S, Sellerer T, Braig E, Munzel D, Pfeiffer F, Noel PB. Joint statistical iterative material image reconstruction for spectral computed tomography using a semi-empirical forward model. IEEE Trans Med Imaging 2018; 37(1): 68–80
CrossRef Google scholar
[24]
Cai A, Li L, Zheng Z, Wang L, Yan B. Block-matching sparsity regularization-based image reconstruction for low-dose computed tomography. Med Phys 2018; 45(6): 2439–2452
CrossRef Google scholar
[25]
Kang E, Koo HJ, Yang DH, Seo JB, Ye JC. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. Med Phys 2019; 46(2): 550–562
CrossRef Google scholar
[26]
van Nierop BJ, Prince JF, van Rooij R, van den Bosch M, Lam M, de Jong H. Accuracy of SPECT/CT-based lung dose calculation for Holmium-166 hepatic radioembolization before OSEM convergence. Med Phys 2018; 45(8): 3871–3879
CrossRef Google scholar
[27]
Gu C, Zeng D, Lin J, Li S, He J, Zhang H, Bian Z, Niu S, Zhang Z, Huang J, Chen B, Zhao D, Chen W, Ma J. Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization. Phys Med Biol 2018; 63(12): 125009
CrossRef Google scholar
[28]
Holbrook M, Clark DP, Badea CT. Low-dose 4D cardiac imaging in small animals using dual source micro-CT. Phys Med Biol 2018; 63(2): 025009
CrossRef Google scholar
[29]
Yu W, Wang C, Nie X, Zeng D. Sparsity-induced dynamic guided filtering approach for sparse-view data toward low-dose X-ray computed tomography. Phys Med Biol 2018; 63(23): 235016
CrossRef Google scholar
[30]
Bian J, Yang K, Boone JM, Han X, Sidky EY, Pan X. Investigation of iterative image reconstruction in low-dose breast CT. Phys Med Biol 2014; 59(11): 2659–2685
CrossRef Google scholar
[31]
Shan H, Zhang Y, Yang Q, Kruger U, Kalra MK, Sun L, Cong W, Wang G. 3-D convolutional encoder-decoder network for low-dose CT via transfer learning from a 2-D trained network. IEEE Trans Med Imaging 2018; 37(6): 1522–1534
CrossRef Google scholar
[32]
Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X, Kalra MK, Zhang Y, Sun L, Wang G. Low-dose CT image denoising using a generative adversarial network with wasserstein distance and perceptual loss. IEEE Trans Med Imaging 2018; 37(6): 1348–1357
CrossRef Google scholar
[33]
Yi X, Babyn P. Sharpness-aware low-dose CT denoising using conditional generative adversarial network. J Digit Imaging 2018; 31(5): 655–669
CrossRef Google scholar
[34]
You C, Yang Q, Shan H, Gjesteby L, Li G, Ju S, Zhang Z, Zhao Z, Zhang Y, Cong W, Wang G. Structurally-sensitive multi-scale deep neural network for low-dose CT denoising. IEEE Access 2018; 6: 41839–41855
CrossRef Google scholar
[35]
Kang E, Min J, Ye JC. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. Med Phys 2017; 44(10): e360–e375
CrossRef Google scholar
[36]
Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao P, Zhou J, Wang G. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging 2017; 36(12): 2524–2535
CrossRef Google scholar
[37]
Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G. Low-dose CT via convolutional neural network. Biomed Opt Express 2017; 8(2): 679–694
CrossRef Google scholar
[38]
Lyu Q, Yang C, Gao H, Xue Y, O’Connor D, Niu T, Sheng K. Technical Note: Iterative megavoltage CT (MVCT) reconstruction using block-matching 3D-transform (BM3D) regularization. Med Phys 2018; 45(6): 2603–2610
CrossRef Google scholar
[39]
Lyu Q, Ruan D, Hoffman J, Neph R, McNitt-Gray M, Sheng K. Iterative reconstruction for low dose CT using Plug-and-Play alternating direction method of multipliers (ADMM) framework. SPIE Medical Imaging: Image Processing 2019; 2019: 10949
CrossRef Google scholar
[40]
Stankovic U, Ploeger LS, van Herk M, Sonke JJ. Optimal combination of anti-scatter grids and software correction for CBCT imaging. Med Phys 2017; 44(9): 4437–4451
CrossRef Google scholar
[41]
Xu J, Sisniega A, Zbijewski W, Dang H, Stayman JW, Wang X, Foos DH, Aygun N, Koliatsos VE, Siewerdsen JH. Modeling and design of a cone-beam CT head scanner using task-based imaging performance optimization. Phys Med Biol 2016; 61(8): 3180–3207
CrossRef Google scholar
[42]
Zhang H, Kong F, Ren L, Jin JY. An inter-projection interpolation (IPI) approach with geometric model restriction to reduce image dose in cone beam CT (CBCT). In: Zhang YJ, Tavares JMRS. Computational Modeling of Objects Presented in Images. Fundamentals, Methods, and Applications. CompIMAGE 2014. Lecture Notes in Computer Science, vol 8641. Springer, Cham. 2014: 12–23
CrossRef Google scholar
[43]
Stankovic U, van Herk M, Ploeger LS, Sonke JJ. Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid. Med Phys 2014; 41(6): 061910
CrossRef Google scholar
[44]
Sisniega A, Zbijewski W, Badal A, Kyprianou IS, Stayman JW, Vaquero JJ, Siewerdsen JH. Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions. Med Phys 2013; 40(5): 051915
CrossRef Google scholar
[45]
Ren L, Yin FF, Chetty IJ, Jaffray DA, Jin JY. Feasibility study of a synchronized-moving-grid (SMOG) system to improve image quality in cone-beam computed tomography (CBCT). Med Phys 2012; 39(8): 5099–5110
CrossRef Google scholar
[46]
Jin JY, Ren L, Liu Q, Kim J, Wen N, Guan H, Movsas B, Chetty IJ. Combining scatter reduction and correction to improve image quality in cone-beam computed tomography (CBCT). Med Phys 2010; 37(11): 5634–5644
CrossRef Google scholar
[47]
Sun M, Star-Lack JM. Improved scatter correction using adaptive scatter kernel superposition. Phys Med Biol 2010; 55(22): 6695–6720
CrossRef Google scholar
[48]
Lu Y, Peng B, Lau BA, Hu YH, Scaduto DA, Zhao W, Gindi G. A scatter correction method for contrast-enhanced dual-energy digital breast tomosynthesis. Phys Med Biol 2015; 60(16): 6323–6354
CrossRef Google scholar
[49]
Dang H, Stayman JW, Sisniega A, Xu J, Zbijewski W, Wang X, Foos DH, Aygun N, Koliatsos VE, Siewerdsen JH. Statistical reconstruction for cone-beam CT with a post-artifact-correction noise model: application to high-quality head imaging. Phys Med Biol 2015; 60(16): 6153–6175
CrossRef Google scholar
[50]
Watson PG, Mainegra-Hing E, Tomic N, Seuntjens J. Implementation of an efficient Monte Carlo calculation for CBCT scatter correction: phantom study. J Appl Clin Med Phys 2015; 16(4): 216–227
CrossRef Google scholar
[51]
Kim C, Park M, Sung Y, Lee J, Choi J, Cho S. Data consistency-driven scatter kernel optimization for X-ray cone-beam CT. Phys Med Biol 2015; 60(15): 5971–5994
CrossRef Google scholar
[52]
Xu Y, Bai T, Yan H, Ouyang L, Pompos A, Wang J, Zhou L, Jiang SB, Jia X. A practical cone-beam CT scatter correction method with optimized Monte Carlo simulations for image-guided radiation therapy. Phys Med Biol 2015; 60(9): 3567–3587
CrossRef Google scholar
[53]
Sisniega A, Zbijewski W, Xu J, Dang H, Stayman JW, Yorkston J, Aygun N, Koliatsos V, Siewerdsen JH. High-fidelity artifact correction for cone-beam CT imaging of the brain. Phys Med Biol 2015; 60(4): 1415–1439
CrossRef Google scholar
[54]
Ritschl L, Fahrig R, Knaup M, Maier J, Kachelriess M. Robust primary modulation-based scatter estimation for cone-beam CT. Med Phys 2015; 42(1): 469–478
CrossRef Google scholar
[55]
Bootsma GJ, Verhaegen F, Jaffray DA. Efficient scatter distribution estimation and correction in CBCT using concurrent Monte Carlo fitting. Med Phys 2015; 42(1): 54–68
CrossRef Google scholar
[56]
Zbijewski W, Sisniega A, Stayman JW, Muhit A, Thawait G, Packard N, Senn R, Yang D, Yorkston J, Carrino JA, Siewerdsen JH. High-performance soft-tissue imaging in extremity cone-beam CT. Proc SPIE Int Soc Opt Eng 2014; 9033: 903329
[57]
Pawlowski JM, Ding GX. An algorithm for kilovoltage X-ray dose calculations with applications in kV-CBCT scans and 2D planar projected radiographs. Phys Med Biol 2014; 59(8): 2041–2058
CrossRef Google scholar
[58]
Li J, Yao W, Xiao Y, Yu Y. Feasibility of improving cone-beam CT number consistency using a scatter correction algorithm. J Appl Clin Med Phys 2013; 14(6): 4346
CrossRef Google scholar
[59]
Aootaphao S, Thongvigitmanee SS, Rajruangrabin J, Junhunee P, Thajchayapong P. Experiment-based scatter correction for cone-beam computed tomography using the statistical method. Conf Proc IEEE Eng Med Biol Soc 2013; 2013: 5087–5090
CrossRef Google scholar
[60]
Thing RS, Bernchou U, Mainegra-Hing E, Brink C. Patient-specific scatter correction in clinical cone beam computed tomography imaging made possible by the combination of Monte Carlo simulations and a ray tracing algorithm. Acta Oncol 2013; 52(7): 1477–1483
CrossRef Google scholar
[61]
Muhit AA, Arora S, Ogawa M, Ding Y, Zbijewski W, Stayman JW, Thawait G, Packard N, Senn R, Yang D, Yorkston J, Bingham CO 3rd, Means K, Carrino JA, Siewerdsen JH. Peripheral quantitative CT (pQCT) using a dedicated extremity cone-beam CT scanner. Proc SPIE Int Soc Opt Eng 2013; 8672: 867203
[62]
Meng B, Lee H, Xing L, Fahimian BP. Single-scan patient-specific scatter correction in computed tomography using peripheral detection of scatter and compressed sensing scatter retrieval. Med Phys 2013; 40(1): 011907
CrossRef Google scholar
[63]
Boylan CJ, Marchant TE, Stratford J, Malik J, Choudhury A, Shrimali R, Rodgers J, Rowbottom CG. A megavoltage scatter correction technique for cone-beam CT images acquired during VMAT delivery. Phys Med Biol 2012; 57(12): 3727–3739
CrossRef Google scholar
[64]
Niu T, Al-Basheer A, Zhu L. Quantitative cone-beam CT imaging in radiation therapy using planning CT as a prior: first patient studies. Med Phys 2012; 39(4): 1991–2000
CrossRef Google scholar
[65]
Hunter AK, McDavid WD. Characterization and correction of cupping effect artefacts in cone beam CT. Dentomaxillofac Radiol 2012; 41(3): 217–223
CrossRef Google scholar
[66]
Niu T, Zhu L. Scatter correction for full-fan volumetric CT using a stationary beam blocker in a single full scan. Med Phys 2011; 38(11): 6027–6038
CrossRef Google scholar
[67]
van Herk M, Ploeger L, Sonke JJ. A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation. Radiother Oncol 2011; 100(3): 365–369
CrossRef Google scholar
[68]
Rührnschopf EP, Klingenbeck K. A general framework and review of scatter correction methods in X-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches. Med Phys 2011; 38(7): 4296–4311
CrossRef Google scholar
[69]
Elstrøm UV, Muren LP, Petersen JB, Grau C. Evaluation of image quality for different kV cone-beam CT acquisition and reconstruction methods in the head and neck region. Acta Oncol 2011; 50(6): 908–917
CrossRef Google scholar
[70]
Sun M, Nagy T, Virshup G, Partain L, Oelhafen M, Star-Lack J. Correction for patient table-induced scattered radiation in cone-beam computed tomography (CBCT). Med Phys 2011; 38(4): 2058–2073
CrossRef Google scholar
[71]
Wang J, Mao W, Solberg T. Scatter correction for cone-beam computed tomography using moving blocker strips: a preliminary study. Med Phys 2010; 37(11): 5792–5800
CrossRef Google scholar
[72]
Lazos D, Williamson JF. Monte Carlo evaluation of scatter mitigation strategies in cone-beam CT. Med Phys 2010; 37(10): 5456–5470
CrossRef Google scholar
[73]
Niu T, Sun M, Star-Lack J, Gao H, Fan Q, Zhu L. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images. Med Phys 2010; 37(10): 5395–5406
CrossRef Google scholar
[74]
Mainegra-Hing E, Kawrakow I. Variance reduction techniques for fast Monte Carlo CBCT scatter correction calculations. Phys Med Biol 2010; 55(16): 4495–4507
CrossRef Google scholar
[75]
Yu L, Vrieze TJ, Bruesewitz MR, Kofler JM, DeLone DR, Pallanch JF, Lindell EP, McCollough CH. Dose and image quality evaluation of a dedicated cone-beam CT system for high-contrast neurologic applications. AJR Am J Roentgenol 2010; 194(2): W193–201
CrossRef Google scholar
[76]
Guan H, Dong H. Dose calculation accuracy using cone-beam CT (CBCT) for pelvic adaptive radiotherapy. Phys Med Biol 2009; 54(20): 6239–6250
CrossRef Google scholar
[77]
Reitz I, Hesse BM, Nill S, Tucking T, Oelfke U. Enhancement of image quality with a fast iterative scatter and beam hardening correction method for kV CBCT. Z Med Phys 2009; 19(3): 158–172
CrossRef Google scholar
[78]
Poludniowski G, Evans PM, Hansen VN, Webb S. An efficient Monte Carlo-based algorithm for scatter correction in keV cone-beam CT. Phys Med Biol 2009; 54(12): 3847–3864
CrossRef Google scholar
[79]
Li H, Mohan R, Zhu XR. Scatter kernel estimation with an edge-spread function method for cone-beam computed tomography imaging. Phys Med Biol 2008; 53(23): 6729–6748
CrossRef Google scholar
[80]
Rinkel J, Gerfault L, Esteve F, Dinten JM. A new method for X-ray scatter correction: first assessment on a cone-beam CT experimental setup. Phys Med Biol 2007; 52(15): 4633–4652
CrossRef Google scholar
[81]
Letourneau D, Wong R, Moseley D, Sharpe MB, Ansell S, Gospodarowicz M, Jaffray DA. Online planning and delivery technique for radiotherapy of spinal metastases using cone-beam CT: image quality and system performance. Int J Radiat Oncol Biol Phys 2007; 67(4): 1229–1237
CrossRef Google scholar
[82]
Jarry G, Graham SA, Moseley DJ, Jaffray DJ, Siewerdsen JH, Verhaegen F. Characterization of scattered radiation in kV CBCT images using Monte Carlo simulations. Med Phys 2006; 33(11): 4320–4329
CrossRef Google scholar
[83]
Siewerdsen JH, Daly MJ, Bakhtiar B, Moseley DJ, Richard S, Keller H, Jaffray DA. A simple, direct method for X-ray scatter estimation and correction in digital radiography and cone-beam CT. Med Phys 2006; 33(1): 187–197
CrossRef Google scholar
[84]
Ning R, Tang X, Conover D. X-ray scatter correction algorithm for cone beam CT imaging. Med Phys 2004; 31(5): 1195–1202
CrossRef Google scholar
[85]
Wang A, Maslowski A, Messmer P, Lehmann M, Strzelecki A, Yu E, Paysan P, Brehm M, Munro P, Star-Lack J, Seghers D. Acuros CTS: a fast, linear Boltzmann transport equation solver for computed tomography scatter — Part II: system modeling, scatter correction, and optimization. Med Phys 2018; 45(5): 1914–1925
CrossRef Google scholar
[86]
Maslowski A, Wang A, Sun M, Wareing T, Davis I, Star-Lack J. Acuros CTS: a fast, linear Boltzmann transport equation solver for computed tomography scatter — Part I: core algorithms and validation. Med Phys 2018; 45(5): 1899–1913
CrossRef Google scholar
[87]
Harms J, Lei Y, Wang T, Zhang R, Zhou J, Tang X, Curran WJ, Liu T, Yang X. Paired cycle-GAN-based image correction for quantitative cone-beam CT. Med Phys 2019; 46(9): 3998–4009
CrossRef Google scholar
[88]
Jiang Y, Yang C, Yang P, Hu X, Luo C, Xue Y, Xu L, Hu X, Zhang L, Wang J, Sheng K, Niu T. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol 2019; 64(14): 145003
CrossRef Google scholar
[89]
Liang X, Chen L, Nguyen D, Zhou Z, Gu X, Yang M, Wang J, Jiang S. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Phys Med Biol 2019; 64(12): 125002
CrossRef Google scholar
[90]
Nomura Y, Xu Q, Shirato H, Shimizu S, Xing L. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network. Med Phys 2019; 46(7): 3142–3155
CrossRef Google scholar
[91]
Hansen DC, Landry G, Kamp F, Li M, Belka C, Parodi K, Kurz C. ScatterNet: a convolutional neural network for cone-beam CT intensity correction. Med Phys 2018; 45(11): 4916–4926
CrossRef Google scholar
[92]
Jiang Y, Yang C, Yang P, Hu X, Luo C, Xue Y, Xu L, Hu X, Zhang L, Wang J, Sheng K, Niu T. Scatter correction of cone-beam CT using a deep residual convolution neural network (DRCNN). Phys Med Biol 2019; 64(14): 145003
CrossRef Google scholar
[93]
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47(6): 1202–1210
CrossRef Google scholar
[94]
Schreyer AG, Geissler A, Albrich H, Scholmerich J, Feuerbach S, Rogler G, Volk M, Herfarth H. Abdominal MRI after enteroclysis or with oral contrast in patients with suspected or proven Crohn’s disease. Clin Gastroenterol Hepatol 2004; 2(6): 491–497
CrossRef Google scholar
[95]
Paganelli C, Kipritidis J, Lee D, Baroni G, Keall P, Riboldi M. Image-based retrospective 4D MRI in external beam radiotherapy: a comparative study with a digital phantom. Med Phys 2018; 45(7): 3161–3172
CrossRef Google scholar
[96]
Paganelli C, Summers P, Gianoli C, Bellomi M, Baroni G, Riboldi M. A tool for validating MRI-guided strategies: a digital breathing CT/MRI phantom of the abdominal site. Med Biol Eng Comput 2017; 55(11): 2001–2014
CrossRef Google scholar
[97]
Li G, Wei J, Olek D, Kadbi M, Tyagi N, Zakian K, Mechalakos J, Deasy JO, Hunt M. Direct comparison of respiration-correlated four-dimensional magnetic resonance imaging reconstructed using concurrent internal navigator and external bellows. Int J Radiat Oncol Biol Phys 2017; 97(3): 596–605
CrossRef Google scholar
[98]
Bernatowicz K, Peroni M, Perrin R, Weber DC, Lomax A. Four-dimensional dose reconstruction for scanned proton therapy using liver 4DCT-MRI. Int J Radiat Oncol Biol Phys 2016; 95(1): 216–223
CrossRef Google scholar
[99]
Glide-Hurst CK, Kim JP, To D, Hu Y, Kadbi M, Nielsen T, Chetty IJ. Four dimensional magnetic resonance imaging optimization and implementation for magnetic resonance imaging simulation. Pract Radiat Oncol 2015; 5(6): 433–442
CrossRef Google scholar
[100]
Paganelli C, Summers P, Bellomi M, Baroni G, Riboldi M. Liver 4DMRI: a retrospective image-based sorting method. Med Phys 2015; 42(8): 4814–4821
CrossRef Google scholar
[101]
Panandiker AS, Winchell A, Loeffler R, Song R, Rolen M, Hillenbrand C. 4DMRI provides more accurate renal motion estimation in IMRT in young children. Pract Radiat Oncol 2013; 3(2 Suppl 1): S1
CrossRef Google scholar
[102]
Han F, Zhou Z, Du D, Gao Y, Rashid S, Cao M, Shaverdian N, Hegde JV, Steinberg M, Lee P, Raldow A, Low DA, Sheng K, Yang Y, Hu P. Respiratory motion-resolved, self-gated 4D-MRI using Rotating Cartesian K-space (ROCK): initial clinical experience on an MRI-guided radiotherapy system. Radiother Oncol 2018; 127(3): 467–473
CrossRef Google scholar
[103]
Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58(6): 1182–1195
CrossRef Google scholar
[104]
Lingala SG, Hu Y, DiBella E, Jacob M. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. IEEE Trans Med Imaging 2011; 30(5): 1042–1054
CrossRef Google scholar
[105]
Otazo R, Candes E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 2015; 73(3): 1125–1136
CrossRef Google scholar
[106]
Asif MS, Hamilton L, Brummer M, Romberg J. Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI. Magn Reson Med 2013; 70(3): 800–812
CrossRef Google scholar
[107]
Zhao N, O’Connor D, Basarab A, Ruan D, Sheng K. Motion compensated dynamic MRI reconstruction with local affine optical flow estimation. IEEE Trans Biomed Eng 2019; 66(11): 3050–3059
CrossRef Google scholar
[108]
Zhou Z, Han F, Ghodrati V, Gao Y, Yin W, Yang Y, Hu P. Parallel imaging and convolutional neural network combined fast MR image reconstruction: applications in low-latency accelerated real-time imaging. Med Phys 2019; 46(8): 3399–3413
CrossRef Google scholar
[109]
Biswas S, Aggarwal HK, Jacob M. Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM. Magn Reson Med 2019; 82(1): 485–494
CrossRef Google scholar
[110]
Xiang L, Chen Y, Chang W, Zhan Y, Lin W, Wang Q, Shen D. Deep leaning based multi-modal fusion for fast MR reconstruction. IEEE Trans Biomed Eng 2019; 66(7): 2105–2114
CrossRef Google scholar
[111]
Yang G, Yu S, Dong H, Slabaugh G, Dragotti PL, Ye X, Liu F, Arridge S, Keegan J, Guo Y, Firmin D. DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans Med Imaging 2018; 37(6): 1310–1321
CrossRef Google scholar
[112]
Schlemper J, Caballero J, Hajnal JV, Price AN, Rueckert D. A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans Med Imaging 2018; 37(2): 491–503
CrossRef Google scholar
[113]
Zhang D, Banalagay R, Wang J, Zhao Y, Noble JH, Dawant BM. Two-level training of a 3D U-Net for accurate segmentation of the intra-cochlear anatomy in head CTs with limited ground truth training data. Proc SPIE Int Soc Opt Eng 2019; 10949
[114]
Byra M, Wu M, Zhang X, Jang H, Ma YJ, Chang EY, Shah S, Du J. Knee menisci segmentation and relaxometry of 3D ultrashort echo time cones MR imaging using attention U-Net with transfer learning. Magn Reson Med 2020; 83(3): 1109–1122
CrossRef Google scholar
[115]
Park J, Yun J, Kim N, Park B, Cho Y, Park HJ, Song M, Lee M, Seo JB. Fully automated lung lobe segmentation in volumetric chest CT with 3D U-Net: validation with intra- and extra-datasets. J Digit Imaging 2020; 33(1): 221–230
CrossRef Google scholar
[116]
Nguyen D, Jia X, Sher D, Lin MH, Iqbal Z, Liu H, Jiang S. 3D radiotherapy dose prediction on head and neck cancer patients with a hierarchically densely connected U-net deep learning architecture. Phys Med Biol 2019; 64(6): 065020
CrossRef Google scholar
[117]
Huang Q, Sun J, Ding H, Wang X, Wang G. Robust liver vessel extraction using 3D U-Net with variant dice loss function. Comput Biol Med 2018; 101: 153–162
CrossRef Google scholar
[118]
Blanc-Durand P, Van Der Gucht A, Schaefer N, Itti E, Prior JO. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: a full 3D U-Net convolutional neural network study. PLoS One 2018; 13(4): e0195798
CrossRef Google scholar
[119]
Boldrini L, Bibault JE, Masciocchi C, Shen Y, Bittner MI. Deep learning: a review for the radiation oncologist. Front Oncol 2019; 9: 977
CrossRef Google scholar
[120]
Ibragimov B, Toesca D, Chang D, Yuan Y, Koong A, Xing L. Development of deep neural network for individualized hepatobiliary toxicity prediction after liver SBRT. Med Phys 2018; 45(10): 4763–4774
CrossRef Google scholar
[121]
Valdes G, Interian Y. Comment on ‘Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study’. Phys Med Biol 2018; 63(6): 068001
CrossRef Google scholar
[122]
Zhen X, Chen J, Zhong Z, Hrycushko B, Zhou L, Jiang S, Albuquerque K, Gu X. Deep convolutional neural network with transfer learning for rectum toxicity prediction in cervical cancer radiotherapy: a feasibility study. Phys Med Biol 2017; 62(21): 8246–8263
CrossRef Google scholar
[123]
Epp ER, Weiss H, Djordjevic B, Santomasso A. The radiosensitivity of cultured mammalian cells exposed to single high intensity pulses of electrons in various concentrations of oxygen. Radiat Res 1972; 52(2): 324–332
CrossRef Google scholar
[124]
Adrian G, Konradsson E, Lempart M, Back S, Ceberg C, Petersson K. The FLASH effect depends on oxygen concentration. Br J Radiol 2020; 93(1106): 20190702
CrossRef Google scholar
[125]
Maxim PG, Tantawi SG, Loo BW Jr. PHASER: a platform for clinical translation of FLASH cancer radiotherapy. Radiother Oncol 2019; 139: 28–33
CrossRef Google scholar
[126]
Vozenin MC, De Fornel P, Petersson K, Favaudon V, Jaccard M, Germond JF, Petit B, Burki M, Ferrand G, Patin D, Bouchaab H, Ozsahin M, Bochud F, Bailat C, Devauchelle P, Bourhis J. The advantage of FLASH radiotherapy confirmed in mini-pig and Cat-cancer patients. Clin Cancer Res 2019; 25(1): 35–42
CrossRef Google scholar
[127]
Zhu YM, Dean AE, Horikoshi N, Heer C, Spitz DR, Gius D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Invest 2018; 128(9): 3682–3691
CrossRef Google scholar
[128]
Alexander MS, Wilkes JG, Schroeder SR, Buettner GR, Wagner BA, Du J, Gibson-Corley K, O’Leary BR, Spitz DR, Buatti JM, Berg DJ, Bodeker KL, Vollstedt S, Brown HA, Allen BG, Cullen JJ. Pharmacologic ascorbate reduces radiation-induced normal tissue toxicity and enhances tumor radiosensitization in pancreatic cancer. Cancer Res 2018; 78(24): 6838–6851
CrossRef Google scholar
[129]
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, Berg DJ, Zhang J, Keech J, Parekh KR, Bhatia S, Monga V, Bodeker KL, Ahmann L, Vollstedt S, Brown H, Kauffman EPS, Schall ME, Hohl RJ, Clamon GH, Greenlee JD, Howard MA, Schultz MK, Smith BJ, Riley DP, Domann FE, Cullen JJ, Buettner GR, Buatti JM, Spitz DR, Allen BG. Correction: O2.– and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 2017; 32(2): 268–268
CrossRef Google scholar
[130]
Aykin-Burns N, Ahmad IM, Zhu Y, Oberley LW, Spitz DR. Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochem J 2009; 418(1): 29–37
CrossRef Google scholar
[131]
Schoenfeld JD, Sibenaller ZA, Mapuskar KA, Wagner BA, Cramer-Morales KL, Furqan M, Sandhu S, Carlisle TL, Smith MC, Abu Hejleh T, Berg DJ, Zhang J, Keech J, Parekh KR, Bhatia S, Monga V, Bodeker KL, Ahmann L, Vollstedt S, Brown H, Kauffman EPS, Schall ME, Hohl RJ, Clamon GH, Greenlee JD, Howard MA, Shultz MK, Smith BJ, Riley DP, Domann FE, Cullen JJ, Buettner GR, Buatti JM, Spitz DR, Allen BG. O2.– and H2O2-mediated disruption of Fe metabolism causes the differential susceptibility of NSCLC and GBM cancer cells to pharmacological ascorbate. Cancer Cell 2017; 31(4): 487–500.e8
CrossRef Google scholar
[132]
Hall EJ. Radiobiology for the Radiologist. 2d ed. Hagerstown, MD: Medical Dept., Harper & Row, 1978
[133]
Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging 2019; 38(8): 1788–1800
CrossRef Pubmed Google scholar
[134]
Hall EJ. Radiobiology for the Radiologist. 4th ed. Philadelphia: J.B. Lippincott, 1994
[135]
Hall EJ. Radiobiology for the Radiologist. 3rd ed. Philadelphia: Lippincott, 1988
[136]
Gutiontov SI, Shin EJ, Lok B, Lee NY, Cabanillas R. Intensity-modulated radiotherapy for head and neck surgeons. Head Neck 2016; 38(Suppl 1): E2368–E2373
CrossRef Google scholar
[137]
Nelms BE, Tome WA, Robinson G, Wheeler J. Variations in the contouring of organs at risk: test case from a patient with oropharyngeal cancer. Int J Radiat Oncol Biol Phys 2012; 82(1): 368–378
CrossRef Google scholar
[138]
Castelli J, Simon A, Lafond C, Perichon N, Rigaud B, Chajon E, De Bari B, Ozsahin M, Bourhis J, de Crevoisier R. Adaptive radiotherapy for head and neck cancer. Acta Oncol 2018; 57(10): 1284–1292
CrossRef Google scholar
[139]
Gupta V, Wang Y, Mendez Romero A, Myronenko A, Jordan P, Maurer C, Heijmen B, Hoogeman M. Fast and robust adaptation of organs-at-risk delineations from planning scans to match daily anatomy in pre-treatment scans for online-adaptive radiotherapy of abdominal tumors. Radiother Oncol 2018; 127(2): 332–338
CrossRef Google scholar
[140]
Pollard JM, Wen Z, Sadagopan R, Wang J, Ibbott GS. The future of image-guided radiotherapy will be MR guided. Br J Radiol 2017; 90(1073): 20160667
CrossRef Google scholar
[141]
Han X, Hoogeman MS, Levendag PC, Hibbard LS, Teguh DN, Voet P, Cowen AC, Wolf TK. Atlas-based auto-segmentation of head and neck CT images. Med Image Comput Comput Assist Interv 2008; 11(Pt 2): 434–441
CrossRef Google scholar
[142]
Bondiau PY, Malandain G, Chanalet S, Marcy PY, Habrand JL, Fauchon F, Paquis P, Courdi A, Commowick O, Rutten I, Ayache N. Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context. Int J Radiat Oncol Biol Phys 2005; 61(1): 289–298
CrossRef Google scholar
[143]
Roberts MG, Cootes TF, Adams JE. Vertebral shape: automatic measurement with dynamically sequenced active appearance models. In: Duncan JS, Gerig G. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2005. Lecture Notes in Computer Science, vol 3750. Springer, Berlin, Heidelberg. 2005
[144]
Fritscher KD, Peroni M, Zaffino P, Spadea MF, Schubert R, Sharp G. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Med Phys 2014; 41(5): 051910
CrossRef Google scholar
[145]
Setio AA, Ciompi F, Litjens G, Gerke P, Jacobs C, van Riel SJ, Wille MM, Naqibullah M, Sanchez CI, van Ginneken B. Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imaging 2016; 35(5): 1160–1169
CrossRef Google scholar
[146]
Qi D, Hao C, Lequan Y, Lei Z, Jing Q, Defeng W, Mok VC, Lin S, Pheng-Ann H. Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks. IEEE Trans Med Imaging 2016; 35(5): 1182–1195
CrossRef Google scholar
[147]
Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 2018; 37(12): 2663–2674
CrossRef Google scholar
[148]
Chen L, Bentley P, Mori K, Misawa K, Fujiwara M, Rueckert D. DRINet for medical image segmentation. IEEE Trans Med Imaging 2018; 37(11): 2453–2462
CrossRef Google scholar
[149]
Moeskops P, Viergever MA, Mendrik AM, de Vries LS, Benders MJ, Isgum I. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 2016; 35(5): 1252–1261
CrossRef Google scholar
[150]
Cao X, Yang J, Wang L, Xue Z, Wang Q, Shen D. Deep learning based inter-modality image registration supervised by intra-modality similarity. Mach Learn Med Imaging 2018; 11046: 55–63
CrossRef Google scholar
[151]
Haskins G, Kruecker J, Kruger U, Xu S, Pinto PA, Wood BJ, Yan P. Learning deep similarity metric for 3D MR-TRUS image registration. Int J CARS 2019; 14(3): 417–425
CrossRef Google scholar
[152]
Zhu X, Ding M, Huang T, Jin X, Zhang X. PCANet-based structural representation for nonrigid multimodal medical image registration. Sensors (Basel) 2018; 18(5): 1477
CrossRef Google scholar
[153]
Ibragimov B, Xing L. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys 2017; 44(2): 547–557
CrossRef Google scholar
[154]
Tong N, Gou S, Yang S, Ruan D, Sheng K. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med Phys 2018; 45(10): 4558–4567
CrossRef Google scholar
[155]
Tong N, Gou S, Yang S, Cao M, Sheng K. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Med Phys 2019; 46(6): 2669–2682
CrossRef Google scholar
[156]
Hall EJ. Radiobiology for the Radiologist. 5th ed. Philadelphia: Lippincott Williams & Wilkins, 2000
[157]
Hall EJ, Giaccia AJ. Radiobiology for the Radiologist. 6th ed. Philadelphia: Lippincott Williams & Wilkins, 2006
[158]
Wang ZS, Wei LF, Wang L, Gao YZ, Chen WF, Shen DG. Hierarchical vertex regression-based segmentation of head and neck CT images for radiotherapy planning. IEEE Trans Image Process 2018; 27(2): 923–937
CrossRef Google scholar
[159]
Moore KL, Brame RS, Low DA, Mutic S. Experience-based quality control of clinical intensity-modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 2011; 81(2): 545–551
CrossRef Google scholar
[160]
Yuan L, Ge Y, Lee WR, Yin FF, Kirkpatrick JP, Wu QJ. Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans. Med Phys 2012; 39(11): 6868–6878
CrossRef Google scholar
[161]
Nelms BE, Robinson G, Markham J, Velasco K, Boyd S, Narayan S, Wheeler J, Sobczak ML. Variation in external beam treatment plan quality: an inter-institutional study of planners and planning systems. Pract Radiat Oncol 2012; 2(4): 296–305
CrossRef Google scholar
[162]
Shiraishi S, Moore KL. Knowledge-based prediction of three-dimensional dose distributions for external beam radiotherapy. Med Phys 2016; 43(1): 378–387
CrossRef Google scholar
[163]
McIntosh C, Purdie TG. Voxel-based dose prediction with multi-patient atlas selection for automated radiotherapy treatment planning. Phys Med Biol 2017; 62(2): 415–431
CrossRef Google scholar
[164]
Ziemer BP, Shiraishi S, Hattangadi-Gluth JA, Sanghvi P, Moore KL. Fully automated, comprehensive knowledge-based planning for stereotactic radiosurgery: preclinical validation through blinded physician review. Pract Radiat Oncol 2017; 7(6): e569–e578
CrossRef Google scholar
[165]
Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Chuang M, Taylor R, Jacques R, McNutt T. Patient geometry-driven information retrieval for IMRT treatment plan quality control. Med Phys 2009; 36(12): 5497–5505
CrossRef Google scholar
[166]
Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu QJ. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys 2011; 38(2): 719–726
CrossRef Google scholar
[167]
Tran A, Woods K, Nguyen D, Yu VY, Niu T, Cao M, Lee P, Sheng K. Predicting liver SBRT eligibility and plan quality for VMAT and 4p plans. Radiat Oncol 2017; 12(1): 70
CrossRef Google scholar
[168]
Nguyen D, Long T, Jia X, Lu W, Gu X, Iqbal Z, Jiang S. A feasibility study for predicting optimal radiation therapy dose distributions of prostate cancer patients from patient anatomy using deep learning. Sci Rep 2019; 9(1): 1076
CrossRef Google scholar
[169]
Men K, Geng H, Zhong H, Fan Y, Lin A, Xiao Y. A deep learning model for predicting xerostomia due to radiotherapy for head-and-neck squamous cell carcinoma in the RTOG 0522 clinical trial. Int J Radiat Oncol Biol Phys 2019; 105(2): 440–447
CrossRef Google scholar
[170]
Ma M. Buyyounouski MK, Vasudevan V, Xing L, Yang Y. Dose distribution prediction in isodose feature-preserving voxelization domain using deep convolutional neural network. Med Phys 2019; 46: 2978–2987
CrossRef Google scholar
[171]
Ma M, Kovalchuk N, Buyyounouski MK, Xing L, Yang Y. Incorporating dosimetric features into the prediction of 3D VMAT dose distributions using deep convolutional neural network. Phys Med Biol 2019; 64(12): 125017
CrossRef Google scholar
[172]
Liu Z, Fan J, Li M, Yan H, Hu Z, Huang P, Tian Y, Miao J, Dai J. A deep learning method for prediction of three-dimensional dose distribution of helical tomotherapy. Med Phys 2019; 46(5): 1972–1983
CrossRef Google scholar
[173]
Kajikawa T, Kadoya N, Ito K, Takayama Y, Chiba T, Tomori S, Takeda K, Jingu K. Automated prediction of dosimetric eligibility of patients with prostate cancer undergoing intensity-modulated radiation therapy using a convolutional neural network. Radiological Phys Technol 2018; 11(3): 320–327
CrossRef Google scholar
[174]
Heijmen B, Voet P, Fransen D, Penninkhof J, Milder M, Akhiat H, Bonomo P, Casati M, Georg D, Goldner G, Henry A, Lilley J, Lohr F, Marrazzo L, Pallotta S, Pellegrini R, Seppenwoolde Y, Simontacchi G, Steil V, Stieler F, Wilson S, Breedveld S. Fully automated, multi-criterial planning for Volumetric Modulated Arc Therapy — an international multi-center validation for prostate cancer. Radiother Oncol 2018; 128(2): 343–348
CrossRef Google scholar
[175]
van Duren-Koopman MJ, Tol JP, Dahele M, Bucko E, Meijnen P, Slotman BJ, Verbakel WF. Personalized automated treatment planning for breast plus locoregional lymph nodes using Hybrid RapidArc. Pract Radiat Oncol 2018; 8(5): 332–341
CrossRef Google scholar
[176]
Babier A, Boutilier JJ, McNiven AL, Chan TCY. Knowledge-based automated planning for oropharyngeal cancer. Med Phys 2018; 45(7): 2875–2883
CrossRef Google scholar
[177]
Zhang Y, Li T, Xiao H, Ji W, Guo M, Zeng Z, Zhang J. A knowledge-based approach to automated planning for hepatocellular carcinoma. J Appl Clin Med Phys 2018; 19(1): 50–59
CrossRef Google scholar
[178]
Ziemer BP, Sanghvi P, Hattangadi-Gluth J, Moore KL. Heuristic knowledge-based planning for single-isocenter stereotactic radiosurgery to multiple brain metastases. Med Phys 2017; 44(10): 5001–5009
CrossRef Google scholar
[179]
Ziemer BP, Shiraishi S, Hattangadi-Gluth JA, Sanghvi P, Moore KL. Fully automated, comprehensive knowledge-based planning for stereotactic radiosurgery: preclinical validation through blinded physician review. Pract Radiat Oncol 2017; 7(6): e569–e578
CrossRef Google scholar
[180]
Buergy D, Sharfo AW, Heijmen BJ, Voet PW, Breedveld S, Wenz F, Lohr F, Stieler F. Fully automated treatment planning of spinal metastases — a comparison to manual planning of Volumetric Modulated Arc Therapy for conventionally fractionated irradiation. Radiat Oncol 2017; 12(1): 33
CrossRef Google scholar
[181]
Wu H, Jiang F, Yue H, Zhang H, Wang K, Zhang Y. Applying a RapidPlan model trained on a technique and orientation to another: a feasibility and dosimetric evaluation. Radiat Oncol 2016; 11(1): 108
CrossRef Google scholar
[182]
Krayenbuehl J, Norton I, Studer G, Guckenberger M. Evaluation of an automated knowledge based treatment planning system for head and neck. Radiat Oncol 2015; 10(1): 226
CrossRef Google scholar
[183]
Fogliata A, Nicolini G, Clivio A, Vanetti E, Laksar S, Tozzi A, Scorsetti M, Cozzi L. A broad scope knowledge based model for optimization of VMAT in esophageal cancer: validation and assessment of plan quality among different treatment centers. Radiat Oncol 2015; 10(1): 220
CrossRef Google scholar
[184]
Schmidt M, Lo JY, Grzetic S, Lutzky C, Brizel DM, Das SK. Semiautomated head-and-neck IMRT planning using dose warping and scaling to robustly adapt plans in a knowledge database containing potentially suboptimal plans. Med Phys 2015; 42(8): 4428–4434
CrossRef Google scholar
[185]
Fan J, Wang J, Chen Z, Hu C, Zhang Z, Hu W. Automatic treatment planning based on three-dimensional dose distribution predicted from deep learning technique. Med Phys 2019; 46(1): 370–381
CrossRef Google scholar
[186]
Landers A, O’Connor D, Ruan D, Sheng K. Automated 4π radiotherapy treatment planning with evolving knowledge-base. Med Phys 2019; 46(9): 3833–3843
CrossRef Google scholar
[187]
Landers A, Neph R, Scalzo F, Ruan D, Sheng K. Performance comparison of knowledge-based dose prediction techniques based on limited patient data. Technol Cancer Res Treat 2018; 17: 1533033818811150
CrossRef Google scholar
[188]
Li HH, Wu Y, Yang D, Mutic S. Software tool for physics chart checks. Pract Radiat Oncol 2014; 4(6): e217–e225
CrossRef Google scholar
[189]
Yim WW, Yetisgen M, Harris WP, Kwan SW. Natural language processing in oncology: a review. JAMA Oncol 2016; 2(6): 797–804
CrossRef Google scholar
[190]
Interian Y, Rideout V, Kearney VP, Gennatas E, Morin O, Cheung J, Solberg T, Valdes G. Deep nets vs expert designed features in medical physics: an IMRT QA case study. Med Phys 2018; 45(6): 2672–2680
CrossRef Google scholar
[191]
Nyflot MJ, Thammasorn P, Wootton LS, Ford EC, Chaovalitwongse WA. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Med Phys 2019; 46(2): 456–464
[192]
Tomori S, Kadoya N, Takayama Y, Kajikawa T, Shima K, Narazaki K, Jingu K. A deep learning-based prediction model for gamma evaluation in patient-specific quality assurance. Med Phys 2018; 45(9): 4055–4065
CrossRef Google scholar
[193]
Shiradkar R, Podder TK, Algohary A, Viswanath S, Ellis RJ, Madabhushi A. Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI. Radiat Oncol 2016; 11(1): 148
CrossRef Google scholar
[194]
Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. J Radiat Res (Tokyo) 2019; 60(1): 150–157
CrossRef Google scholar
[195]
Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 2014; 5(1): 4006
CrossRef Google scholar
[196]
Bergom C, West CM, Higginson DS, Abazeed ME, Arun B, Bentzen SM, Bernstein JL, Evans JD, Gerber NK, Kerns SL, Keen J, Litton JK, Reiner AS, Riaz N, Rosenstein BS, Sawakuchi GO, Shaitelman SF, Powell SN, Woodward WA. The implications of genetic testing on radiotherapy decisions: a guide for radiation oncologists. Int J Radiat Oncol Biol Phys 2019; 105(4): 698–712
CrossRef Google scholar
[197]
El Naqa I, Kerns SL, Coates J, Luo Y, Speers C, West CML, Rosenstein BS, Ten Haken RK. Radiogenomics and radiotherapy response modeling. Phys Med Biol 2017; 62(16): R179–R206
CrossRef Google scholar
[198]
Sollini M, Cozzi L, Chiti A, Kirienko M. Texture analysis and machine learning to characterize suspected thyroid nodules and differentiated thyroid cancer: where do we stand? Eur J Radiol 2018; 99: 1–8
CrossRef Google scholar
[199]
Rathore S, Akbari H, Doshi J, Shukla G, Rozycki M, Bilello M, Lustig R, Davatzikos C. Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging (Bellingham) 2018; 5(2): 021219
CrossRef Google scholar
[200]
Pota M, Scalco E, Sanguineti G, Farneti A, Cattaneo GM, Rizzo G, Esposito M. Early prediction of radiotherapy-induced parotid shrinkage and toxicity based on CT radiomics and fuzzy classification. Artif Intell Med 2017; 81: 41–53
CrossRef Google scholar
[201]
Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zophel K, Kotzerke J, Schreiber A, Tinhofer I, Budach V, Sak A, Stuschke M, Balermpas P, Rodel C, Ganswindt U, Belka C, Pigorsch S, Combs SE, Monnich D, Zips D, Krause M, Baumann M, Troost EGC, Lock S, Richter C. A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep 2017; 7(1): 13206
CrossRef Google scholar
[202]
M. D. Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Investigation of radiomic signatures for local recurrence using primary tumor texture analysis in oropharyngeal head and neck cancer patients. Sci Rep 2018; 8(1): 1524
CrossRef Google scholar
[203]
Sun W, Jiang M, Dang J, Chang P, Yin FF. Effect of machine learning methods on predicting NSCLC overall survival time based on radiomics analysis. Radiat Oncol 2018; 13(1): 197
CrossRef Google scholar
[204]
Sun R, Limkin EJ, Vakalopoulou M, Dercle L, Champiat S, Han SR, Verlingue L, Brandao D, Lancia A, Ammari S, Hollebecque A, Scoazec JY, Marabelle A, Massard C, Soria JC, Robert C, Paragios N, Deutsch E, Ferte C. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 2018; 19(9): 1180–1191
CrossRef Google scholar
[205]
Peeken JC, Bernhofer M, Spraker MB, Pfeiffer D, Devecka M, Thamer A, Shouman MA, Ott A, Nusslin F, Mayr NA, Rost B, Nyflot MJ, Combs SE. CT-based radiomic features predict tumor grading and have prognostic value in patients with soft tissue sarcomas treated with neoadjuvant radiation therapy. Radiother Oncol 2019; 135: 187–196
CrossRef Google scholar
[206]
Li S, Wang K, Hou Z, Yang J, Ren W, Gao S, Meng F, Wu P, Liu B, Liu J, Yan J. Use of radiomics combined with machine learning method in the recurrence patterns after intensity-modulated radiotherapy for nasopharyngeal carcinoma: a preliminary study. Front Oncol 2018; 8: 648
CrossRef Google scholar
[207]
Giraud P, Giraud P, Gasnier A, El Ayachy R, Kreps S, Foy JP, Durdux C, Huguet F, Burgun A, Bibault JE. Radiomics and machine learning for radiotherapy in head and neck cancers. Front Oncol 2019; 9: 174
CrossRef Google scholar
[208]
Elhalawani H, Lin TA, Volpe S, Mohamed ASR, White AL, Zafereo J, Wong AJ, Berends JE, AboHashem S, Williams B, Aymard JM, Kanwar A, Perni S, Rock CD, Cooksey L, Campbell S, Yang P, Nguyen K, Ger RB, Cardenas CE, Fave XJ, Sansone C, Piantadosi G, Marrone S, Liu R, Huang C, Yu K, Li T, Yu Y, Zhang Y, Zhu H, Morris JS, Baladandayuthapani V, Shumway JW, Ghosh A, Pöhlmann A, Phoulady HA, Goyal V, Canahuate G, Marai GE, Vock D, Lai SY, Mackin DS, Court LE, Freymann J, Farahani K, Kaplathy-Cramer J, Fuller CD. Machine learning applications in head and neck radiation oncology: lessons from open-source radiomics challenges. Front Oncol 2018; 8: 294
CrossRef Google scholar
[209]
de Jong EEC, van Elmpt W, Rizzo S, Colarieti A, Spitaleri G, Leijenaar RTH, Jochems A, Hendriks LEL, Troost EGC, Reymen B, Dingemans AC, Lambin P. Applicability of a prognostic CT-based radiomic signature model trained on stage I–III non-small cell lung cancer in stage IV non-small cell lung cancer. Lung Cancer 2018; 124: 6–11
CrossRef Google scholar
[210]
Cha YJ, Jang WI, Kim MS, Yoo HJ, Paik EK, Jeong HK, Youn SM. Prediction of response to stereotactic radiosurgery for brain metastases using convolutional neural networks. Anticancer Res 2018; 38(9): 5437–5445
CrossRef Google scholar
[211]
Buizza G, Toma-Dasu I, Lazzeroni M, Paganelli C, Riboldi M, Chang Y, Smedby O, Wang C. Early tumor response prediction for lung cancer patients using novel longitudinal pattern features from sequential PET/CT image scans. Phys Med 2018; 54: 21–29
CrossRef Google scholar
[212]
Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, Bussink J, Gillies RJ, Mak RH, Aerts H. Deep learning for lung cancer prognostication: a retrospective multi-cohort radiomics study. PLoS Med 2018; 15(11): e1002711
CrossRef Google scholar
[213]
Cui S, Luo Y, Tseng HH, Ten Haken RK, El Naqa I. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage. Med Phys 2019; 46(5): 2497–2511
CrossRef Google scholar
[214]
Cui S, Luo Y, Tseng HH, Ten Haken RK, El Naqa I. Artificial neural network with composite architectures for prediction of local control in radiotherapy. IEEE Trans Radiat Plasma Med Sci 2019; 3(2): 242–249
CrossRef Google scholar
[215]
Lee J, An JY, Choi MG, Park SH, Kim ST, Lee JH, Sohn TS, Bae JM, Kim S, Lee H, Min BH, Kim JJ, Jeong WK, Choi DI, Kim KM, Kang WK, Kim M, Seo SW. Deep learning-based survival analysis identified associations between molecular subtype and optimal adjuvant treatment of patients with gastric cancer. JCO Clin Cancer Inform 2018; 2(2): 1–14
CrossRef Google scholar
[216]
Boon IS, Au Yong TPT, Boon CS. Assessing the role of artificial intelligence (AI) in clinical oncology: utility of machine learning in radiotherapy target volume delineation. Medicines (Basel) 2018; 5(4): 131
CrossRef Google scholar
[217]
Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, Mak RH, Aerts H. Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 2019; 25(11): 3266–3275
CrossRef Google scholar
[218]
Ehteshami Bejnordi B, Veta M, Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, van der Laak J; the CAMELYON16 Consortium. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318(22): 2199–2210
CrossRef Google scholar
[219]
Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, Leijenaar RT, Haibe-Kains B, Lambin P, Gillies RJ, Aerts HJ. Defining the biological basis of radiomic phenotypes in lung cancer. eLife 2017; 6: e23421
CrossRef Google scholar
[220]
Zanfardino M, Pane K, Mirabelli P, Salvatore M, Franzese M. TCGA-TCIA impact on radiogenomics cancer research: a systematic review. Int J Mol Sci 2019; 20(23): 6033
CrossRef Google scholar
[221]
Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M, Tarbox L, Prior F. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013; 26(6): 1045–1057
CrossRef Google scholar
[222]
Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 2015; 19(1A): A68–A77
CrossRef Google scholar
[223]
Pavlopoulou A, Bagos PG, Koutsandrea V, Georgakilas AG. Molecular determinants of radiosensitivity in normal and tumor tissue: a bioinformatic approach. Cancer Lett 2017; 403: 37–47
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Ke Sheng is a co-founder of Celestial Oncology, a company developing robotic RT devices. This work is a review article. No new human studies were performed for this article.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(2258 KB)

Accesses

Citations

Detail

Sections
Recommended

/