The function and regulation of OTU deubiquitinases

Jiansen Du, Lin Fu, Yingli Sui, Lingqiang Zhang

PDF(4429 KB)
PDF(4429 KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (5) : 542-563. DOI: 10.1007/s11684-019-0734-4
REVIEW
REVIEW

The function and regulation of OTU deubiquitinases

Author information +
History +

Abstract

Post-translational modification of cellular proteins by ubiquitin regulates numerous cellular processes, including cell division, immune responses, and apoptosis. Ubiquitin-mediated control over these processes can be reversed by deubiquitinases (DUBs), which remove ubiquitin from target proteins and depolymerize polyubiquitin chains. Recently, much progress has been made in the DUBs. In humans, the ovarian tumor protease (OTU) subfamily of DUBs includes 16 members, most of which mediate cell signaling cascades. These OTUs show great variation in structure and function, which display a series of mechanistic features. In this review, we provide a comprehensive analysis of current progress in character, structure and function of OTUs, such as the substrate specificity and catalytic activity regulation. Then we discuss the relationship between some diseases and OTUs. Finally, we summarize the structure of viral OTUs and their function in immune escape and viral survival. Despite the challenges, OTUs might provide new therapeutic targets, due to their involvement in key regulatory processes.

Keywords

ubiquitin / OTU deubiquitinases / structure / function / regulation

Cite this article

Download citation ▾
Jiansen Du, Lin Fu, Yingli Sui, Lingqiang Zhang. The function and regulation of OTU deubiquitinases. Front. Med., 2020, 14(5): 542‒563 https://doi.org/10.1007/s11684-019-0734-4

References

[1]
Komander D, Rape M. The ubiquitin code. Annu Rev Biochem 2012; 81(1): 203–229
CrossRef Pubmed Google scholar
[2]
Heideker J, Wertz IE. DUBs, the regulation of cell identity and disease. Biochem J 2015; 467(1): 191
CrossRef Pubmed Google scholar
[3]
Mevissen TE, Hospenthal MK, Geurink PP, Elliott PR, Akutsu M, Arnaudo N, Ekkebus R, Kulathu Y, Wauer T, El Oualid F, Freund SM, Ovaa H, Komander D. OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 2013; 154(1): 169–184
CrossRef Pubmed Google scholar
[4]
Swatek KN, Komander D. Ubiquitin modifications. Cell Res 2016; 26(4): 399–422
CrossRef Pubmed Google scholar
[5]
Nakada S, Tai I, Panier S, Al-Hakim A, Iemura S, Juang YC, O’Donnell L, Kumakubo A, Munro M, Sicheri F, Gingras AC, Natsume T, Suda T, Durocher D. Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1. Nature 2010; 466(7309): 941–946
CrossRef Pubmed Google scholar
[6]
Yuan L, Lv Y, Li H, Gao H, Song S, Zhang Y, Xing G, Kong X, Wang L, Li Y, Zhou T, Gao D, Xiao ZX, Yin Y, Wei W, He F, Zhang L. Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol 2015; 17(9): 1169–1181
CrossRef Pubmed Google scholar
[7]
Huang OW, Ma X, Yin J, Flinders J, Maurer T, Kayagaki N, Phung Q, Bosanac I, Arnott D, Dixit VM, Hymowitz SG, Starovasnik MA, Cochran AG. Phosphorylation-dependent activity of the deubiquitinase DUBA. Nat Struct Mol Biol 2012; 19(2): 171–175
CrossRef Pubmed Google scholar
[8]
Duy PN, Thuy NT, Trang BK, Giang NH, Van NTH, Xuan NT. Regulation of NF-kB- and STAT1-mediated plasmacytoid dendritic cell functions by A20. PLoS One 2019; 14(9): e0222697
CrossRef Pubmed Google scholar
[9]
Hu H, Brittain GC, Chang JH, Puebla-Osorio N, Jin J, Zal A, Xiao Y, Cheng X, Chang M, Fu YX, Zal T, Zhu C, Sun SC. OTUD7B controls non-canonical NF-kB activation through deubiquitination of TRAF3. Nature 2013; 494(7437): 371–374
CrossRef Pubmed Google scholar
[10]
Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL, Elliott PR, McHale D, Maher ER, McKenzie ANJ, Komander D. The deubiquitinase OTULIN is an essential negative regulator of inflammation and autoimmunity. Cell 2016; 166(5): 1215–1230e20
[11]
Vijay-Kumar S, Bugg CE, Cook WJ. Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol 1987; 194(3): 531–544
CrossRef Pubmed Google scholar
[12]
Kiel C, Serrano L. The ubiquitin domain superfold: structure-based sequence alignments and characterization of binding epitopes. J Mol Biol 2006; 355(4): 821–844
CrossRef Pubmed Google scholar
[13]
Walden H, Podgorski MS, Schulman BA. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 2003; 422(6929): 330–334
CrossRef Pubmed Google scholar
[14]
Hu M, Li P, Li M, Li W, Yao T, Wu JW, Gu W, Cohen RE, Shi Y. Crystal structure of a UBP-family deubiquitinating enzyme in isolation and in complex with ubiquitin aldehyde. Cell 2002; 111(7): 1041–1054
CrossRef Pubmed Google scholar
[15]
Reyes-Turcu FE, Horton JR, Mullally JE, Heroux A, Cheng X, Wilkinson KD. The ubiquitin binding domain ZnF UBP recognizes the C-terminal diglycine motif of unanchored ubiquitin. Cell 2006; 124(6): 1197–1208
CrossRef Pubmed Google scholar
[16]
Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol 2016; 18(6): 579–586
CrossRef Pubmed Google scholar
[17]
Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 2003; 21(8): 921–926
CrossRef Pubmed Google scholar
[18]
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137(1): 133–145
CrossRef Pubmed Google scholar
[19]
Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villén J. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 2013; 10(7): 676–682
CrossRef Pubmed Google scholar
[20]
Ohtake F, Saeki Y, Sakamoto K, Ohtake K, Nishikawa H, Tsuchiya H, Ohta T, Tanaka K, Kanno J. Ubiquitin acetylation inhibits polyubiquitin chain elongation. EMBO Rep 2015; 16(2): 192–201
CrossRef Pubmed Google scholar
[21]
Cui J, Yao Q, Li S, Ding X, Lu Q, Mao H, Liu L, Zheng N, Chen S, Shao F. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 2010; 329(5996): 1215–1218
CrossRef Pubmed Google scholar
[22]
Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 2017; 86(1): 159–192
CrossRef Pubmed Google scholar
[23]
Schulman BA, Harper JW. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 2009; 10(5): 319–331
CrossRef Pubmed Google scholar
[24]
Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10(11): 755–764
CrossRef Pubmed Google scholar
[25]
Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 2016; 17(10): 626–642
CrossRef Pubmed Google scholar
[26]
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93(3): 1289–1315
CrossRef Pubmed Google scholar
[27]
Komander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 2009; 10(8): 550–563
CrossRef Pubmed Google scholar
[28]
Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78(1): 363–397
CrossRef Pubmed Google scholar
[29]
Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 2004; 1695(1–3): 189–207
CrossRef Pubmed Google scholar
[30]
Clague MJ, Urbé S, Komander D. Breaking the chains: deubiquitylating enzyme specificity begets function. Nat Rev Mol Cell Biol 2019; 20(6): 338–352
CrossRef Pubmed Google scholar
[31]
Ye Y, Blaser G, Horrocks MH, Ruedas-Rama MJ, Ibrahim S, Zhukov AA, Orte A, Klenerman D, Jackson SE, Komander D. Ubiquitin chain conformation regulates recognition and activity of interacting proteins. Nature 2012; 492(7428): 266–270
CrossRef Pubmed Google scholar
[32]
Renatus M, Parrado SG, D’Arcy A, Eidhoff U, Gerhartz B, Hassiepen U, Pierrat B, Riedl R, Vinzenz D, Worpenberg S, Kroemer M. Structural basis of ubiquitin recognition by the deubiquitinating protease USP2. Structure 2006; 14(8): 1293–1302
CrossRef Pubmed Google scholar
[33]
Schaefer JB, Morgan DO. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. J Biol Chem 2011; 286(52): 45186–45196
CrossRef Pubmed Google scholar
[34]
Clague MJ, Coulson JM, Urbé S. Cellular functions of the DUBs. J Cell Sci 2012; 125(Pt 2): 277–286
CrossRef Pubmed Google scholar
[35]
Makarova KS, Aravind L, Koonin EV. A novel superfamily of predicted cysteine proteases from eukaryotes, viruses and Chlamydia pneumoniae. Trends Biochem Sci 2000; 25(2): 50–52
CrossRef Pubmed Google scholar
[36]
Rodesch C, Geyer PK, Patton JS, Bae E, Nagoshi RN. Developmental analysis of the ovarian tumor gene during Drosophila oogenesis. Genetics 1995; 141(1): 191–202
Pubmed
[37]
Sass GL, Comer AR, Searles LL. The ovarian tumor protein isoforms of Drosophila melanogaster exhibit differences in function, expression, and localization. Dev Biol 1995; 167(1): 201–212
CrossRef Pubmed Google scholar
[38]
Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J. Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 2003; 4(5): 517–522
CrossRef Pubmed Google scholar
[39]
Nanao MH, Tcherniuk SO, Chroboczek J, Dideberg O, Dessen A, Balakirev MY. Crystal structure of human otubain 2. EMBO Rep 2004; 5(8): 783–788
CrossRef Pubmed Google scholar
[40]
Lin SC, Chung JY, Lamothe B, Rajashankar K, Lu M, Lo YC, Lam AY, Darnay BG, Wu H. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J Mol Biol 2008; 376(2): 526–540
CrossRef Pubmed Google scholar
[41]
Kulathu Y. Novel diubiquitin probes expand the chemical toolkit to study DUBs. Cell Chem Biol 2016; 23(4): 432–434
CrossRef Pubmed Google scholar
[42]
Edelmann MJ, Iphöfer A, Akutsu M, Altun M, di Gleria K, Kramer HB, Fiebiger E, Dhe-Paganon S, Kessler BM. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem J 2009; 418(2): 379–390
CrossRef Pubmed Google scholar
[43]
Wang T, Yin L, Cooper EM, Lai MY, Dickey S, Pickart CM, Fushman D, Wilkinson KD, Cohen RE, Wolberger C. Evidence for bidentate substrate binding as the basis for the K48 linkage specificity of otubain 1. J Mol Biol 2009; 386(4): 1011–1023
CrossRef Pubmed Google scholar
[44]
Licchesi JD, Mieszczanek J, Mevissen TE, Rutherford TJ, Akutsu M, Virdee S, El Oualid F, Chin JW, Ovaa H, Bienz M, Komander D. An ankyrin-repeat ubiquitin-binding domain determines TRABID’s specificity for atypical ubiquitin chains. Nat Struct Mol Biol 2012; 19(1): 62–71
CrossRef Pubmed Google scholar
[45]
Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Gyrd-Hansen M, Krappmann D, Hofmann K, Komander D. OTULIN antagonizes LUBAC signaling by specifically hydrolyzing Met1-linked polyubiquitin. Cell 2013; 153(6): 1312–1326
CrossRef Pubmed Google scholar
[46]
Komander D, Barford D. Structure of the A20 OTU domain and mechanistic insights into deubiquitination. Biochem J 2008; 409(1): 77–85
CrossRef Pubmed Google scholar
[47]
Boudreaux DA, Chaney J, Maiti TK, Das C. Contribution of active site glutamine to rate enhancement in ubiquitin C-terminal hydrolases. FEBS J 2012; 279(6): 1106–1118
CrossRef Pubmed Google scholar
[48]
Storer AC, Ménard R. Catalytic mechanism in papain family of cysteine peptidases. Methods Enzymol 1994; 244: 486–500
CrossRef Pubmed Google scholar
[49]
Zhang Z, Du J, Wang S, Shao L, Jin K, Li F, Wei B, Ding W, Fu P, van Dam H, Wang A, Jin J, Ding C, Yang B, Zheng M, Feng XH, Guan KL, Zhang L. OTUB2 promotes cancer metastasis via Hippo-independent activation of YAP and TAZ. Mol Cell 2019; 73(1): 7–21.e7
[50]
Kato K, Nakajima K, Ui A, Muto-Terao Y, Ogiwara H, Nakada S. Fine-tuning of DNA damage-dependent ubiquitination by OTUB2 supports the DNA repair pathway choice. Mol Cell 2014; 53(4): 617–630
CrossRef Pubmed Google scholar
[51]
Li Y, Yang JY, Xie X, Jie Z, Zhang L, Shi J, Lin D, Gu M, Zhou X, Li HS, Watowich SS, Jain A, Yun Jung S, Qin J, Cheng X, Sun SC. Preventing abnormal NF-kB activation and autoimmunity by Otub1-mediated p100 stabilization. Cell Res 2019; 29(6): 474–485
CrossRef Pubmed Google scholar
[52]
Zhou X, Yu J, Cheng X, Zhao B, Manyam GC, Zhang L, Schluns K, Li P, Wang J, Sun SC. The deubiquitinase Otub1 controls the activation of CD8+ T cells and NK cells by regulating IL-15-mediated priming. Nat Immunol 2019; 20(7): 879–889
CrossRef Pubmed Google scholar
[53]
Wiener R, Zhang X, Wang T, Wolberger C. The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 2012; 483(7391): 618–622
CrossRef Pubmed Google scholar
[54]
Zhang Z, Fan Y, Xie F, Zhou H, Jin K, Shao L, Shi W, Fang P, Yang B, van Dam H, Ten Dijke P, Zheng X, Yan X, Jia J, Zheng M, Jin J, Ding C, Ye S, Zhou F, Zhang L. Breast cancer metastasis suppressor OTUD1 deubiquitinates SMAD7. Nat Commun 2017; 8(1): 2116
CrossRef Pubmed Google scholar
[55]
Yao F, Xiao Z, Sun Y, Ma L. SKP2 and OTUD1 govern non-proteolytic ubiquitination of YAP that promotes YAP nuclear localization and activity. Cell Stress 2018; 2(9): 233–235
CrossRef Pubmed Google scholar
[56]
Kim Y, Kim W, Song Y, Kim JR, Cho K, Moon H, Ro SW, Seo E, Ryu YM, Myung SJ, Jho EH. Deubiquitinase YOD1 potentiates YAP/TAZ activities through enhancing ITCH stability. Proc Natl Acad Sci USA 2017; 114(18): 4691–4696
CrossRef Pubmed Google scholar
[57]
Schimmack G, Schorpp K, Kutzner K, Gehring T, Brenke JK, Hadian K, Krappmann D. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-kB. eLife 2017; 6: e22416. doi:10.7554/eLife.22416
Pubmed
[58]
Zou J, Ma W, Li J, Littlejohn R, Zhou H, Kim IM, Fulton DJR, Chen W, Weintraub NL, Zhou J, Su H. Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proc Natl Acad Sci USA 2018; 115(17): E4101–E4110
CrossRef Pubmed Google scholar
[59]
Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, Yao Y, Li X, Liu C, Yu X, Liu Z, Cui CP, Han C, Zhang L. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun 2019; 10(1): 2914
CrossRef Pubmed Google scholar
[60]
Zhao Y, Majid MC, Soll JM, Brickner JR, Dango S, Mosammaparast N. Noncanonical regulation of alkylation damage resistance by the OTUD4 deubiquitinase. EMBO J 2015; 34(12): 1687–1703
CrossRef Pubmed Google scholar
[61]
Zhao Y, Mudge MC, Soll JM, Rodrigues RB, Byrum AK, Schwarzkopf EA, Bradstreet TR, Gygi SP, Edelson BT, Mosammaparast N. OTUD4 is a phospho-activated K63 deubiquitinase that regulates MyD88-dependent signaling. Mol Cell 2018; 69(3): 505–516.e5
[62]
Park SY, Choi HK, Choi Y, Kwak S, Choi KC, Yoon HG. Deubiquitinase OTUD5 mediates the sequential activation of PDCD5 and p53 in response to genotoxic stress. Cancer Lett 2015; 357(1): 419–427
CrossRef Pubmed Google scholar
[63]
Li F, Sun Q, Liu K, Han H, Lin N, Cheng Z, Cai Y, Tian F, Mao Z, Tong T, Zhao W. The deubiquitinase OTUD5 regulates Ku80 stability and non-homologous end joining. Cell Mol Life Sci 2019; 76(19): 3861–3873
CrossRef Pubmed Google scholar
[64]
Kim SY, Kwon SK, Lee SY, Baek KH. Ubiquitin-specific peptidase 5 and ovarian tumor deubiquitinase 6A are differentially expressed in p53+/+ and p53−/− HCT116 cells. Int J Oncol 2018 Mar 5. [Epub ahead of print] doi: 10.3892/ijo.2018.4302
Pubmed
[65]
Sobol A, Askonas C, Alani S, Weber MJ, Ananthanarayanan V, Osipo C, Bocchetta M. Deubiquitinase OTUD6B isoforms are important regulators of growth and proliferation. Mol Cancer Res 2017; 15(2): 117–127
CrossRef Pubmed Google scholar
[66]
Xu Z, Pei L, Wang L, Zhang F, Hu X, Gui Y. Snail1-dependent transcriptional repression of Cezanne2 in hepatocellular carcinoma. Oncogene 2014; 33(22): 2836–2845
CrossRef Pubmed Google scholar
[67]
Uddin M, Unda BK, Kwan V, Holzapfel NT, White SH, Chalil L, Woodbury-Smith M, Ho KS, Harward E, Murtaza N, Dave B, Pellecchia G, D’Abate L, Nalpathamkalam T, Lamoureux S, Wei J, Speevak M, Stavropoulos J, Hope KJ, Doble BW, Nielsen J, Wassman ER, Scherer SW, Singh KK. OTUD7A regulates neurodevelopmental phenotypes in the 15q13.3 microdeletion syndrome. Am J Hum Genet 2018; 102(2): 278–295
CrossRef Pubmed Google scholar
[68]
Mevissen TET, Kulathu Y, Mulder MPC, Geurink PP, Maslen SL, Gersch M, Elliott PR, Burke JE, van Tol BDM, Akutsu M, Oualid FE, Kawasaki M, Freund SMV, Ovaa H, Komander D. Molecular basis of Lys11-polyubiquitin specificity in the deubiquitinase Cezanne. Nature 2016; 538(7625): 402–405
CrossRef Pubmed Google scholar
[69]
Cui CP, Zhang Y, Wang C, Yuan F, Li H, Yao Y, Chen Y, Li C, Wei W, Liu CH, He F, Liu Y, Zhang L. Dynamic ubiquitylation of Sox2 regulates proteostasis and governs neural progenitor cell differentiation. Nat Commun 2018; 9(1): 4648
CrossRef Pubmed Google scholar
[70]
Lin DD, Shen Y, Qiao S, Liu WW, Zheng L, Wang YN, Cui N, Wang YF, Zhao S, Shi JH. Upregulation of OTUD7B (Cezanne) promotes tumor progression via AKT/VEGF pathway in lung squamous carcinoma and adenocarcinoma. Front Oncol 2019; 9: 862
CrossRef Pubmed Google scholar
[71]
Kulathu Y, Garcia FJ, Mevissen TE, Busch M, Arnaudo N, Carroll KS, Barford D, Komander D. Regulation of A20 and other OTU deubiquitinases by reversible oxidation. Nat Commun 2013; 4(1): 1569
CrossRef Pubmed Google scholar
[72]
Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-kB regulation. EMBO J 2012; 31(19): 3856–3870
CrossRef Pubmed Google scholar
[73]
Bosanac I, Wertz IE, Pan B, Yu C, Kusam S, Lam C, Phu L, Phung Q, Maurer B, Arnott D, Kirkpatrick DS, Dixit VM, Hymowitz SG. Ubiquitin binding to A20 ZnF4 is required for modulation of NF-kB signaling. Mol Cell 2010; 40(4): 548–557
CrossRef Pubmed Google scholar
[74]
Michel MA, Elliott PR, Swatek KN, Simicek M, Pruneda JN, Wagstaff JL, Freund SM, Komander D. Assembly and specific recognition of k29- and k33-linked polyubiquitin. Mol Cell 2015; 58(1): 95–109
CrossRef Pubmed Google scholar
[75]
Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, Lin F, Xie X, Xie X, Huang J, Wu Q, Qiu X, Piao D, Xing Y, Yu T, Lu Y, Huang Q, Yu C, Jin J, Zhang Z. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ 2019; 26(2): 306–320
CrossRef Pubmed Google scholar
[76]
Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K, Mailand N, Freund SM, Gyrd-Hansen M, Komander D. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 2014; 54(3): 335–348
CrossRef Pubmed Google scholar
[77]
Weber A, Elliott PR, Pinto-Fernandez A, Bonham S, Kessler BM, Komander D, El Oualid F, Krappmann D. A linear diubiquitin-based probe for efficient and selective detection of the deubiquitinating enzyme OTULIN. Cell Chem Biol 2017; 24(10): 1299–1313.e7
[78]
Zhao M, Song K, Hao W, Wang L, Patil G, Li Q, Xu L, Hua F, Fu B, Schwamborn JC, Dorf ME, Li S. Non-proteolytic ubiquitination of OTULIN regulates NF-kB signaling pathway. J Mol Cell Biol 2019; mjz081
CrossRef Pubmed Google scholar
[79]
Tsai YC, Kotiya A, Kiris E, Yang M, Bavari S, Tessarollo L, Oyler GA, Weissman AM. Deubiquitinating enzyme VCIP135 dictates the duration of botulinum neurotoxin type A intoxication. Proc Natl Acad Sci USA 2017; 114(26): E5158–E5166
CrossRef Pubmed Google scholar
[80]
Zhang X, Zhang H, Wang Y. Phosphorylation regulates VCIP135 function in Golgi membrane fusion during the cell cycle. J Cell Sci 2014; 127(Pt 1): 172–181
CrossRef Pubmed Google scholar
[81]
Gao P, Wang F, Huo J, Wan D, Zhang J, Niu J, Wu J, Yu B, Sun T. ALG13 deficiency associated with increased seizure susceptibility and severity. Neuroscience 2019; 409: 204–221
CrossRef Pubmed Google scholar
[82]
Lin SC, Chung JY, Lamothe B, Rajashankar K, Lu M, Lo YC, Lam AY, Darnay BG, Wu H. Molecular basis for the unique deubiquitinating activity of the NF-κB inhibitor A20. J Mol Biol 2008; 376(2): 526–540
CrossRef Pubmed Google scholar
[83]
Zhao L, Wang X, Yu Y, Deng L, Chen L, Peng X, Jiao C, Gao G, Tan X, Pan W, Ge X, Wang P. OTUB1 protein suppresses mTOR complex 1 (mTORC1) activity by deubiquitinating the mTORC1 inhibitor DEPTOR. J Biol Chem 2018; 293(13): 4883–4892
CrossRef Pubmed Google scholar
[84]
Piao S, Pei HZ, Huang B, Baek SH. Ovarian tumor domain-containing protein 1 deubiquitinates and stabilizes p53. Cell Signal 2017; 33: 22–29
CrossRef Pubmed Google scholar
[85]
Zhang L, Liu J, Qian L, Feng Q, Wang X, Yuan Y, Zuo Y, Cheng Q, Miao Y, Guo T, Zheng X, Zheng H. Induction of OTUD1 by RNA viruses potently inhibits innate immune responses by promoting degradation of the MAVS/TRAF3/TRAF6 signalosome. PLoS Pathog 2018; 14(5): e1007067
CrossRef Pubmed Google scholar
[86]
Ernst R, Mueller B, Ploegh HL, Schlieker C. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol Cell 2009; 36(1): 28–38
CrossRef Pubmed Google scholar
[87]
Papadopoulos C, Kirchner P, Bug M, Grum D, Koerver L, Schulze N, Poehler R, Dressler A, Fengler S, Arhzaouy K, Lux V, Ehrmann M, Weihl CC, Meyer H. VCP/p97 cooperates with YOD1, UBXD1 and PLAA to drive clearance of ruptured lysosomes by autophagy. EMBO J 2017; 36(2): 135–150
CrossRef Pubmed Google scholar
[88]
Das R, Schwintzer L, Vinopal S, Aguado Roca E, Sylvester M, Oprisoreanu AM, Schoch S, Bradke F, Broemer M. New roles for the de-ubiquitylating enzyme OTUD4 in an RNA-protein network and RNA granules. J Cell Sci 2019; 132(12): jcs229252
CrossRef Pubmed Google scholar
[89]
Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O’Rourke KM, Eby M, Pietras E, Cheng G, Bazan JF, Zhang Z, Arnott D, Dixit VM. DUBA: a deubiquitinase that regulates type I interferon production. Science 2007; 318(5856): 1628–1632
CrossRef Pubmed Google scholar
[90]
de Vivo A, Sanchez A, Yegres J, Kim J, Emly S, Kee Y. The OTUD5-UBR5 complex regulates FACT-mediated transcription at damaged chromatin. Nucleic Acids Res 2019; 47(2): 729–746
CrossRef Pubmed Google scholar
[91]
Santiago-Sim T, Burrage LC, Ebstein F, Tokita MJ, Miller M, Bi W, Braxton AA, Rosenfeld JA, Shahrour M, Lehmann A, Cogné B, Küry S, Besnard T, Isidor B, Bézieau S, Hazart I, Nagakura H, Immken LL, Littlejohn RO, Roeder E; EuroEPINOMICS RES Consortium Autosomal Recessive working group, S. Hande Caglayan, Kara B, Hardies K, Weckhuysen S, May P, Lemke JR, Elpeleg O, Abu-Libdeh B, James KN, Silhavy JL, Issa MY, Zaki MS, Gleeson JG, Seavitt JR, Dickinson ME, Ljungberg MC, Wells S, Johnson SJ, Teboul L, Eng CM, Yang Y, Kloetzel PM, Heaney JD, Walkiewicz MA, Afawi Z, Balling R, Barisic N, Baulac S, Craiu D, De Jonghe P, Guerrero-Lopez R, Guerrini R, Helbig I, Hjalgrim H, Jähn J, Klein KM, Leguern E, Lerche H, Marini C, Muhle H, Rosenow F, Serratosa J, Sterbová K, Suls A, Moller RS, Striano P, Weber Y, Zara F. Biallelic variants in OTUD6B cause an intellectual disability syndrome associated with seizures and dysmorphic features. Am J Hum Genet 2017; 100(4): 676–688
CrossRef Pubmed Google scholar
[92]
Takata M, Pachera E, Frank-Bertoncelj M, Kozlova A, Jüngel A, Whitfield ML, Assassi S, Calcagni M, de Vries-Bouwstra J, Huizinga TW, Kurreeman F, Kania G, Distler O. OTUD6B-AS1 might be a novel regulator of apoptosis in systemic sclerosis. Front Immunol 2019; 10: 1100
CrossRef Pubmed Google scholar
[93]
Wang G, Zhang ZJ, Jian WG, Liu PH, Xue W, Wang TD, Meng YY, Yuan C, Li HM, Yu YP, Liu ZX, Wu Q, Zhang DM, Zhang C. Novel long noncoding RNA OTUD6B-AS1 indicates poor prognosis and inhibits clear cell renal cell carcinoma proliferation via the Wnt/b-catenin signaling pathway. Mol Cancer 2019; 18(1): 15
CrossRef Pubmed Google scholar
[94]
Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 2004; 430(7000): 694–699
CrossRef Pubmed Google scholar
[95]
Mauro C, Pacifico F, Lavorgna A, Mellone S, Iannetti A, Acquaviva R, Formisano S, Vito P, Leonardi A. ABIN-1 binds to NEMO/IKKγ and co-operates with A20 in inhibiting NF-κB. J Biol Chem 2006; 281(27): 18482–18488
CrossRef Pubmed Google scholar
[96]
Skaug B, Chen J, Du F, He J, Ma A, Chen ZJ. Direct, noncatalytic mechanism of IKK inhibition by A20. Mol Cell 2011; 44(4): 559–571
CrossRef Pubmed Google scholar
[97]
Düwel M, Welteke V, Oeckinghaus A, Baens M, Kloo B, Ferch U, Darnay BG, Ruland J, Marynen P, Krappmann D. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J Immunol 2009; 182(12): 7718–7728
CrossRef Pubmed Google scholar
[98]
Li L, Soetandyo N, Wang Q, Ye Y. The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochim Biophys Acta 2009; 1793(2): 346–353
CrossRef Pubmed Google scholar
[99]
Yang C, Zang W, Tang Z, Ji Y, Xu R, Yang Y, Luo A, Hu B, Zhang Z, Liu Z, Zheng X. A20/TNFAIP3 regulates the DNA damage response and mediates tumor cell resistance to DNA-damaging therapy. Cancer Res 2018; 78(4): 1069–1082
CrossRef Pubmed Google scholar
[100]
Yin J, Chen W, Chao ES, Soriano S, Wang L, Wang W, Cummock SE, Tao H, Pang K, Liu Z, Pereira FA, Samaco RC, Zoghbi HY, Xue M, Schaaf CP. Otud7a knockout mice recapitulate many neurological features of 15q13.3 microdeletion syndrome. Am J Hum Genet 2018; 102(2): 296–308
CrossRef Pubmed Google scholar
[101]
Bremm A, Moniz S, Mader J, Rocha S, Komander D. Cezanne (OTUD7B) regulates HIF-1a homeostasis in a proteasome-independent manner. EMBO Rep 2014; 15(12): 1268–1277
CrossRef Pubmed Google scholar
[102]
Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, Guo J, Zhang J, North BJ, Dai X, Cheng X, Bian X, Zhang L, Harper JW, Sun SC, Wei W. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 2017; 545(7654): 365–369
CrossRef Pubmed Google scholar
[103]
Luong A, Fragiadaki M, Smith J, Boyle J, Lutz J, Dean JL, Harten S, Ashcroft M, Walmsley SR, Haskard DO, Maxwell PH, Walczak H, Pusey C, Evans PC. Cezanne regulates inflammatory responses to hypoxia in endothelial cells by targeting TRAF6 for deubiquitination. Circ Res 2013; 112(12): 1583–1591
CrossRef Pubmed Google scholar
[104]
Tran H, Hamada F, Schwarz-Romond T, Bienz M. Trabid, a new positive regulator of Wnt-induced transcription with preference for binding and cleaving K63-linked ubiquitin chains. Genes Dev 2008; 22(4): 528–542
CrossRef Pubmed Google scholar
[105]
Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N, Bechtel S, Wiemann S, Baum B, Ridley AJ. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 2011; 9(1): 54
CrossRef Pubmed Google scholar
[106]
Jin J, Xie X, Xiao Y, Hu H, Zou Q, Cheng X, Sun SC. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 2016; 17(3): 259–268
CrossRef Pubmed Google scholar
[107]
Afonina IS, Beyaert R. Trabid epigenetically drives expression of IL-12 and IL-23. Nat Immunol 2016; 17(3): 227–228
CrossRef Pubmed Google scholar
[108]
Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G, Gondo Y, Raught B, Gingras AC, Sicheri F, Cordes SP. The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature 2013; 498(7454): 318–324
CrossRef Pubmed Google scholar
[109]
Zhou Q, Yu X, Demirkaya E, Deuitch N, Stone D, Tsai WL, Kuehn HS, Wang H, Yang D, Park YH, Ombrello AK, Blake M, Romeo T, Remmers EF, Chae JJ, Mullikin JC, Güzel F, Milner JD, Boehm M, Rosenzweig SD, Gadina M, Welch SB, Özen S, Topaloglu R, Abinun M, Kastner DL, Aksentijevich I. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease. Proc Natl Acad Sci USA 2016; 113(36): 10127–10132
CrossRef Pubmed Google scholar
[110]
Hrdinka M, Gyrd-Hansen M. The Met1-linked ubiquitin machinery: emerging themes of (de)regulation. Mol Cell 2017; 68(2): 265–280
CrossRef Pubmed Google scholar
[111]
Heger K, Wickliffe KE, Ndoja A, Zhang J, Murthy A, Dugger DL, Maltzman A, de Sousa E Melo F, Hung J, Zeng Y, Verschueren E, Kirkpatrick DS, Vucic D, Lee WP, Roose-Girma M, Newman RJ, Warming S, Hsiao YC, Kőműves LG, Webster JD, Newton K, Dixit VM. OTULIN limits cell death and inflammation by deubiquitinating LUBAC. Nature 2018; 559(7712): 120–124
CrossRef Pubmed Google scholar
[112]
Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R, Wang X, Lesch J, Lu R, Newton K, Huang OW, Cochran AG, Vasser M, Fauber BP, DeVoss J, Webster J, Diehl L, Modrusan Z, Kirkpatrick DS, Lill JR, Ouyang W, Dixit VM. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 2015; 518(7539): 417–421
CrossRef Pubmed Google scholar
[113]
Wertz IE, Newton K, Seshasayee D, Kusam S, Lam C, Zhang J, Popovych N, Helgason E, Schoeffler A, Jeet S, Ramamoorthi N, Kategaya L, Newman RJ, Horikawa K, Dugger D, Sandoval W, Mukund S, Zindal A, Martin F, Quan C, Tom J, Fairbrother WJ, Townsend M, Warming S, DeVoss J, Liu J, Dueber E, Caplazi P, Lee WP, Goodnow CC, Balazs M, Yu K, Kolumam G, Dixit VM. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 2015; 528(7582): 370–375
CrossRef Pubmed Google scholar
[114]
Hutti JE, Turk BE, Asara JM, Ma A, Cantley LC, Abbott DW. IκB kinase β phosphorylates the K63 deubiquitinase A20 to cause feedback inhibition of the NF-κB pathway. Mol Cell Biol 2007; 27(21): 7451–7461
CrossRef Pubmed Google scholar
[115]
Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, Campbell DG, Pinna LA, Sapkota GP. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci Signal 2015; 8(372): ra35
CrossRef Pubmed Google scholar
[116]
Leznicki P, Kulathu Y. Mechanisms of regulation and diversification of deubiquitylating enzyme function. J Cell Sci 2017; 130(12): 1997–2006
CrossRef Pubmed Google scholar
[117]
Cotto-Rios XM, Békés M, Chapman J, Ueberheide B, Huang TT. Deubiquitinases as a signaling target of oxidative stress. Cell Reports 2012; 2(6): 1475–1484
CrossRef Pubmed Google scholar
[118]
Lee JG, Baek K, Soetandyo N, Ye Y. Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 2013; 4(1): 1568
CrossRef Pubmed Google scholar
[119]
Ross SH, Lindsay Y, Safrany ST, Lorenzo O, Villa F, Toth R, Clague MJ, Downes CP, Leslie NR. Differential redox regulation within the PTP superfamily. Cell Signal 2007; 19(7): 1521–1530
CrossRef Pubmed Google scholar
[120]
Enesa K, Ito K, Luong A, Thorbjornsen I, Phua C, To Y, Dean J, Haskard DO, Boyle J, Adcock I, Evans PC. Hydrogen peroxide prolongs nuclear localization of NF-κB in activated cells by suppressing negative regulatory mechanisms. J Biol Chem 2008; 283(27): 18582–18590
CrossRef Pubmed Google scholar
[121]
Wiener R, DiBello AT, Lombardi PM, Guzzo CM, Zhang X, Matunis MJ, Wolberger C. E2 ubiquitin-conjugating enzymes regulate the deubiquitinating activity of OTUB1. Nat Struct Mol Biol 2013; 20(9): 1033–1039
CrossRef Pubmed Google scholar
[122]
Juang YC, Landry MC, Sanches M, Vittal V, Leung CC, Ceccarelli DF, Mateo AR, Pruneda JN, Mao DY, Szilard RK, Orlicky S, Munro M, Brzovic PS, Klevit RE, Sicheri F, Durocher D. OTUB1 co-opts Lys48-linked ubiquitin recognition to suppress E2 enzyme function. Mol Cell 2012; 45(3): 384–397
CrossRef Pubmed Google scholar
[123]
Sato Y, Yamagata A, Goto-Ito S, Kubota K, Miyamoto R, Nakada S, Fukai S. Molecular basis of Lys-63-linked polyubiquitination inhibition by the interaction between human deubiquitinating enzyme OTUB1 and ubiquitin-conjugating enzyme UBC13. J Biol Chem 2012; 287(31): 25860–25868
CrossRef Pubmed Google scholar
[124]
Iha H, Peloponese JM, Verstrepen L, Zapart G, Ikeda F, Smith CD, Starost MF, Yedavalli V, Heyninck K, Dikic I, Beyaert R, Jeang KT. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-κB activation. EMBO J 2008; 27(4): 629–641
CrossRef Pubmed Google scholar
[125]
Hymowitz SG, Wertz IE. A20: from ubiquitin editing to tumour suppression. Nat Rev Cancer 2010; 10(5): 332–341
CrossRef Pubmed Google scholar
[126]
Coornaert B, Baens M, Heyninck K, Bekaert T, Haegman M, Staal J, Sun L, Chen ZJ, Marynen P, Beyaert R. T cell antigen receptor stimulation induces MALT1 paracaspase-mediated cleavage of the NF-κB inhibitor A20. Nat Immunol 2008; 9(3): 263–271
CrossRef Pubmed Google scholar
[127]
Goncharov T, Niessen K, de Almagro MC, Izrael-Tomasevic A, Fedorova AV, Varfolomeev E, Arnott D, Deshayes K, Kirkpatrick DS, Vucic D. OTUB1 modulates c-IAP1 stability to regulate signalling pathways. EMBO J 2013; 32(8): 1103–1114
CrossRef Pubmed Google scholar
[128]
Urbé S, Liu H, Hayes SD, Heride C, Rigden DJ, Clague MJ. Systematic survey of deubiquitinase localization identifies USP21 as a regulator of centrosome- and microtubule-associated functions. Mol Biol Cell 2012; 23(6): 1095–1103
CrossRef Pubmed Google scholar
[129]
Mueller T, Breuer P, Schmitt I, Walter J, Evert BO, Wüllner U. CK2-dependent phosphorylation determines cellular localization and stability of ataxin-3. Hum Mol Genet 2009; 18(17): 3334–3343
CrossRef Pubmed Google scholar
[130]
Scholz CC, Rodriguez J, Pickel C, Burr S, Fabrizio JA, Nolan KA, Spielmann P, Cavadas MA, Crifo B, Halligan DN, Nathan JA, Peet DJ, Wenger RH, Von Kriegsheim A, Cummins EP, Taylor CT. FIH regulates cellular metabolism through hydroxylation of the deubiquitinase OTUB1. PLoS Biol 2016; 14(1): e1002347
CrossRef Pubmed Google scholar
[131]
Soares L, Seroogy C, Skrenta H, Anandasabapathy N, Lovelace P, Chung CD, Engleman E, Fathman CG. Two isoforms of otubain 1 regulate T cell anergy via GRAIL. Nat Immunol 2004; 5(1): 45–54
CrossRef Pubmed Google scholar
[132]
Heideker J, Wertz IE. DUBs, the regulation of cell identity and disease. Biochem J 2015; 465(1): 1–26
CrossRef Pubmed Google scholar
[133]
Sun XX, Dai MS. Deubiquitinating enzyme regulation of the p53 pathway: a lesson from Otub1. World J Biol Chem 2014; 5(2): 75–84
Pubmed
[134]
Luo J, Lu Z, Lu X, Chen L, Cao J, Zhang S, Ling Y, Zhou X. OTUD5 regulates p53 stability by deubiquitinating p53. PLoS One 2013; 8(10): e77682
CrossRef Pubmed Google scholar
[135]
Notarbartolo M, Poma P, Perri D, Dusonchet L, Cervello M, D’Alessandro N. Antitumor effects of curcumin, alone or in combination with cisplatin or doxorubicin, on human hepatic cancer cells. Analysis of their possible relationship to changes in NF-κB activation levels and in IAP gene expression. Cancer Lett 2005; 224(1): 53–65
CrossRef Pubmed Google scholar
[136]
Harhaj EW, Dixit VM. Regulation of NF-kB by deubiquitinases. Immunol Rev 2012; 246(1): 107–124
CrossRef Pubmed Google scholar
[137]
Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kB signaling. Cell Res 2011; 21(1): 22–39
CrossRef Pubmed Google scholar
[138]
Wei W, Li M, Wang J, Nie F, Li L. The E3 ubiquitin ligase ITCH negatively regulates canonical Wnt signaling by targeting dishevelled protein. Mol Cell Biol 2012; 32(19): 3903–3912
CrossRef Pubmed Google scholar
[139]
Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T, Buchberger A, Kimura T, Iwai K. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Genes Cells 2014; 19(3): 254–272
CrossRef Pubmed Google scholar
[140]
González-Navajas JM, Law J, Nguyen KP, Bhargava M, Corr MP, Varki N, Eckmann L, Hoffman HM, Lee J, Raz E. Interleukin 1 receptor signaling regulates DUBA expression and facilitates Toll-like receptor 9-driven antiinflammatory cytokine production. J Exp Med 2010; 207(13): 2799–2807
CrossRef Pubmed Google scholar
[141]
Enesa K, Zakkar M, Chaudhury H, Luong A, Rawlinson L, Mason JC, Haskard DO, Dean JL, Evans PC. NF-κB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J Biol Chem 2008; 283(11): 7036–7045
CrossRef Pubmed Google scholar
[142]
McNally RS, Davis BK, Clements CM, Accavitti-Loper MA, Mak TW, Ting JP. DJ-1 enhances cell survival through the binding of Cezanne, a negative regulator of NF-κB. J Biol Chem 2011; 286(6): 4098–4106
CrossRef Pubmed Google scholar
[143]
Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, Lin F, Xie X, Xie X, Huang J, Wu Q, Qiu X, Piao D, Xing Y, Yu T, Lu Y, Huang Q, Yu C, Jin J, Zhang Z. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ 2019; 26(2): 306–320
CrossRef Pubmed Google scholar
[144]
Choi J, Baek KH. Cellular functions of stem cell factors mediated by the ubiquitin-proteasome system. Cell Mol Life Sci 2018; 75(11): 1947–1957
CrossRef Pubmed Google scholar
[145]
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S. Concise review: fate determination of stem cells by deubiquitinating enzymes. Stem Cells 2017; 35(1): 9–16
CrossRef Pubmed Google scholar
[146]
Ramakrishna S, Kim KS, Baek KH. Posttranslational modifications of defined embryonic reprogramming transcription factors. Cell Reprogram 2014; 16(2): 108–120
CrossRef Pubmed Google scholar
[147]
Naujokat C, Sarić T. Concise review: role and function of the ubiquitin-proteasome system in mammalian stem and progenitor cells. Stem Cells 2007; 25(10): 2408–2418
CrossRef Pubmed Google scholar
[148]
Schubbert S, Jiao J, Ruscetti M, Nakashima J, Wu S, Lei H, Xu Q, Yi W, Zhu H, Wu H. Methods for PTEN in stem cells and cancer stem cells. Methods Mol Biol 2016; 1388: 233–285
CrossRef Pubmed Google scholar
[149]
Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X, Fu L, Li Y, Yang J, Zhang W, Bai R, Yi F, Suzuki K, Gao H, Esteban CR, Zhang C, Izpisua Belmonte JC, Chen Z, Wang X, Jiang T, Qu J, Tang F, Liu GH. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 2015; 6(1): 10068
CrossRef Pubmed Google scholar
[150]
Natarajan C, Takeda K. Regulation of various DNA repair pathways by E3 ubiquitin ligases. J Cancer Res Ther 2017; 13(2): 157–169
CrossRef Pubmed Google scholar
[151]
Schwertman P, Bekker-Jensen S, Mailand N. Regulation of DNA double-strand break repair by ubiquitin and ubiquitin-like modifiers. Nat Rev Mol Cell Biol 2016; 17(6): 379–394
CrossRef Pubmed Google scholar
[152]
Vlachostergios PJ, Patrikidou A, Daliani DD, Papandreou CN. The ubiquitin-proteasome system in cancer, a major player in DNA repair. Part 1: post-translational regulation. J Cell Mol Med 2009; 13(9b 9B): 3006–3018
CrossRef Pubmed Google scholar
[153]
Kee Y, Huang TT. Role of deubiquitinating enzymes in DNA repair. Mol Cell Biol 2016; 36(4): 524–544
CrossRef Pubmed Google scholar
[154]
Huen MS, Grant R, Manke I, Minn K, Yu X, Yaffe MB, Chen J. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 2007; 131(5): 901–914
CrossRef Pubmed Google scholar
[155]
Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, Pelletier L, Jackson SP, Durocher D. Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 2007; 318(5856): 1637–1640
CrossRef Pubmed Google scholar
[156]
Mailand N, Bekker-Jensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 2007; 131(5): 887–900
CrossRef Pubmed Google scholar
[157]
Jacomin AC, Taillebourg E, Fauvarque MO. Deubiquitinating enzymes related to autophagy: new therapeutic opportunities? Cells 2018; 7(8): E112
CrossRef Pubmed Google scholar
[158]
Magraoui FE, Reidick C, Meyer HE, Platta HW. Autophagy-related deubiquitinating enzymes involved in health and disease. Cells 2015; 4(4): 596–621
CrossRef Pubmed Google scholar
[159]
Zinngrebe J, Montinaro A, Peltzer N, Walczak H. Ubiquitin in the immune system. EMBO Rep 2014; 15(1): 28–45
CrossRef Pubmed Google scholar
[160]
Bailey-Elkin BA, van Kasteren PB, Snijder EJ, Kikkert M, Mark BL. Viral OTU deubiquitinases: a structural and functional comparison. PLoS Pathog 2014; 10(3): e1003894
CrossRef Pubmed Google scholar
[161]
van Kasteren PB, Beugeling C, Ninaber DK, Frias-Staheli N, van Boheemen S, García-Sastre A, Snijder EJ, Kikkert M. Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling. J Virol 2012; 86(2): 773–785
CrossRef Pubmed Google scholar
[162]
Frias-Staheli N, Giannakopoulos NV, Kikkert M, Taylor SL, Bridgen A, Paragas J, Richt JA, Rowland RR, Schmaljohn CS, Lenschow DJ, Snijder EJ, García-Sastre A, Virgin HW 4th. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2007; 2(6): 404–416
CrossRef Pubmed Google scholar
[163]
Snijder EJ, Wassenaar AL, Spaan WJ, Gorbalenya AE. The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J Biol Chem 1995; 270(28): 16671–16676
CrossRef Pubmed Google scholar
[164]
Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. Structure and function of viral deubiquitinating enzymes. J Mol Biol 2017; 429(22): 3441–3470
CrossRef Pubmed Google scholar
[165]
Feng W, Sun X, Shi N, Zhang M, Guan Z, Duan M. Influenza a virus NS1 protein induced A20 contributes to viral replication by suppressing interferon-induced antiviral response. Biochem Biophys Res Commun 2017; 482(4): 1107–1113
CrossRef Pubmed Google scholar
[166]
Yokota S, Okabayashi T, Yokosawa N, Fujii N. Measles virus P protein suppresses Toll-like receptor signal through up-regulation of ubiquitin-modifying enzyme A20. FASEB J 2008; 22(1): 74–83
CrossRef Pubmed Google scholar
[167]
Li S, Zheng H, Mao AP, Zhong B, Li Y, Liu Y, Gao Y, Ran Y, Tien P, Shu HB. Regulation of virus-triggered signaling by OTUB1- and OTUB2-mediated deubiquitination of TRAF3 and TRAF6. J Biol Chem 2010; 285(7): 4291–4297
CrossRef Pubmed Google scholar
[168]
Ning S, Pagano JS. The A20 deubiquitinase activity negatively regulates LMP1 activation of IRF7. J Virol 2010; 84(12): 6130–6138
CrossRef Pubmed Google scholar
[169]
Kumari P, Kumar H. Viral deubiquitinases: role in evasion of anti-viral innate immunity. Crit Rev Microbiol 2018; 44(3): 304–317
CrossRef Pubmed Google scholar
[170]
Guo YC, Zhang SW, Yuan Q. Deubiquitinating enzymes and bone remodeling. Stem Cells Int 2018; 2018: 3712083
CrossRef Pubmed Google scholar
[171]
Mabilleau G, Chappard D, Sabokbar A. Role of the A20-TRAF6 axis in lipopolysaccharide-mediated osteoclastogenesis. J Biol Chem 2011; 286(5): 3242–3249
CrossRef Pubmed Google scholar
[172]
Lee MJ, Lim E, Mun S, Bae S, Murata K, Ivashkiv LB, Park-Min KH. Intravenous immunoglobulin (IVIG) attenuates TNF-induced pathologic bone resorption and suppresses osteoclastogenesis by inducing A20 expression. J Cell Physiol 2016; 231(2): 449–458
CrossRef Pubmed Google scholar
[173]
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868(2): 456–483
CrossRef Pubmed Google scholar
[174]
Ritorto MS, Ewan R, Perez-Oliva AB, Knebel A, Buhrlage SJ, Wightman M, Kelly SM, Wood NT, Virdee S, Gray NS, Morrice NA, Alessi DR, Trost M. Screening of DUB activity and specificity by MALDI-TOF mass spectrometry. Nat Commun 2014; 5(1): 4763
CrossRef Pubmed Google scholar
[175]
Harrigan JA, Jacq X, Martin NM, Jackson SP. Deubiquitylating enzymes and drug discovery: emerging opportunities. Nat Rev Drug Discov 2018; 17(1): 57–78
CrossRef Pubmed Google scholar
[176]
Ji S, Luo Y, Cai Q, Cao Z, Zhao Y, Mei J, Li C, Xia P, Xie Z, Xia Z, Zhang J, Sun Q, Chen D. LC domain-mediated coalescence is essential for Otu enzymatic activity to extend Drosophila lifespan. Mol Cell 2019; 74(2): 363–377.e5
CrossRef Google scholar

Compliance with ethics guidelines

Jiansen Du, Lin Fu, Yingli Sui, and Lingqiang Zhang declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2019 The Author(s) 2019. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(4429 KB)

Accesses

Citations

Detail

Sections
Recommended

/