Human microbiome and prostate cancer development: current insights into the prevention and treatment

Solmaz Ohadian Moghadam, Seyed Ali Momeni

PDF(790 KB)
PDF(790 KB)
Front. Med. ›› 2021, Vol. 15 ›› Issue (1) : 11-32. DOI: 10.1007/s11684-019-0731-7
REVIEW
REVIEW

Human microbiome and prostate cancer development: current insights into the prevention and treatment

Author information +
History +

Abstract

The huge communities of microorganisms that symbiotically colonize humans are recognized as significant players in health and disease. The human microbiome may influence prostate cancer development. To date, several studies have focused on the effect of prostate infections as well as the composition of the human microbiome in relation to prostate cancer risk. Current studies suggest that the microbiota of men with prostate cancer significantly differs from that of healthy men, demonstrating that certain bacteria could be associated with cancer development as well as altered responses to treatment. In healthy individuals, the microbiome plays a crucial role in the maintenance of homeostasis of body metabolism. Dysbiosis may contribute to the emergence of health problems, including malignancy through affecting systemic immune responses and creating systemic inflammation, and changing serum hormone levels. In this review, we discuss recent data about how the microbes colonizing different parts of the human body including urinary tract, gastrointestinal tract, oral cavity, and skin might affect the risk of developing prostate cancer. Furthermore, we discuss strategies to target the microbiome for risk assessment, prevention, and treatment of prostate cancer.

Keywords

microbiome / prostate cancer / prevention / treatment / molecular pathological epidemiology (MPE) / biomarker

Cite this article

Download citation ▾
Solmaz Ohadian Moghadam, Seyed Ali Momeni. Human microbiome and prostate cancer development: current insights into the prevention and treatment. Front. Med., 2021, 15(1): 11‒32 https://doi.org/10.1007/s11684-019-0731-7

References

[1]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018; 68(1): 7–30
CrossRef Pubmed Google scholar
[2]
Center MM, Jemal A, Lortet-Tieulent J, Ward E, Ferlay J, Brawley O, Bray F. International variation in prostate cancer incidence and mortality rates. Eur Urol 2012; 61(6): 1079–1092
CrossRef Pubmed Google scholar
[3]
Kimura T, Egawa S. Epidemiology of prostate cancer in Asian countries. Int J Urol 2018; 25: 524–531
CrossRef Google scholar
[4]
Nowroozi MR, Momeni SA, Ohadian Moghadam S, Ayati E, Mortazavi A, Arfae S, Jamshidian H, Taherimahmoudi M, Ayati M. Prostate-specific antigen density and gleason score predict adverse pathologic features in patients with clinically localized prostate cancer. Nephrourol Mon Nephrourol Mon 2016; 8(6): e39984
CrossRef Pubmed Google scholar
[5]
Moradpour F, Fatemi Z. Estimation of the projections of the incidence rates, mortality and prevalence due to common cancer site in Isfahan, Iran. Asian Pac J Cancer Prev 2013; 14(6): 3581–3585
CrossRef Pubmed Google scholar
[6]
Sfanos KS, Isaacs WB, De Marzo AM. Infections and inflammation in prostate cancer. Am J Clin Exp Urol 2013; 1(1): 3–11
Pubmed
[7]
Peisch SF, Van Blarigan EL, Chan JM, Stampfer MJ, Kenfield SA. Prostate cancer progression and mortality: a review of diet and lifestyle factors. World J Urol 2017; 35(6): 867–874
CrossRef Pubmed Google scholar
[8]
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature 2007; 449(7164): 804–810
CrossRef Pubmed Google scholar
[9]
Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, Taniyama K, Sasaki N, Schlemper RJ. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001; 345(11): 784–789
CrossRef Pubmed Google scholar
[10]
Sheh A, Fox JG. The role of the gastrointestinal microbiome in Helicobacter pylori pathogenesis. Gut Microbes 2013; 4(6): 505–531
CrossRef Pubmed Google scholar
[11]
DeGruttola AK, Low D, Mizoguchi A, Mizoguchi E. Current understanding of dysbiosis in disease in human and animal models. Inflamm Bowel Dis 2016; 22(5): 1137–1150
CrossRef Pubmed Google scholar
[12]
Hartstra AV, Bouter KE, Bäckhed F, Nieuwdorp M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care 2015; 38(1): 159–165
CrossRef Pubmed Google scholar
[13]
Carbonero F, Benefiel AC, Alizadeh-Ghamsari AH, Gaskins HR. Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 2012; 3: 448
CrossRef Pubmed Google scholar
[14]
Huycke MM, Gaskins HR. Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood) 2004; 229(7): 586–597
CrossRef Pubmed Google scholar
[15]
Wang X, Huycke MM. Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 2007; 132(2): 551–561
CrossRef Pubmed Google scholar
[16]
Wang X, Yang Y, Moore DR, Nimmo SL, Lightfoot SA, Huycke MM. 4-hydroxy-2-nonenal mediates genotoxicity and bystander effects caused by enterococcus faecalis-infected macrophages. Gastroenterology 2012; 142: 543–551
CrossRef Google scholar
[17]
Nesić D, Hsu Y, Stebbins CE. Assembly and function of a bacterial genotoxin. Nature 2004; 429: 429–433
CrossRef Google scholar
[18]
Liang W, Ferrara N. The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res 2016; 4: 83–91
CrossRef Google scholar
[19]
Mima K, Cao Y, Chan AT, Qian ZR, Nowak JA, Masugi Y, . Fusobacterium nucleatum in colorectal carcinoma tissue according to tumor location. Clin Transl Gastroenterol 2016; 7: e200
CrossRef Google scholar
[20]
Cougnoux A, Dalmasso G, Martinez R, Buc E, Delmas J, Gibold L, . Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 2014; 63: 1932–1942
CrossRef Google scholar
[21]
Zhang Q, Yu N, Lee C. Mysteries of TGF-β paradox in benign and malignant cells. Front Oncol 2014; 4: 94
CrossRef Google scholar
[22]
Menzies BE. The role of fibronectin binding proteins in the pathogenesis of Staphylococcus aureus infections. Curr Opin Infect Dis 2003; 16: 225–229
CrossRef Google scholar
[23]
Li N, Ren A, Wang X, Fan X, Zhao Y, Gao GF, Cleary P, Wang B. Influenza viral neuraminidase primes bacterial coinfection through TGF-β-mediated expression of host cell receptors. Proc Natl Acad Sci USA 2015; 112(1): 238–243
CrossRef Pubmed Google scholar
[24]
Jakowlew SB. Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev 2006; 25(3): 435–457
CrossRef Google scholar
[25]
Bostwick DG, de la Roza G, Dundore P, Corica FA, Iczkowski KA. Intraepithelial and stromal lymphocytes in the normal human prostate. Prostate 2003; 55: 187–193
CrossRef Google scholar
[26]
Dikov D, Bachurska S, Staikov D, Sarafian V. Intraepithelial lymphocytes in relation to NIH category IV prostatitis in autopsy prostate. Prostate 2015; 75(10): 1074–1084
CrossRef Pubmed Google scholar
[27]
Fujii T, Shimada K, Asai O, Tanaka N, Fujimoto K, Hirao K, Konishi N. Immunohistochemical analysis of inflammatory cells in benign and precancerous lesions and carcinoma of the prostate. Pathobiology 2013; 80(3): 119–126
CrossRef Pubmed Google scholar
[28]
Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol 2018; 15: 11–24
CrossRef Google scholar
[29]
Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, De Marzo AM, Yegnasubramanian S, Mangold LA, Partin AW, Sfanos KS. Profiling the urinary microbiome in men with positive versus negative biopsies for prostate cancer. J Urol 2018; 199(1): 161–171
CrossRef Pubmed Google scholar
[30]
Virchow R. An address on the value of pathological experiments. Br Med J 1881; 2(1075): 198–203
CrossRef Google scholar
[31]
Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell 2010; 140(6): 883–899
CrossRef Google scholar
[32]
Delongchamps NB, de la Roza G, Chandan V, Jones R, Sunheimer R, Threatte G, . Evaluation of prostatitis in autopsied prostates—is chronic inflammation more associated with benign prostatic hyperplasia or cancer? J Urol 2008; 179(5): 1736–1740
CrossRef Google scholar
[33]
Stark T, Livas L, Kyprianou N. Inflammation in prostate cancer progression and therapeutic targeting. Transl Androl Urol 2015; 4(4): 455–463
CrossRef Google scholar
[34]
Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 2012; 489(7415): 231–241
CrossRef Google scholar
[35]
Goris H, de Boer F, van der Waaij D. Myelopoiesis in experimentally contaminated specific-pathogen-free and germfree mice during oral administration of polymyxin. Infect Immun 1985; 50(2): 437–441
Pubmed
[36]
Khosravi A, Yáñez A, Price JG, Chow A, Merad M, Goodridge HS, . Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 2014; 15(3): 374–381
CrossRef Google scholar
[37]
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800–812
CrossRef Google scholar
[38]
Sheflin AM, Whitney AK, Weir TL. Cancer-promoting effects of microbial dysbiosis. Curr Oncol Rep 2014; 16(10): 406
CrossRef Google scholar
[39]
Horbinski C, Mojesky C, Kyprianou N. Live free or die: tales of homeless (cells) in cancer. Am J Pathol 2010; 177: 1044–1052
CrossRef Google scholar
[40]
Galdiero MR, Bonavita E, Barajon I, Garlanda C, Mantovani A, Jaillon S. Tumor associated macrophages and neutrophils in cancer. Immunobiology 2013; 218(11): 1402–1410
CrossRef Google scholar
[41]
Puhr M, De Marzo A, Isaacs W, Lucia MS, Sfanos K, Yegnasubramanian S, . Inflammation, microbiota, and prostate cancer. Eur Urol Focus 2016; 2(4): 374–382
CrossRef Google scholar
[42]
Barron DA, Rowley DR. The reactive stroma microenvironment and prostate cancer progression. Endocr Relat Cancer 2012; 19(6): R187–204
CrossRef Google scholar
[43]
Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol 2001; 13(5): 555–562
CrossRef Pubmed Google scholar
[44]
Armstrong H, Bording-Jorgensen M, Dijk S, Wine E. The complex interplay between chronic inflammation, the microbiome, and cancer: understanding disease progression and what we can do to prevent it. Cancers (Basel) 2018; 10(3): 83
CrossRef Google scholar
[45]
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539–545
CrossRef Google scholar
[46]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860–867
CrossRef Google scholar
[47]
Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009; 30(7): 1073–1081
CrossRef Google scholar
[48]
Francescone R, Hou V, Grivennikov SI. Microbiome, inflammation, and cancer. Cancer J 2014; 20(3): 181–189
CrossRef Google scholar
[49]
Dzutsev A, Badger JH, Perez-Chanona E, Roy S, Salcedo R, Smith CK, Trinchieri G. Microbes and cancer. Annu Rev Immunol 2017; 35(1): 199–228
CrossRef Pubmed Google scholar
[50]
Schatteman PH, Hoekx L, Wyndaele JJ, Jeuris W, Van Marck E. Inflammation in prostate biopsies of men without prostatic malignancy or clinical prostatitis: correlation with total serum PSA and PSA density. Eur Urol 2000; 37(4): 404–412
CrossRef Google scholar
[51]
Gurel B, Lucia MS, Thompson IM Jr, Goodman PJ, Tangen CM, Kristal AR, . Chronic inflammation in benign prostate tissue is associated with high-grade prostate cancer in the placebo arm of the prostate cancer prevention trial. Cancer Epidemiol Biomarkers Prev 2014; 23(5): 847–856
CrossRef Google scholar
[52]
De Nunzio C, Kramer G, Marberger M, Montironi R, Nelson W, Schröder F, . The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation. Eur Urol 2011; 60(1): 106–117
CrossRef Google scholar
[53]
Shinohara DB, Vaghasia AM, Yu SH, Mak TN, Brüggemann H, Nelson WG, . A mouse model of chronic prostatic inflammation using a human prostate cancer-derived isolate of Propionibacterium acnes. Prostate 2013; 73(9): 1007–1015
CrossRef Google scholar
[54]
Elkahwaji JE, Zhong W, Hopkins WJ, Bushman W. Chronic bacterial infection and inflammation incite reactive hyperplasia in a mouse model of chronic prostatitis. Prostate 2007; 67(1): 14–21
CrossRef Google scholar
[55]
Pelouze PS. Gonorrhea in the male and female: a book for practitioners. Philadelphia: W. B. Saunders Company, 1935
[56]
Poletti F, Medici MC, Alinovi A, Menozzi MG, Sacchini P, Stagni G, . Isolation of Chlamydia trachomatis from the prostatic cells in patients affected by nonacute abacterial prostatitis. J Urol 1985; 134(4): 691–693
CrossRef Google scholar
[57]
Hayes RB, Pottern LM, Strickler H, Rabkin C, Pope V, Swanson GM, . Sexual behavior, STDs and risks for prostate cancer. Br J Cancer 2000; 82(3): 718–725
CrossRef Google scholar
[58]
Maeda H, Akaike T. Nitric oxide and oxygen radicals in infection, inflammation, and cancer. Biochemistry (Mosc) 1998; 63(7): 854–865
Pubmed
[59]
De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG, Nakai Y, Isaacs WB, Nelson WG. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007; 7(4): 256–269
CrossRef Google scholar
[60]
Bultman SJ. Emerging roles of the microbiome in cancer. Carcinogenesis 2014; 35(2): 249–255
CrossRef Google scholar
[61]
Buchta Rosean CM, Rutkowski MR. The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol 2017; 32: 62–73
CrossRef Google scholar
[62]
Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, . Linking the human gut microbiome to inflammatory cytokine production capacity. Cell 2016; 167(4): 1125–1136.e8
CrossRef Google scholar
[63]
Chu WM. Tumor necrosis factor. Cancer Lett 2013; 328: 222–225
CrossRef Google scholar
[64]
Suh J, Rabson AB. NF-κB activation in human prostate cancer: important mediator or epiphenomenon? J Cell Biochem 2004; 91: 100–117
CrossRef Google scholar
[65]
Lee CH, Jeon YT, Kim SH, Song YS. NF-κB as a potential molecular target for cancer therapy. Biofactors 2007; 29(1): 19–35
CrossRef Pubmed Google scholar
[66]
Ohadian Moghadam S, Nowroozi MR. Toll-like receptors: the role in bladder cancer development, progression and immunotherapy. Scand J Immunol 2019: e12818
CrossRef Google scholar
[67]
Harmey JH, Bucana CD, Lu W, Byrne AM, McDonnell S, Lynch C, . Lipopolysaccharide-induced metastatic growth is associated with increased angiogenesis, vascular permeability and tumor cell invasion. Int J Cancer 2002; 101(5): 415–422
CrossRef Google scholar
[68]
Simon F, Fernández R. Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells. J Hypertens. 2009; 27(6): 1202–1216
CrossRef Google scholar
[69]
Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 2008; 4(1): 28–39
CrossRef Google scholar
[70]
Maneval ML, Eckert KA. Effects of oxidative and alkylating damage on microsatellite instability in nontumorigenic human cells. Mutat Res 2004; 546: 29–38
CrossRef Google scholar
[71]
Cheema AK, Maier I, Dowdy T, Wang Y, Singh R, Ruegger PM, . Chemopreventive metabolites are correlated with a change in intestinal microbiota measured in A-T mice and decreased carcinogenesis. PLoS One 2016; 11: e0151190
CrossRef Google scholar
[72]
Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012; 486(7402): 207–214
CrossRef Pubmed Google scholar
[73]
van der Meulen TA, Harmsen H, Bootsma H, Spijkervet F, Kroese F, Vissink A. The microbiome-systemic diseases connection. Oral Dis 2016; 22(8): 719–734
CrossRef Pubmed Google scholar
[74]
Pabst O. Correlation, consequence, and functionality in microbiome-immune interplay. Immunol Rev 2017; 279(1): 4–7
CrossRef Pubmed Google scholar
[75]
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, . Enterotypes of the human gut microbiome. Nature 2011; 473: 174–180
CrossRef Google scholar
[76]
Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, . What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms 2019; 7(1): 14
CrossRef Google scholar
[77]
Huggins C, Hodges CV. Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol 2002; 167(2 Pt 2): 948–952
CrossRef Pubmed Google scholar
[78]
Strobl FJ, Levine JE. Estrogen inhibits luteinizing hormone (LH), but not follicle-stimulating hormone secretion in hypophysectomized pituitary-grafted rats receiving pulsatile LH-releasing hormone infusions. Endocrinology 1988; 123(1): 622–630
CrossRef Google scholar
[79]
Geier R, Adler S, Rashid G, Klein A. The synthetic estrogen diethylstilbestrol (DES) inhibits the telomerase activity and gene expression of prostate cancer cells. Prostate 2010; 70(12): 1307–1312
CrossRef Google scholar
[80]
Thelen P, Wuttke W, Jarry H, Grzmil M, Ringert RH. Inhibition of telomerase activity and secretion of prostate specific antigen by silibinin in prostate cancer cells. J Urol 2004; 171(5): 1934–1938
CrossRef Google scholar
[81]
Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe 2011; 10: 324–335
CrossRef Google scholar
[82]
Cavalieri E, Chakravarti D, Guttenplan J, Hart E, Ingle J, Jankowiak R, Muti P, Rogan E, Russo J, Santen R, Sutter T. Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention. Biochim Biophys Acta 2006; 1766(1): 63–78
CrossRef Pubmed Google scholar
[83]
Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas 2017; 103: 45–53
CrossRef Google scholar
[84]
Nelles JL, Hu WY, Prins GS. Estrogen action and prostate cancer. Expert Rev Endocrinol Metab 2011; 6: 437–451
CrossRef Google scholar
[85]
Gadelle D, Raibaud P, Sacquet E. β-glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Appl Environ Microbiol 1985; 49(3): 682–685
Pubmed
[86]
Gloux K, Berteau O, Oumami H, Beguet F, Leclerc M, Dore J. A metagenomic β-glucuronidase uncovers a core adaptive function of the human intestinal microbiome. Proc Natl Acad Sci USA 2011; 108: 4539–4546
CrossRef Google scholar
[87]
Golombos DM, Ayangbesan A, O’Malley P, Lewicki P, Barlow L, Barbieri CE, Chan C, DuLong C, Abu-Ali G, Huttenhower C, Scherr DS. The role of gut microbiome in the pathogenesis of prostate cancer: a prospective, pilot study. Urology 2018; 111: 122–128
CrossRef Pubmed Google scholar
[88]
Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 2002; 68(10): 5186–5190
CrossRef Pubmed Google scholar
[89]
Cockburn DW, Orlovsky NI, Foley MH, Kwiatkowski KJ, Bahr CM, Maynard M, Demeler B, Koropatkin NM. Molecular details of a starch utilization pathway in the human gut symbiont Eubacterium rectale. Mol Microbiol 2015; 95(2): 209–230
CrossRef Pubmed Google scholar
[90]
Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. The role of butyrate on colonic function. Aliment Pharmacol Ther 2008; 27: 104–119
CrossRef Google scholar
[91]
Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottière HM, Dorv J, Marteau P, Seksik P, Langella P. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008; 105(43): 16731–16736
CrossRef Pubmed Google scholar
[92]
Kwa M, Plottel CS, Blaser MJ, Adams S. The intestinal microbiome and estrogen receptor-positive female breast cancer. J Natl Cancer Inst 2016; 22: 108
CrossRef Google scholar
[93]
Hullar MA, Burnett-Hartman AN, Lampe JW. Gut microbes, diet, and cancer. Cancer Treat Res 2014; 159: 377–399
CrossRef Pubmed Google scholar
[94]
Schwabe RF, Jobin C. The microbiome and cancer. Nat Rev Cancer 2013; 13(11): 800–812
CrossRef Pubmed Google scholar
[95]
Price AJ, Travis RC, Appleby PN, Albanes D, Barricarte Gurrea A, Bjørge T, . Circulating folate and vitamin B12 and risk of prostate cancer: a collaborative analysis of individual participant data from six cohorts including 6875 cases and 8104 controls. Eur Urol 2016; 70: 941–951
CrossRef Google scholar
[96]
Wang R, Zheng Y, Huang JY, Zhang AQ, Zhou YH, Wang JN. Folate intake, serum folate levels, and prostate cancer risk: a meta-analysis of prospective studies. BMC Public Health 2014; 14: 1326
CrossRef Google scholar
[97]
Cavarretta I, Ferrarese R, Cazzaniga W, Saita D, Lucianò R, Ceresola ER, Locatelli I, Visconti L, Lavorgna G, Briganti A, Nebuloni M, Doglioni C, Clementi M, Montorsi F, Canducci F, Salonia A. The microbiome of the prostate tumor microenvironment. Eur Urol 2017; 72(4): 625–631
CrossRef Pubmed Google scholar
[98]
Liss MA, White JR, Goros M, Gelfond J, Leach R, Johnson-Pais T, Lai Z, Rourke E, Basler J, Ankerst D, Shah DP. Metabolic biosynthesis pathways identified from fecal microbiome associated with prostate cancer. Eur Urol 2018; 74(5): 575–582
CrossRef Pubmed Google scholar
[99]
James SJ, Basnakian AG, Miller BJ. In vitro folate deficiency induces deoxynucleotide pool imbalance, apoptosis, and mutagenesis in Chinese hamster ovary cells. Cancer Res 1994; 54(19): 5075–5080
Pubmed
[100]
Wickramasinghe SN, Fida S. Misincorporation of uracil into the DNA of folate- and B12-deficient HL60 cells. Eur J Haematol 1993; 50(3): 127–132
CrossRef Pubmed Google scholar
[101]
Duthie SJ, Hawdon A. DNA instability (strand breakage, uracil misincorporation, and defective repair) is increased by folic acid depletion in human lymphocytes in vitro. FASEB J 1998; 12(14): 1491–1497
CrossRef Pubmed Google scholar
[102]
Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M. Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 2007; 73(1): 179–185
CrossRef Pubmed Google scholar
[103]
Rodriguez-Melendez R, Griffin JB, Zempleni J. Biotin supplementation increases expression of the cytochrome P450 1B1 gene in Jurkat cells, increasing the occurrence of single-stranded DNA breaks. J Nutr 2004; 134(9): 2222–2228
CrossRef Pubmed Google scholar
[104]
Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol 2010; 192(19): 5002–5017
CrossRef Pubmed Google scholar
[105]
Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjønneland A, Dahm CC, Overvad K, Jenab M, Fedirko V, Boutron-Ruault MC, Clavel-Chapelon F, Racine A, Kaaks R, Boeing H, Foerster J, Trichopoulou A, Lagiou P, Trichopoulos D, Sacerdote C, Sieri S, Palli D, Tumino R, Panico S, Siersema PD, Peeters PH, Lund E, Barricarte A, Huerta JM, Molina-Montes E, Dorronsoro M, Quirós JR, Duell EJ, Ye W, Sund M, Lindkvist B, Johansen D, Khaw KT, Wareham N, Travis RC, Vineis P, Bueno-de-Mesquita HB, Riboli E. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut 2013; 62(12): 1764–1770
CrossRef Pubmed Google scholar
[106]
Beck JD, Offenbacher S. Systemic effects of periodontitis: epidemiology of periodontal disease and cardiovascular disease. J Periodontol 2005; 76(11S): 2089–2100
CrossRef Google scholar
[107]
Joshipura KJ, Rimm EB, Douglass CW, Trichopoulos D, Ascherio A, Willett WC. Poor oral health and coronary heart disease. J Dent Res 1996; 75(9): 1631–1636
CrossRef Pubmed Google scholar
[108]
Offenbacher S, Jared HL, O’Reilly PG, Wells SR, Salvi GE, Lawrence HP, Socransky SS, Beck JD. Potential pathogenic mechanisms of periodontitis associated pregnancy complications. Ann Periodontol 1998; 3(1): 233–250
CrossRef Pubmed Google scholar
[109]
Hujoel PP, Drangsholt M, Spiekerman C, Weiss NS. An exploration of the periodontitis-cancer association. Ann Epidemiol 2003; 13(5): 312–316
CrossRef Pubmed Google scholar
[110]
Famili P, Cauley JA, Greenspan SL. The effect of androgen deprivation therapy on periodontal disease in men with prostate cancer. J Urol 2007; 177(3): 921–924
CrossRef Pubmed Google scholar
[111]
Krieger JN, Nyberg L Jr, Nickel JC. NIH consensus definition and classification of prostatitis. JAMA 1999; 282(3): 236–237
CrossRef Pubmed Google scholar
[112]
Offenbacher S. Periodontal diseases: pathogenesis. Ann Periodontol 1996; 1(1): 821–878
CrossRef Pubmed Google scholar
[113]
Jang TL, Schaeffer AJ. The role of cytokines in prostatitis. World J Urol 2003; 21(2): 95–99
CrossRef Pubmed Google scholar
[114]
Van Dyke TE, van Winkelhoff AJ. Infection and inflammatory mechanisms. J Periodontol 2013; 84(4 Suppl): S1–S7
CrossRef Pubmed Google scholar
[115]
Joshi N, Bissada NF, Bodner D, Maclennan GT, Narendran S, Jurevic R, Skillicorn R. Association between periodontal disease and prostate-specific antigen levels in chronic prostatitis patients. J Periodontol 2010; 81(6): 864–869
CrossRef Pubmed Google scholar
[116]
Alwithanani N, Bissada NF, Joshi N. Periodontal treatment improves prostate symptoms and lowers serum PSA in men with high PSA and chronic periodontitis. Dentistry 2015; 5: 1–4
CrossRef Google scholar
[117]
Hasui Y, Marutsuka K, Asada Y, Ide H, Nishi S, Osada Y. Relationship between serum prostate specific antigen and histological prostatitis in patients with benign prostatic hyperplasia. Prostate 1994; 25(2): 91–96
CrossRef Pubmed Google scholar
[118]
Kandirali E, Boran C, Serin E, Semercioz A, Metin A. Association of extent and aggressiveness of inflammation with serum PSA levels and PSA density in asymptomatic patients. Urology 2007; 70(4): 743–747
CrossRef Pubmed Google scholar
[119]
Noack B, Genco RJ, Trevisan M, Grossi S, Zambon JJ, De Nardin E. Periodontal infections contribute to elevated systemic C-reactive protein level. J Periodontol 2001; 72(9): 1221–1227
CrossRef Pubmed Google scholar
[120]
Estemalik J, Demko C, Bissada NF, Joshi N, Bodner D, Shankar E, Gupta S. Simultaneous detection of oral pathogens in subgingival plaque and prostatic fluid of men with periodontal and prostatic diseases. J Periodontol 2017; 88(9): 823–829
CrossRef Pubmed Google scholar
[121]
Kadowaki T, Nakayama K, Yoshimura F, Okamoto K, Abe N, Yamamoto K. Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis. J Biol Chem 1998; 273(44): 29072–29076
CrossRef Pubmed Google scholar
[122]
Saglie FR, Marfany A, Camargo P. Intragingival occurrence of Actinobacillus actinomycetemcomitans and Bacteroides gingivalis in active destructive periodontal lesions. J Periodontol 1988; 59(4): 259–265
CrossRef Pubmed Google scholar
[123]
Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, Ravel J, Hayes RB, Ahn J. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut 2018; 67(1): 120–127
CrossRef Pubmed Google scholar
[124]
Stathopoulou PG, Benakanakere MR, Galicia JC, Kinane DF. The host cytokine response to Porphyromonas gingivalis is modified by gingipains. Oral Microbiol Immunol 2009; 24(1): 11–17
CrossRef Pubmed Google scholar
[125]
Duncan L, Yoshioka M, Chandad F, Grenier D. Loss of lipopolysaccharide receptor CD14 from the surface of human macrophage-like cells mediated by Porphyromonas gingivalis outer membrane vesicles. Microb Pathog 2004; 36(6): 319–325
CrossRef Pubmed Google scholar
[126]
Whiteside SA, Razvi H, Dave S, Reid G, Burton JP. The microbiome of the urinary tract—a role beyond infection. Nat Rev Urol 2015; 12(2): 81–90
CrossRef Pubmed Google scholar
[127]
Wolfe AJ, Toh E, Shibata N, Rong R, Kenton K, Fitzgerald M, . Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol 2012; 50: 1376–1383
CrossRef Google scholar
[128]
Hilt EE, McKinley K, Pearce MM, Rosenfeld AB, Zilliox MJ, Mueller ER, . Urine is not sterile: use of enhanced urine culture techniques to detect resident bacterial flora in the adult female bladder. J Clin Microbiol 2014; 52: 871–876
CrossRef Google scholar
[129]
Lewis DA, Brown R, Williams J, White P, Jacobson SK, Marchesi JR, . The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol 2013; 3: 41
CrossRef Google scholar
[130]
Porter CM, Shrestha E, Peiffer LB, Sfanos KS. The microbiome in prostate inflammation and prostate cancer. Prostate Cancer Prostatic Dis 2018; 21: 345–354
CrossRef Google scholar
[131]
Kirby RS, Lowe D, Bultitude MI, Shuttleworth KE. Intra-prostatic urinary reflux: an aetiological factor in abacterial prostatitis. Br J Urol 1982; 54(6): 729–731
CrossRef Pubmed Google scholar
[132]
Fouts DE, Pieper R, Szpakowski S, Pohl H, Knoblach S, Suh MJ, . Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 2012; 28: 174
CrossRef Google scholar
[133]
Nelson DE, Van Der Pol B, Dong Q, Revanna KV, Fan B, Easwaran S, . Characteristic male urine microbiomes associate with asymptomatic sexually transmitted infection. PLoS One 2010; 5: e14116
CrossRef Google scholar
[134]
Dong Q, Nelson DE, Toh E, Diao L, Gao X, Fortenberry JD, . The microbial communities in male first catch urine are highly similar to those in paired urethral swab specimens. PLoS One 2011; 6: e19709
CrossRef Google scholar
[135]
Cohen RJ, Shannon BA, McNeal JE, Shannon T, Garrett KL. Propionibacterium acnes associated with inflammation in radical prostatectomy specimens: a possible link to cancer evolution? J Urol 2005; 173(6): 1969–1974
CrossRef Pubmed Google scholar
[136]
Sfanos KS, Sauvageot J, Fedor HL, Dick JD, De Marzo AM, Isaacs WB. A molecular analysis of prokaryotic and viral DNA sequences in prostate tissue from patients with prostate cancer indicates the presence of multiple and diverse microorganisms. Prostate 2008; 68(3): 306–320
CrossRef Pubmed Google scholar
[137]
Mak TN, Yu SH, De Marzo AM, Brüggemann H, Sfanos KS. Multi-locus sequence typing (MLST) analysis of Propionibacterium acnes isolates from radical prostatectomy specimens. Prostate 2013; 73: 770–777
CrossRef Google scholar
[138]
Sfanos KS, Isaacs WB. An evaluation of PCR primer sets used for detection of Propionibacterium acnes in prostate tissue samples. Prostate 2008; 68: 1492–1495
CrossRef Google scholar
[139]
Davidsson S, Mölling P, Rider JR, Unemo M, Karlsson MG, Carlsson J, . Frequency and typing of Propionibacterium acnes in prostate tissue obtained from men with and without prostate cancer. Infect Agent Cancer 2016; 11: 26
CrossRef Google scholar
[140]
Brede CM, Shoskes DA. The etiology and management of acute prostatitis. Nat Rev Urol 2011; 8: 207–212
CrossRef Google scholar
[141]
Sasaki M, Yamaura C, Ohara-Nemoto Y, Tajika S, Kodama Y, Ohya T, Harada R, Kimura S. Streptococcus anginosus infection in oral cancer and its infection route. Oral Dis 2005; 11(3): 151–156
CrossRef Pubmed Google scholar
[142]
Shiga K, Tateda M, Saijo S, Hori T, Sato I, Tateno H, Matsuura K, Takasaka T, Miyagi T. Presence of Streptococcus infection in extra-oropharyngeal head and neck squamous cell carcinoma and its implication in carcinogenesis. Oncol Rep 2001; 8(2): 245–248
CrossRef Pubmed Google scholar
[143]
Fricke WF, Maddox C, Song Y, Bromberg JS. Human microbiota characterization in the course of renal transplantation. Am J Transplant 2014; 14: 416–427
CrossRef Google scholar
[144]
Siddiqui H, Lagesen K, Nederbragt AJ, Jeansson SL, Jakobsen KS. Alterations of microbiota in urine from women with interstitial cystitis. BMC Microbiol 2012; 12: 205
CrossRef Google scholar
[145]
Stapleton AE. Urinary tract infection pathogenesis: host factors. Infect Dis Clin North Am 2014; 28: 149–159
CrossRef Google scholar
[146]
Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J, Köves B, Svanborg C. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 2011; 8: 449–468
CrossRef Google scholar
[147]
Gottschick C, Deng ZL, Vital M, Masur C, Abels C, Pieper DH, Wagner-Döbler I. The urinary microbiota of men and women and its changes in women during bacterial vaginosis and antibiotic treatment. Microbiome 2017; 5: 99
CrossRef Google scholar
[148]
Pearce MM, Hilt EE, Rosenfeld AB, Zilliox MJ, Thomas-White K, Fok C, . The female urinary microbiome: a comparison of women with and without urgency urinary incontinence. MBio 2014; 5: e01283–14
CrossRef Google scholar
[149]
Nienhouse V, Gao X, Dong Q, Nelson DE, Toh E, McKinley K, . Interplay between bladder microbiota and urinary antimicrobial peptides: mechanisms for human urinary tract infection risk and symptom severity. PLoS One 2014; 9: e114185
CrossRef Google scholar
[150]
Siddiqui H, Nederbragt AJ, Lagesen K, Jeansson SL, Jakobsen KS. Assessing diversity of the female urine microbiota by high throughput sequencing of 16S rDNA amplicons. BMC Microbiol 2011; 11: 244
CrossRef Google scholar
[151]
Micheli A, Ciampichini R, Oberaigner W, Ciccolallo L, de Vries E, Izarzugaza I, . The advantage of women in cancer survival: an analysis of EUROCARE-4 data. Eur J Cancer 2009; 45: 1017–1027
CrossRef Google scholar
[152]
Sutcliffe S, Zenilman JM, Ghanem KG, Jadack RA, Sokoll LJ, Elliott DJ, . Sexually transmitted infections and prostatic inflammation/cell damage as measured by serum prostate specific antigen concentration. J Urol 2006; 175: 1937–1942
CrossRef Google scholar
[153]
Huang WY, Hayes R, Pfeiffer R, Viscidi RP, Lee FK, Wang YF, Reding D, Whitby D, Papp JR, Rabkin CS. Sexually transmissible infections and prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2008; 17(9): 2374–2381
CrossRef Pubmed Google scholar
[154]
Shoskes DA, Altemus J, Polackwich AS, Tucky B, Wang H, Eng C. The urinary microbiome differs significantly between patients with chronic prostatitis/chronic pelvic pain syndrome and controls as well as between patients with different clinical phenotypes. Urology 2016; 92: 26–32
CrossRef Pubmed Google scholar
[155]
Yu H, Meng H, Zhou F, Ni X, Shen S, Das UN. Urinary microbiota in patients with prostate cancer and benign prostatic hyperplasia. Arch Med Sci 2015; 11(2): 385–394
CrossRef Pubmed Google scholar
[156]
Holmes E, Li JV, Athanasiou T, Ashrafian H, Nicholson JK. Understanding the role of gut microbiome-host metabolic signal disruption in health and disease. Trends Microbiol 2011; 19: 349–359
CrossRef Google scholar
[157]
Cox AJ, West NP, Cripps AW. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 2015; 3: 207–215
CrossRef Google scholar
[158]
Zitvogel L, Galluzzi L, Viaud S, Vétizou M, Daillère R, Merad M, Kroemer G. Cancer and the gut microbiota: an unexpected link. Sci Transl Med 2015; 7(271): 271ps1
CrossRef Pubmed Google scholar
[159]
Mandar R. Microbiota of male genital tract: impact on the health of man and his partner. Pharmacol Res 2013; 69: 32–41
CrossRef Google scholar
[160]
Keay S, Zhang CO, Baldwin BR, Alexander RB. Polymerase chain reaction amplification of bacterial 16s rRNA genes in prostate biopsies from men without chronic prostatitis. Urology 1999; 53(3): 487–491
CrossRef Pubmed Google scholar
[161]
Krieger JN, Riley DE, Vesella RL, Miner DC, Ross SO, Lange PH. Bacterial DNA sequences in prostate tissue from patients with prostate cancer and chronic prostatitis. J Urol 2000; 164(4): 1221–1228
CrossRef Pubmed Google scholar
[162]
Yow MA, Tabrizi SN, Severi G, Bolton DM, Pedersen J; Australian Prostate Cancer BioResource, Giles GG, Southey MC. Characterisation of microbial communities within aggressive prostate cancer tissues. Infect Agent Cancer 2017; 12(1): 4
CrossRef Pubmed Google scholar
[163]
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, . Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 2014; 12: 87
CrossRef Google scholar
[164]
Glassing A, Dowd SE, Galandiuk S, Davis B, Chiodini RJ. Inherent bacterial DNA contamination of extraction and sequencing reagents may affect interpretation of microbiota in low bacterial biomass samples. Gut Pathog 2016; 8(1): 24
CrossRef Pubmed Google scholar
[165]
Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A. The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol 2016; 13(2): 77–90
CrossRef Pubmed Google scholar
[166]
Caini S, Gandini S, Dudas M, Bremer V, Severi E, Gherasim A. Sexually transmitted infections and prostate cancer risk: a systematic review and meta-analysis. Cancer Epidemiol 2014; 38: 329–338
CrossRef Google scholar
[167]
Yoon BI, Kim S, Han DS, Ha US, Lee SJ, Kim HW, Han CH, Cho YH. Acute bacterial prostatitis: how to prevent and manage chronic infection? J Infect Chemother 2012; 18(4): 444–450
CrossRef Pubmed Google scholar
[168]
Fair WR, Parrish RF. Antibacterial substances in prostatic fluid. Prog Clin Biol Res 1981; 75A: 247–264
Pubmed
[169]
Hall SH, Hamil KG, French FS. Host defense proteins of the male reproductive tract. J Androl 2002; 23(5): 585–597
Pubmed
[170]
Alexeyev OA, Marklund I, Shannon B, Golovleva I, Olsson J, Andersson C, Eriksson I, Cohen R, Elgh F. Direct visualization of Propionibacterium acnes in prostate tissue by multicolor fluorescent in situ hybridization assay. J Clin Microbiol 2007; 45(11): 3721–3728
CrossRef Pubmed Google scholar
[171]
Drott JB, Alexeyev O, Bergström P, Elgh F, Olsson J. Propionibacterium acnes infection induces upregulation of inflammatory genes and cytokine secretion in prostate epithelial cells. BMC Microbiol 2010; 10(1): 126–132
CrossRef Pubmed Google scholar
[172]
Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD. Constitutive activation of IκB kinase α and NF-κB in prostate cancer cells is inhibited by ibuprofen. Oncogene 1999; 18(51): 7389–7394
CrossRef Pubmed Google scholar
[173]
Mora LB, Buettner R, Seigne J, Diaz J, Ahmad N, Garcia R, Bowman T, Falcone R, Fairclough R, Cantor A, Muro-Cacho C, Livingston S, Karras J, Pow-Sang J, Jove R. Constitutive activation of Stat3 in human prostate tumors and cell lines: direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells. Cancer Res 2002; 62(22): 6659–6666
Pubmed
[174]
Fassi Fehri L, Mak TN, Laube B, Brinkmann V, Ogilvie LA, Mollenkopf H, Lein M, Schmidt T, Meyer TF, Brüggemann H. Prevalence of Propionibacterium acnes in diseased prostates and its inflammatory and transforming activity on prostate epithelial cells. Int J Med Microbiol 2011; 301(1): 69–78
CrossRef Pubmed Google scholar
[175]
Ogino S, Nishihara R, VanderWeele TJ, Wang M, Nishi A, Lochhead P, . The role of molecular pathological epidemiology in the study of neoplastic and non-neoplastic diseases in the era of precision medicine. Epidemiology 2016; 27(4): 602–611
CrossRef Google scholar
[176]
Ogino S, Lochhead P, Chan AT, Nishihara R, Cho E, Wolpin BM, . Molecular pathological epidemiology of epigenetics: emerging integrative science to analyze environment, host, and disease. Mod Pathol 2013; 26(4): 465–484
CrossRef Google scholar
[177]
Kashyap PC, Chia N, Nelson H, Segal E, Elinav E. Microbiome at the frontier of personalized medicine. Mayo Clin Proc 2017; 92(12): 1855–1864
CrossRef Google scholar
[178]
Hamada T, Nowak JA, Milner DA Jr. Song M, Ogino S. Integration of microbiology, molecular pathology, and epidemiology: a new paradigm to explore the pathogenesis of microbiome-driven neoplasms. J Pathol 2019; 247(5): 615–628
CrossRef Google scholar
[179]
Ogino S, Nowak JA, Hamada T, Milner DA Jr, Nishihara R. Insights into pathogenic interactions among environment, host, and tumor at the crossroads of molecular pathology and epidemiology. Annu Rev Pathol 2019; 14: 83–103
CrossRef Google scholar
[180]
Ogino S, Chan AT, Fuchs CS, Giovannucci E. Molecular pathological epidemiology of colorectal neoplasia: an emerging transdisciplinary and interdisciplinary field. Gut 2011; 60: 397–411
CrossRef Google scholar
[181]
Hamada T, Keum N, Nishihara R, Ogino S. Molecular pathological epidemiology: new developing frontiers of big data science to study etiologies and pathogenesis. J Gastroenterol 2017; 52: 265–275
CrossRef Google scholar
[182]
Whitaker NJ, Glenn WK, Sahrudin A, Orde MM, Delprado W, Lawson JS. Human papillomavirus and Epstein Barr virus in prostate cancer: koilocytes indicate potential oncogenic influences of human papillomavirus in prostate cancer. Prostate 2013; 73(3): 236–241
CrossRef Google scholar
[183]
Nam YD, Kim HJ, Seo JG, Kang SW, Bae JW. Impact of pelvic radiotherapy on gut microbiota of gynecological cancer patients revealed by massive pyrosequencing. PLoS One 2013; 8(12): e82659
CrossRef Pubmed Google scholar
[184]
Banerjee S, Alwine JC, Wei Z, Tian T, Shih N, Sperling C, . Microbiome signatures in prostate cancer. Carcinogenesis 2019; 40(6): 749–764
CrossRef Google scholar
[185]
Zambrano A, Kalantari M, Simoneau A, Jensen JL, Villarreal LP. Detection of human polyomaviruses and papillomaviruses in prostatic tissue reveals the prostate as a habitat for multiple viral infections. Prostate 2002; 53(4): 263–276
CrossRef Google scholar
[186]
Blaheta RA, Weich E, Marian D, Bereiter-Hahn J, Jones J, Jonas D, Michaelis M, Doerr HW, Cinatl J Jr. Human cytomegalovirus infection alters PC3 prostate carcinoma cell adhesion to endothelial cells and extracellular matrix. Neoplasia 2006; 8(10): 807–816
[187]
Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin 2017; 67(4): 326–344
CrossRef Pubmed Google scholar
[188]
Amirian ES, Petrosino JF, Ajami NJ, Liu Y, Mims MP, Scheurer ME. Potential role of gastrointestinal microbiota composition in prostate cancer risk. Infect Agent Cancer 2013; 8(1): 42
CrossRef Google scholar
[189]
Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 2013; 69(1): 21–31
CrossRef Google scholar
[190]
Dutton RJ, Turnbaugh PJ. Taking a metagenomic view of human nutrition. Curr Opin Clin Nutr Metab Care 2012; 15(5): 448–454
CrossRef Google scholar
[191]
La Thangue NB, Kerr DJ. Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 2011; 8(10): 587–596
CrossRef Google scholar
[192]
Wong SH, Kwong TNY, Wu CY, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol 2019; 55: 28– 36
CrossRef Pubmed Google scholar
[193]
Shetty Y, Prabhu P, Prabhakar B. Emerging vistas in theranostic medicine. Int J Pharm 2019; 558: 29–42
CrossRef Google scholar
[194]
Behrouzi A, Nafari AH, Siadat SD. The significance of microbiome in personalized medicine. Clin Transl Med 2019; 8(1): 16
CrossRef Google scholar
[195]
Alanee S, El-Zawahry A, Dynda D, Dabaja A, McVary K, Karr M, . A prospective study to examine the association of the urinary and fecal microbiota with prostate cancer diagnosis after transrectal biopsy of the prostate using 16sRNA gene analysis. Prostate 2019; 79(1): 81–87
CrossRef Google scholar
[196]
Feng Y, Jaratlerdsiri W, Patrick SM, Lyons RJ, Haynes AM. Collins CC, . Metagenomic analysis reveals a rich bacterial content in high-risk prostate tumors from African men. Prostate 2019; 79(15): 1731–1738
CrossRef Google scholar
[197]
Feng Y, Ramnarine VR, Bell R, Volik S, Davicioni E. Hayes VM, . Metagenomic and metatranscriptomic analysis of human prostate microbiota from patients with prostate cancer. BMC Genomics 2019; 20(1): 146
CrossRef Google scholar
[198]
Ma X, Chi C, Fan L, Dong B, Shao X, Xie S, . The microbiome of prostate fluid is associated with prostate cancer. Front Microbiol 2019; 10: 1664
CrossRef Google scholar
[199]
Rea D, Coppola G, Palma G, Barbieri A, Luciano A, Del Prete P. Microbiota effects on cancer: from risks to therapies. Oncotarget 2018; 9(25): 17915–17927
CrossRef Google scholar
[200]
Wilson KM, Giovannucci EL, Mucci LA. Lifestyle and dietary factors in the prevention of lethal prostate cancer. Asian J Androl 2012; 14: 365–374
CrossRef Google scholar
[201]
Punnen S, Hardin J, Cheng I, Klein EA, Witte JS. Impact of meat consumption, preparation, and mutagens on aggressive prostate cancer. PLoS One 2011; 6: e27711
CrossRef Google scholar
[202]
Newmark HL, Heaney RP. Dairy products and prostate cancer risk. Nutr Cancer 2010; 62: 297–299
CrossRef Google scholar
[203]
Richman EL, Kenfield SA, Stampfer MJ, Giovannucci EL, Chan JM. Egg, red meat, and poultry intake and risk of lethal prostate cancer in the prostate-specific antigen-era: incidence and survival. Cancer Prev Res (Phila) 2011; 4(12): 2110–2121
CrossRef Google scholar
[204]
Astorg P. Dietary N-6 and N-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes Control 2004; 15: 367–386
CrossRef Google scholar
[205]
Joshi AD, Corral R, Catsburg C, Lewinger JP, Koo J, John EM, . Red meat and poultry, cooking practices, genetic susceptibility and risk of prostate cancer: results from a multiethnic case–control study. Carcinogenesis 2012; 33: 2108–2118
CrossRef Google scholar
[206]
Travis RC, Appleby PN, Siddiq A, Allen NE, Kaaks R, Canzian F, . Genetic variation in the lactase gene, dairy product intake and risk for prostate cancer in the European prospective investigation into cancer and nutrition. Int J Cancer 2013; 132(8): 1901–1910
CrossRef Google scholar
[207]
Amirian ES, Ittmann MM, Scheurer ME. Associations between arachidonic acid metabolism gene polymorphisms and prostate cancer risk. Prostate 2011; 71(13): 1382–1389
CrossRef Google scholar
[208]
Massari F, Mollica V, Di Nunno V, Gatto L, Santoni M, Scarpelli M, . The human microbiota and prostate cancer: friend or foe? Cancers (Basel) 2019; 11(4):459
CrossRef Google scholar
[209]
Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: the evolving inner self. Cell 2017; 171(7): 1481–1493
CrossRef Google scholar
[210]
Blaser M. Antibiotic overuse: stop the killing of beneficial bacteria. Nature 2011; 476(7361): 393–394
CrossRef Google scholar
[211]
Boursi B, Mamtani R, Haynes K, Yang YX. Recurrent antibiotic exposure may promote cancer formation—another step in understanding the role of the human microbiota? Eur J Cancer 2015; 51(17): 2655–2664
CrossRef Google scholar
[212]
Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 2010; 33(10): 2277–2284
CrossRef Google scholar
[213]
Iebba V, Nicoletti M, Schippa S. Gut microbiota and the immune system: an intimate partnership in health and disease. Int J Immunopathol Pharmacol 2012; 25(4): 823–833
CrossRef Google scholar
[214]
Ridlon JM, Ikegawa S, Alves JM, Zhou B, Kobayashi A, Iida T, . Clostridium scindens: a human gut microbe with a high potential to convert glucocorticoids into androgens. J Lipid Res 2013; 54(9): 2437–2449
CrossRef Google scholar
[215]
Bisanz JE, Enos MK, Mwanga JR, Changalucha J, Burton JP, Gloor GB, . Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. MBio 2014; 5(5): e01580–1514
CrossRef Google scholar
[216]
Maleki Vareki S, Chanyi RM, Abdur-Rashid K, Brennan L, Burton JP. Moving on from Metchnikoff: thinking about microbiome therapeutics in cancer. Ecancermedicalscience 2018; 12: 867
CrossRef Google scholar
[217]
Namasivayam N. Chemoprevention in experimental animals. Ann N Y Acad Sci 2011; 1215: 60–71
CrossRef Google scholar
[218]
Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD, Gail MH, . Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J Transl Med 2012; 10: 253
CrossRef Google scholar
[219]
Cavalieri E, Rogan E. The molecular etiology and prevention of estrogeninitiated cancers. Mol Aspects Med 2014; 36: 1–55
CrossRef Google scholar
[220]
Akaza H. Prostate cancer chemoprevention by soy isoflavones: role of intestinal bacteria as the “second human genome”. Cancer Sci 2012; 103(6): 969–975
CrossRef Google scholar
[221]
Tsuji H, Moriyama K, Nomoto K, Miyanaga N, Akaza H. Isolation and characterization of the equol-producing bacterium Slackia sp. Strain NATTS. Arch Microbiol 2010; 192(4): 279–287
CrossRef Google scholar
[222]
El-Demiry MI, Hargreave TB, Busuttil A, James K, Ritchie AW, Chisholm GD. Lymphocyte sub-populations in the male genital tract. Br J Urol 1985; 57(6): 769–774
CrossRef Pubmed Google scholar
[223]
McClinton S, Miller ID, Eremin O. An immunohistochemical characterisation of the inflammatory cell infiltrate in benign and malignant prostatic disease. Br J Cancer 1990; 61(3): 400–403
CrossRef Pubmed Google scholar
[224]
Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, Molina DA, Salcedo R, Back T, Cramer S, Dai RM, Kiu H, Cardone M, Naik S, Patri AK, Wang E, Marincola FM, Frank KM, Belkaid Y, Trinchieri G, Goldszmid RS. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 2013; 342(6161): 967–970
CrossRef Pubmed Google scholar
[225]
Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillère R, Hannani D, . The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 2013; 342: 971–976
CrossRef Google scholar
[226]
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, Chang EB, Gajewski TF. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350(6264): 1084–1089
CrossRef Pubmed Google scholar
[227]
Johnstone TC, Park GY, Lippard SJ. Understanding and improving platinum anticancer drugs—phenanthriplatin. Anticancer Res 2014; 34(1): 471–476
Pubmed
[228]
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, Fidelle M, Flament C, Poirier-Colame V, Opolon P, Klein C, Iribarren K, Mondragón L, Jacquelot N, Qu B, Ferrere G, Clémenson C, Mezquita L, Masip JR, Naltet C, Brosseau S, Kaderbhai C, Richard C, Rizvi H, Levenez F, Galleron N, Quinquis B, Pons N, Ryffel B, Minard-Colin V, Gonin P, Soria JC, Deutsch E, Loriot Y, Ghiringhelli F, Zalcman G, Goldwasser F, Escudier B, Hellmann MD, Eggermont A, Raoult D, Albiges L, Kroemer G, Zitvogel L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018; 359(6371): 91–97
CrossRef Pubmed Google scholar
[229]
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, Cogdill AP, Zhao L, Hudgens CW, Hutchinson DS, Manzo T, Petaccia de Macedo M, Cotechini T, Kumar T, Chen WS, Reddy SM, Szczepaniak Sloane R, Galloway-Pena J, Jiang H, Chen PL, Shpall EJ, Rezvani K, Alousi AM, Chemaly RF, Shelburne S, Vence LM, Okhuysen PC, Jensen VB, Swennes AG, McAllister F, Marcelo Riquelme Sanchez E, Zhang Y, Le Chatelier E, Zitvogel L, Pons N, Austin-Breneman JL, Haydu LE, Burton EM, Gardner JM, Sirmans E, Hu J, Lazar AJ, Tsujikawa T, Diab A, Tawbi H, Glitza IC, Hwu WJ, Patel SP, Woodman SE, Amaria RN, Davies MA, Gershenwald JE, Hwu P, Lee JE, Zhang J, Coussens LM, Cooper ZA, Futreal PA, Daniel CR, Ajami NJ, Petrosino JF, Tetzlaff MT, Sharma P, Allison JP, Jenq RR, Wargo JA. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018; 359(6371): 97–103
CrossRef Pubmed Google scholar
[230]
Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25(21): 9543–9553
CrossRef Pubmed Google scholar
[231]
Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, . Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10: 1185–1192
CrossRef Google scholar
[232]
Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, Cetnar JP, Ey FS, Bergan RC, Slottke R, Beer TM. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 2016; 7(33): 52810–52817
CrossRef Pubmed Google scholar
[233]
Kuczma MP, Ding ZC, Li T, Habtetsion T, Chen T, Hao Z, . The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget 2017; 8(67): 111931–111942
CrossRef Google scholar
[234]
Vande Voorde J, Sabuncuoğlu S, Noppen S, Hofer A, Ranjbarian F, Fieuws S, Balzarini J, Liekens S. Nucleoside-catabolizing enzymes in mycoplasma-infected tumor cell cultures compromise the cytostatic activity of the anticancer drug gemcitabine. J Biol Chem 2014; 289(19): 13054–13065
CrossRef Pubmed Google scholar
[235]
Ladoire S, Eymard JC, Zanetta S, Mignot G, Martin E, Kermarrec I, Mourey E, Michel F, Cormier L, Ghiringhelli F. Metronomic oral cyclophosphamide prednisolone chemotherapy is an effective treatment for metastatic hormone-refractory prostate cancer after docetaxel failure. Anticancer Res 2010; 30(10): 4317–4323
Pubmed
[236]
Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004; 4(6): 423–436
CrossRef Google scholar
[237]
Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, . Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T-cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 2007; 56(5): 641–648
CrossRef Google scholar
[238]
Nicolini A, Mancini P, Ferrari P, Anselmi L, Tartarelli G, Bonazzi V, . Oral low-dose cyclophosphamide in metastatic hormone refractory prostate cancer (MHRPC). Biomed Pharmacother 2004; 58(8): 447–450
CrossRef Google scholar
[239]
Hellerstedt B, Pienta KJ, Redman BG, Esper P, Dunn R, Fardig J, . Phase II trial of oral cyclophosphamide, prednisone, and diethylstilbestrol for androgen-independent prostate carcinoma. Cancer 2003; 98(8): 1603–1610
CrossRef Google scholar
[240]
Bracarda S, Tonato M, Rosi P, De Angelis V, Mearini E, Cesaroni S, Fornetti P, Porena M. Oral estramustine and cyclophosphamide in patients with metastatic hormone refractory prostate carcinoma: a phase II study. Cancer 2000; 88(6): 1438–1444
CrossRef Pubmed Google scholar
[241]
Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev 2016; 116(5): 3436–3486
CrossRef Google scholar
[242]
Viaud S, Daillère R, Boneca IG, Lepage P, Langella P, Chamaillard M, Pittet MJ, Ghiringhelli F, Trinchieri G, Goldszmid R, Zitvogel L. Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death Differ 2015; 22(2): 199–214
CrossRef Pubmed Google scholar
[243]
Westman EL, Canova MJ, Radhi IJ, Koteva K, Kireeva I, Waglechner N, . Bacterial inactivation of the anticancer drug doxorubicin. Chem Biol 2012; 19(10): 1255–1264
CrossRef Google scholar
[244]
Harada N, Hanaoka R, Horiuchi H, Kitakaze T, Mitani T, Inui H, Yamaji R. Castration influences intestinal microflora and induces abdominal obesity in high-fat diet-fed mice. Sci Rep 2016; 6(1): 23001
CrossRef Pubmed Google scholar
[245]
Fijlstra M, Ferdous M, Koning AM, Rings EH, Harmsen HJ, Tissing WJ. Substantial decreases in the number and diversity of microbiota during chemotherapy-induced gastrointestinal mucositis in a rat model. Support Care Cancer 2015; 23(6): 1513– 1522
CrossRef Google scholar
[246]
Sfanos KS, Markowski MC, Peiffer LB, Ernst SE, White JR, Pienta KJ, . Compositional differences in gastrointestinal microbiota in prostate cancer patients treated with androgen axis-targeted therapies. Prostate Cancer Prostatic Dis 2018; 21(4): 539–548
CrossRef Google scholar
[247]
Bode HB, Zeggel B, Silakowski B, Wenzel SC, Reichenbach H, Müller R. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol Microbiol 2003; 47: 471–481
CrossRef Google scholar
[248]
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ, Gajewski TF. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 2018; 359(6371): 104–108
CrossRef Pubmed Google scholar
[249]
Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. Randomized controlled trial of live Lactobacillus acidophilus plus Bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat Oncol 2010; 5(1): 31
CrossRef Pubmed Google scholar
[250]
Seidel DV, Azcárate-Peril MA, Chapkin RS, Turner ND. Shaping functional gut microbiota using dietary bioactives to reduce colon cancer risk. Semin Cancer Biol 2017; 46: 191–204
CrossRef Google scholar
[251]
Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 2014; 7(1): 17–44
CrossRef Google scholar
[252]
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, Poirier-Colame V, Roux A, Becharef S, Formenti S, Golden E, Cording S, Eberl G, Schlitzer A, Ginhoux F, Mani S, Yamazaki T, Jacquelot N, Enot DP, Bérard M, Nigou J, Opolon P, Eggermont A, Woerther PL, Chachaty E, Chaput N, Robert C, Mateus C, Kroemer G, Raoult D, Boneca IG, Carbonnel F, Chamaillard M, Zitvogel L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 1079–1084
CrossRef Pubmed Google scholar
[253]
Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361: 512–519
CrossRef Google scholar
[254]
Horinaka M. Yoshida T, Kishi A, Akatani K, Yasuda T, Kouhara J, . Lactobacillus strains induce TRAIL production and facilitate natural killer activity against cancer cells. FEBS Lett 2010; 584(3): 577–582
CrossRef Google scholar
[255]
Sanders ME, Klaenhammer TR. The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 2001; 84: 319–331
CrossRef Google scholar
[256]
Montes RG, Bayless TM, Saavedra JM, Perman JA. Effect of milks inoculated with Lactobacillus acidophilus or a yogurt starter culture in lactosemaldigesting children. J Dairy Sci 1995; 78: 1657–1664
CrossRef Google scholar
[257]
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi SJ, . Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods 2019; 8(3): 92
CrossRef Google scholar
[258]
Wang H, Geier MS, Howarth GS. Prebiotics: a potential treatment strategy for the chemotherapy-damaged gut? Crit Rev Food Sci Nutr 2016; 56(6): 946–956
CrossRef Google scholar
[259]
Sambi M, Bagheri L, Szewczuk MR. Current challenges in cancer immunotherapy: multimodal approaches to improve efficacy and patient response rates. J Oncol 2019; 2019: 4508794
CrossRef Google scholar
[260]
Arora M, Weuve J, Fall K, Pedersen NL, Mucci LA. An exploration of shared genetic risk factors between periodontal disease and cancers: a prospective co-twin study. Am J Epidemiol 2010; 171(2): 253–259
CrossRef Google scholar
[261]
Miyake M, Ohnishi K, Hori S, Nakano A, Nakano R, Yano H, . Mycoplasma genitalium infection and chronic inflammation in human prostate cancer: detection using prostatectomy and needle biopsy specimens. Cells 2019; 8(3): 212
CrossRef Google scholar
[262]
Al-Marhoon MS, Ouhtit A, Al-Abri AO, Venkiteswaran KP, Al-Busaidi Q, Mathew J, . Molecular evidence of Helicobacter pylori infection in prostate tumors. Curr Urol 2015; 8(3): 138–143
CrossRef Google scholar
[263]
Alanee S, El-Zawahry A, Dynda D, McVary K, Karr M, Braundmeier-Fleming A. Prospective examination of the changes in the urinary microbiome induced by transrectal biopsy of the prostate using 16S rRNA gene analy sis. Prostate Cancer Prostatic Dis 2019; 22(3): 446–452
CrossRef Google scholar

Acknowledgments

We give special thanks to all members of Uro-Oncology Research Center, Tehran University of Medical Sciences for helpful discussions and friendly support.

Compliance with ethics guidelines

Solmaz Ohadian Moghadam and Seyed Ali Momeni declare that they have no conflict of interest. This manuscript is a review article and does not require approval by the institutional ethics committee.

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(790 KB)

Accesses

Citations

Detail

Sections
Recommended

/