Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression

Jun Yang, Lianqing Wang, Yingzhi Huang, Keqiang Liu, Chaoxia Lu, Nuo Si, Rongrong Wang, Yaping Liu, Xue Zhang

PDF(7688 KB)
PDF(7688 KB)
Front. Med. ›› 2020, Vol. 14 ›› Issue (3) : 305-317. DOI: 10.1007/s11684-019-0722-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression

Author information +
History +

Abstract

Familial acne inversa (AI) is an autoinflammatory disorder that affects hair follicles and is caused by loss-of-function mutations in g-secretase component genes. We and other researchers showed that nicastrin (NCSTN) is the most frequently mutated gene in familial AI. In this study, we generated a keratin 5-Cre-driven epidermis-specific Ncstn conditional knockout mutant in mice. We determined that this mutant recapitulated the major phenotypes of AI, including hyperkeratosis of hair follicles and inflammation. In Ncstnflox/flox;K5-Cre mice, the IL-36a expression level markedly increased starting from postnatal day 0 (P0), and this increase occurred much earlier than those of TNF-α, IL-23A, IL-1b, and TLR4. RNA-Seq analysis indicated that Sprr2d, a member of the small proline-rich protein 2 family, in the skin tissues of the Ncstnflox/flox;K5-Cre mice was also upregulated on P0. Quantitative reverse-transcription polymerase chain reaction showed that other Sprr2 genes had a similar expression pattern. Our findings suggested that IL-36a might be a key inflammatory cytokine in the pathophysiology of AI and implicate malfunction of the skin barrier in the pathogenesis of AI.

Keywords

acne inversa mouse model / interleukin 1 family, member 6 / small proline rich protein 2D / key inflammatory cytokine

Cite this article

Download citation ▾
Jun Yang, Lianqing Wang, Yingzhi Huang, Keqiang Liu, Chaoxia Lu, Nuo Si, Rongrong Wang, Yaping Liu, Xue Zhang. Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression. Front. Med., 2020, 14(3): 305‒317 https://doi.org/10.1007/s11684-019-0722-8

References

[1]
Revuz J. Hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2009; 23(9): 985–998
CrossRef Pubmed Google scholar
[2]
Garg A, Kirby JS, Lavian J, Lin G, Strunk A. Sex- and age-adjusted population analysis of prevalence estimates for hidradenitis suppurativa in the United States. JAMA Dermatol 2017; 153(8): 760–764
CrossRef Pubmed Google scholar
[3]
Revuz JE, Canoui-Poitrine F, Wolkenstein P, Viallette C, Gabison G, Pouget F, Poli F, Faye O, Roujeau JC, Bonnelye G, Grob JJ, Bastuji-Garin S. Prevalence and factors associated with hidradenitis suppurativa: results from two case-control studies. J Am Acad Dermatol 2008; 59(4): 596–601
CrossRef Pubmed Google scholar
[4]
Coughlan C, Ledger W, Wang Q, Liu F, Demirol A, Gurgan T, Cutting R, Ong K, Sallam H, Li TC. Recurrent implantation failure: definition and management. Reprod Biomed Online 2014; 28(1): 14–38
CrossRef Pubmed Google scholar
[5]
Jemec GB, Heidenheim M, Nielsen NH. The prevalence of hidradenitis suppurativa and its potential precursor lesions. J Am Acad Dermatol 1996; 35(2 Pt 1): 191–194
CrossRef Pubmed Google scholar
[6]
Ingram JR. The genetics of hidradenitis suppurativa. Dermatol Clin 2016; 34(1): 23–28
CrossRef Pubmed Google scholar
[7]
Schmitt JV, Bombonatto G, Martin M, Miot HA. Risk factors for hidradenitis suppurativa: a pilot study. An Bras Dermatol 2012; 87(6): 936–938
CrossRef Pubmed Google scholar
[8]
Brook I, Frazier EH. Aerobic and anaerobic microbiology of axillary hidradenitis suppurativa. J Med Microbiol 1999; 48(1): 103–105
CrossRef Pubmed Google scholar
[9]
Jansen I, Altmeyer P, Piewig G. Acne inversa (alias hidradenitis suppurativa). J Eur Acad Dermatol Venereol 2001; 15(6): 532–540
CrossRef Pubmed Google scholar
[10]
Gao M, Wang PG, Cui Y, Yang S, Zhang YH, Lin D, Zhang KY, Liang YH, Sun LD, Yan KL, Xiao FL, Huang W, Zhang XJ. Inversa acne (hidradenitis suppurativa): a case report and identification of the locus at chromosome 1p21.1-1q25.3. J Invest Dermatol 2006; 126(6): 1302–1306
CrossRef Pubmed Google scholar
[11]
Von Der Werth JM, Williams HC, Raeburn JA. The clinical genetics of hidradenitis suppurativa revisited. Br J Dermatol 2015; 142: 947–953
CrossRef Google scholar
[12]
Nomura Y, Nomura T, Suzuki S, Takeda M, Mizuno O, Ohguchi Y, Abe R, Murata Y, Shimizu H. A novel NCSTN mutation alone may be insufficient for the development of familial hidradenitis suppurativa. J Dermatol Sci 2014; 74(2): 180–182
CrossRef Pubmed Google scholar
[13]
Wang B, Yang W, Wen W, Sun J, Su B, Liu B, Ma D, Lv D, Wen Y, Qu T, Chen M, Sun M, Shen Y, Zhang X. γ-Secretase gene mutations in familial acne inversa. Science 2010; 330(6007): 1065
CrossRef Pubmed Google scholar
[14]
Kelleher RJ 3rd, Shen J. Genetics. γ-Secretase and human disease. Science 2010; 330(6007): 1055–1056
CrossRef Pubmed Google scholar
[15]
Prens E, Deckers I. Pathophysiology of hidradenitis suppurativa: an update. J Am Acad Dermatol 2015; 73(5 Suppl 1): S8–S11
CrossRef Pubmed Google scholar
[16]
Alikhan A, Lynch PJ, Eisen DB. Hidradenitis suppurativa: a comprehensive review. J Am Acad Dermatol 2009; 60(4): 539–561, quiz 562–563
CrossRef Pubmed Google scholar
[17]
Andersen RK, Jemec GB. Treatments for hidradenitis suppurativa. Clin Dermatol 2017; 35(2): 218–224
CrossRef Pubmed Google scholar
[18]
Giamarellos-Bourboulis EJ, Antonopoulou A, Petropoulou C, Mouktaroudi M, Spyridaki E, Baziaka F, Pelekanou A, Giamarellou H, Stavrianeas NG. Altered innate and adaptive immune responses in patients with hidradenitis suppurativa. Br J Dermatol 2007; 156(1): 51–56
CrossRef Pubmed Google scholar
[19]
Chen Q, Bao H, Wu H, Zhao S, Huang S, Zhao F. Diagnosis of cobalamin C deficiency with renal abnormality from onset in a Chinese child by next generation sequencing: a case report. Exp Ther Med 2017; 14(4): 3637–3643
CrossRef Pubmed Google scholar
[20]
Sullivan TP, Welsh E, Kerdel FA, Burdick AE, Kirsner RS. Infliximab for hidradenitis suppurativa. Br J Dermatol 2003; 149(5): 1046–1049
CrossRef Pubmed Google scholar
[21]
Kurayev A, Ashkar H, Saraiya A, Gottlieb AB. Hidradenitis suppurativa: review of the pathogenesis and treatment. J Drugs Dermatol 2016; 15(8): 1017–1022
Pubmed
[22]
Kelly G, Hughes R, McGarry T, van den Born M, Adamzik K, Fitzgerald R, Lawlor C, Tobin AM, Sweeney CM, Kirby B. Dysregulated cytokine expression in lesional and nonlesional skin in hidradenitis suppurativa. Br J Dermatol 2015; 173(6): 1431–1439
CrossRef Pubmed Google scholar
[23]
Tong L, Corrales RM, Chen Z, Villarreal AL, De Paiva CS, Beuerman R, Li DQ, Pflugfelder SC. Expression and regulation of cornified envelope proteins in human corneal epithelium. Invest Ophthalmol Vis Sci 2006; 47(5): 1938–1946
CrossRef Pubmed Google scholar
[24]
Affymetrix. GeneChip® Expression Analysis. Data Analysis Fundamentals. 2004
[25]
Anders S, Huber W. Differential expression of RNA-Seq data at the gene level — the DESeq package. DESeq version 1.38.0. European Molecular Biology Laboratory (EMBL). 2013
[26]
Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010; 26(1): 136–138
CrossRef Pubmed Google scholar
[27]
Nomura Y, Nomura T, Suzuki S, Takeda M, Mizuno O, Ohguchi Y, Abe R, Murata Y, Shimizu H. A novel NCSTN mutation alone may be insufficient for the development of familial hidradenitis suppurativa. J Dermatol Sci 2014; 74(2): 180–182
CrossRef Pubmed Google scholar
[28]
Zhang X, Sisodia SS. Acne inversa caused by missense mutations in NCSTN is not fully compatible with impairments in Notch signaling. J Invest Dermatol 2015; 135(2): 618–620
CrossRef Pubmed Google scholar
[29]
Xiao X, He Y, Li C, Zhang X, Xu H, Wang B. Nicastrin mutations in familial acne inversa impact keratinocyte proliferation and differentiation through the Notch and phosphoinositide 3-kinase/AKT signalling pathways. Br J Dermatol 2016; 174(3): 522–532
CrossRef Pubmed Google scholar
[30]
Yang L, Mao C, Teng Y, Li W, Zhang J, Cheng X, Li X, Han X, Xia Z, Deng H, Yang X. Targeted disruption of Smad4 in mouse epidermis results in failure of hair follicle cycling and formation of skin tumors. Cancer Res 2005; 65(19): 8671–8678
CrossRef Pubmed Google scholar
[31]
Ramirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M, Tusell L, Genesca A, Whitaker DA, Melton DW, Jorcano JL. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 2004; 39(1): 52–57
CrossRef Pubmed Google scholar
[32]
Wang B, Yang W, Wen W, Sun J, Su B, Liu B, Ma D, Lv D, Wen Y, Qu T, Chen M, Sun M, Shen Y, Zhang X. γ-Secretase gene mutations in familial acne inversa. Science 2010; 330(6007): 1065
CrossRef Pubmed Google scholar
[33]
Pink AE, Simpson MA, Desai N, Trembath RC, Barker JNW. γ-Secretase mutations in hidradenitis suppurativa: new insights into disease pathogenesis. J Invest Dermatol 2013; 133(3): 601–607
CrossRef Pubmed Google scholar
[34]
Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, Morel F, Lecron JC, Rolli-Derkinderen M, Bourreille A, Vigne S, Gabay C, Palmer G, Le Goff B, Blanchard F. Distinct expression of interleukin (IL)-36a, b and g, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol 2016; 184(2): 159–173
CrossRef Pubmed Google scholar
[35]
Pink AE, Simpson MA, Brice GW, Smith CH, Desai N, Mortimer PS, Barker JN, Trembath RC. PSENEN and NCSTN mutations in familial hidradenitis suppurativa (acne inversa). J Invest Dermatol 2011; 131(7): 1568–1570
CrossRef Pubmed Google scholar
[36]
Xu H, Xiao X, Hui Y, Zhang X, He Y, Li C, Wang B. Phenotype of 53 Chinese individuals with nicastrin gene mutations in association with familial hidradenitis suppurativa (acne inversa). Br J Dermatol 2016; 174(4): 927–929
CrossRef Pubmed Google scholar
[37]
van der Zee HH, Laman JD, Boer J, Prens EP. Hidradenitis suppurativa: viewpoint on clinical phenotyping, pathogenesis and novel treatments. Exp Dermatol 2012; 21(10): 735–739
CrossRef Pubmed Google scholar
[38]
van der Meer JW, Simon A. The challenge of autoinflammatory syndromes: with an emphasis on hyper-IgD syndrome. Rheumatology (Oxford) 2016; 55(suppl 2): ii23–ii29
CrossRef Pubmed Google scholar
[39]
Hessam S, Sand M, Gambichler T, Skrygan M, Rüddel I, Bechara FG. Interleukin-36 in hidradenitis suppurativa: evidence for a distinctive proinflammatory role and a key factor in the development of an inflammatory loop. Br J Dermatol 2018; 178(3): 761–767
CrossRef Pubmed Google scholar
[40]
Witte-Händel E, Wolk K, Tsaousi A, Irmer ML, Mößner R, Shomroni O, Lingner T, Witte K, Kunkel D, Salinas G, Jodl S, Schmidt N, Sterry W, Volk HD, Giamarellos-Bourboulis EJ, Pokrywka A, Döcke WD, Schneider-Burrus S, Sabat R. The IL-1 pathway is hyperactive in hidradenitis suppurativa and contributes to skin infiltration and destruction. J Invest Dermatol 2019; 139(6): 1294–1305
CrossRef Pubmed Google scholar
[41]
Thomi R, Kakeda M, Yawalkar NSchlapbach C, Hunger RE. Increased expression of the interleukin-36 cytokines in lesions of hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2017; 31(12): 2091–2096
CrossRef Google scholar
[42]
Di Caprio R, Balato A, Caiazzo G, Lembo S, Raimondo A, Fabbrocini G, Monfrecola G. IL-36 cytokines are increased in acne and hidradenitis suppurativa. Arch Dermatol Res 2017; 309(8): 673–678
CrossRef Pubmed Google scholar
[43]
Smith DE, Renshaw BR, Ketchem RR, Kubin M, Garka KE, Sims JE. Four new members expand the interleukin-1 superfamily. J Biol Chem 2000; 275(2): 1169–1175
CrossRef Pubmed Google scholar
[44]
Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O’Toole M, Young DA, Fouser LA, Nickerson-Nutter C, Collins M, Dunussi-Joannopoulos K, Medley QG. Inter-regulation of Th17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol 2011; 131(12): 2428–2437
CrossRef Pubmed Google scholar
[45]
Blumberg H, Dinh H, Trueblood ES, Pretorius J, Kugler D, Weng N, Kanaly ST, Towne JE, Willis CR, Kuechle MK, Sims JE, Peschon JJ. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J Exp Med 2007; 204(11): 2603–2614
CrossRef Pubmed Google scholar
[46]
Towne JE, Garka KE, Renshaw BR, Virca GD, Sims JE. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-κB and MAPKs. J Biol Chem 2004; 279(14): 13677–13688
CrossRef Pubmed Google scholar
[47]
Vigne S, Palmer G, Martin P, Lamacchia C, Strebel D, Rodriguez E, Olleros ML, Vesin D, Garcia I, Ronchi F, Sallusto F, Sims JE, Gabay C. IL-36 signaling amplifies Th1 responses by enhancing proliferation and Th1 polarization of naive CD4+ T cells. Blood 2012; 120(17): 3478–3487
CrossRef Pubmed Google scholar
[48]
Melnik BC, Plewig G. Impaired Notch-MKP-1 signalling in hidradenitis suppurativa: an approach to pathogenesis by evidence from translational biology. Exp Dermatol 2013; 22(3): 172–177
CrossRef Pubmed Google scholar
[49]
Wolk K, Wenzel J, Tsaousi A, Witte-Händel E, Babel N, Zelenak C, Volk HD, Sterry W, Schneider-Burrus S, Sabat R. Lipocalin-2 is expressed by activated granulocytes and keratinocytes in affected skin and reflects disease activity in acne inversa/hidradenitis suppurativa. Br J Dermatol 2017; 177(5): 1385–1393
CrossRef Pubmed Google scholar
[50]
Steinert PM, Candi E, Kartasova T, Marekov L. Small proline-rich proteins are cross-bridging proteins in the cornified cell envelopes of stratified squamous epithelia. J Struct Biol 1998; 122(1-2): 76–85
CrossRef Pubmed Google scholar
[51]
Wakabayashi N, Shin S, Slocum SL, Agoston ES, Wakabayashi J, Kwak MK, Misra V, Biswal S, Yamamoto M, Kensler TW. Regulation of notch1 signaling by nrf2: implications for tissue regeneration. Sci Signal 2010; 3(130): ra52
CrossRef Pubmed Google scholar
[52]
Schfer M, Farwanah H, Willrodt AH, Huebner AJ, Sandhoff K, Roop D, Hohl D, Bloch W, Werner S. Nrf2 links epidermal barrier function with antioxidant defense. EMBO Mol Med 2012(4): 364–379
CrossRef Google scholar
[53]
Wakabayashi N, Chartoumpekis DV, Kensler TW. Crosstalk between Nrf2 and Notch signaling. Free Radic Biol Med 2015; 88(Pt B): 158–167
CrossRef Pubmed Google scholar
[54]
Wakabayashi N, Skoko JJ, Chartoumpekis DV, Kimura S, Slocum SL, Noda K, Palliyaguru DL, Fujimuro M, Boley PA, Tanaka Y, Shigemura N, Biswal S, Yamamoto M, Kensler TW. Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by Notch signaling. Mol Cell Biol 2014; 34(4): 653–663
CrossRef Pubmed Google scholar

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0905100), the CAMS Innovation Fund for Medical Sciences (No. 2016-I2M-1-002), the National Natural Science Foundation of China (NSFC; Nos. 81788101 and 81230015), and the Beijing Municipal Science and Technology Commission (No. Z151100003915078) for Xue Zhang and by the National NSFC (No. 31271345) for Yaping Liu.

Compliance with ethics guidelines

Jun Yang, Lianqing Wang, Yingzhi Huang, Keqiang Liu, Chaoxia Lu, Nuo Si, Rongrong Wang, Yaping Liu, and Xue Zhang state no conflict of interest. All animal studies and procedures were approved by the Institutional Animal Care and Use Committee of Peking Union Medical College (Beijing, China).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-019-0722-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(7688 KB)

Accesses

Citations

Detail

Sections
Recommended

/