PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder
Xiao He, Chentao Jin, Mindi Ma, Rui Zhou, Shuang Wu, Haoying Huang, Yuting Li, Qiaozhen Chen, Mingrong Zhang, Hong Zhang, Mei Tian
PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder
Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology. The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study, optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation PET imaging demonstrated that the glucose metabolism significantly increased (P<0.001) in dPAG, the cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased (P<0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional changes involved in the panic attacks after optogenetic stimulation to the dPAG.
panic disorder (PD) / positron emission tomography (PET) / optogenetics / dorsal periaqueductal gray (dPAG)
[1] |
Meier SM, Deckert J. Genetics of anxiety disorders. Curr Psychiatry Rep 2019; 21(3): 16
CrossRef
Pubmed
Google scholar
|
[2] |
Tuescher O, Protopopescu X, Pan H, Cloitre M, Butler T, Goldstein M, Root JC, Engelien A, Furman D, Silverman M, Yang Y, Gorman J, LeDoux J, Silbersweig D, Stern E. Differential activity of subgenual cingulate and brainstem in panic disorder and PTSD. J Anxiety Disord 2011; 25(2): 251–257
CrossRef
Pubmed
Google scholar
|
[3] |
Goossens L, Leibold N, Peeters R, Esquivel G, Knuts I, Backes W, Marcelis M, Hofman P, Griez E, Schruers K. Brainstem response to hypercapnia: a symptom provocation study into the pathophysiology of panic disorder. J Psychopharmacol 2014; 28(5): 449–456
CrossRef
Pubmed
Google scholar
|
[4] |
Sakai Y, Kumano H, Nishikawa M, Sakano Y, Kaiya H, Imabayashi E, Ohnishi T, Matsuda H, Yasuda A, Sato A, Diksic M, Kuboki T. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport 2005; 16(9): 927–931
CrossRef
Pubmed
Google scholar
|
[5] |
Boshuisen ML, Ter Horst GJ, Paans AM, Reinders AA, den Boer JA. rCBF differences between panic disorder patients and control subjects during anticipatory anxiety and rest. Biol Psychiatry 2002; 52(2): 126–135
CrossRef
Pubmed
Google scholar
|
[6] |
Iacono RP, Nashold BS Jr. Mental and behavioral effects of brain stem and hypothalamic stimulation in man. Hum Neurobiol 1982; 1(4): 273–279
Pubmed
|
[7] |
Bertoglio LJ, de Bortoli VC, Zangrossi H Jr. Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Res 2007; 1156: 133–138
CrossRef
Pubmed
Google scholar
|
[8] |
Schenberg LC, Vasquez EC, da Costa MB. Cardiac baroreflex dynamics during the defence reaction in freely moving rats. Brain Res 1993; 621(1): 50–58
CrossRef
Pubmed
Google scholar
|
[9] |
Schenberg LC, Bittencourt AS, Sudré EC, Vargas LC. Modeling panic attacks. Neurosci Biobehav Rev 2001; 25(7-8): 647–659
CrossRef
Pubmed
Google scholar
|
[10] |
Moreira FA, Gobira PH, Viana TG, Vicente MA, Zangrossi H, Graeff FG. Modeling panic disorder in rodents. Cell Tissue Res 2013; 354(1): 119–125
CrossRef
Pubmed
Google scholar
|
[11] |
Vargas LC, Schenberg LC. Long-term effects of clomipramine and fluoxetine on dorsal periaqueductal grey-evoked innate defensive behaviours of the rat. Psychopharmacology (Berl) 2001; 155(3): 260–268
CrossRef
Pubmed
Google scholar
|
[12] |
Hogg S, Michan L, Jessa M. Prediction of anti-panic properties of escitalopram in the dorsal periaqueductal grey model of panic anxiety. Neuropharmacology 2006; 51(1): 141–145
CrossRef
Pubmed
Google scholar
|
[13] |
Fogaça MV, Lisboa SF, Aguiar DC, Moreira FA, Gomes FV, Casarotto PC, Guimarães FS. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. Braz J Med Biol Res 2012; 45(4): 357–365
CrossRef
Pubmed
Google scholar
|
[14] |
Sergio TO, Spiacci A Jr, Zangrossi H Jr. Effects of dorsal periaqueductal gray CRF1- and CRF2-receptor stimulation in animal models of panic. Psychoneuroendocrinology 2014; 49: 321–330
CrossRef
Pubmed
Google scholar
|
[15] |
Ullah F, Dos Anjos-Garcia T, Mendes-Gomes J, Elias-Filho DH, Falconi-Sobrinho LL, Freitas RL, Khan AU, Oliveira R, Coimbra NC. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017; 319: 135–147
CrossRef
Pubmed
Google scholar
|
[16] |
Graeff FG. Serotonin, the periaqueductal gray and panic. Neurosci Biobehav Rev 2004; 28(3): 239–259
CrossRef
Pubmed
Google scholar
|
[17] |
Chen S, Zhou H, Guo S, Zhang J, Qu Y, Feng Z, Xu K, Zheng X. Optogenetics based rat-robot control: optical stimulation encodes “Stop” and “Escape” commands. Ann Biomed Eng 2015; 43(8): 1851–1864
CrossRef
Pubmed
Google scholar
|
[18] |
Sandner G, Di Scala G, Rocha B, Angst MJ. C-fos immunoreactivity in the brain following unilateral electrical stimulation of the dorsal periaqueductal gray in freely moving rats. Brain Res 1992; 573(2): 276–283
CrossRef
Pubmed
Google scholar
|
[19] |
Lim LW, Temel Y, Visser-Vandewalle V, Blokland A, Steinbusch H. Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter. J Chem Neuroanat 2009; 38(2): 83–96
CrossRef
Pubmed
Google scholar
|
[20] |
Thanos PK, Robison L, Nestler EJ, Kim R, Michaelides M, Lobo MK, Volkow ND. Mapping brain metabolic connectivity in awake rats with mPET and optogenetic stimulation. J Neurosci 2013; 33(15): 6343–6349
CrossRef
Pubmed
Google scholar
|
[21] |
Zhu Y, Xu K, Xu C, Zhang J, Ji J, Zheng X, Zhang H, Tian M. PET mapping for brain-computer interface stimulation of the ventroposterior medial nucleus of the thalamus in rats with implanted electrodes. J Nucl Med 2016; 57(7): 1141–1145
CrossRef
Pubmed
Google scholar
|
[22] |
Zhu Y, Du R, Zhu Y, Shen Y, Zhang K, Chen Y, Song F, Wu S, Zhang H, Tian M. PET mapping of neurofunctional changes in a posttraumatic stress disorder model. J Nucl Med 2016; 57(9): 1474–1477
CrossRef
Pubmed
Google scholar
|
[23] |
Mergenthaler P, Lindauer U, Dienel GA, Meisel A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013; 36(10): 587–597
CrossRef
Pubmed
Google scholar
|
[24] |
Volkow ND, Wang GJ, Telang F, Fowler JS, Goldstein RZ, Alia-Klein N, Logan J, Wong C, Thanos PK, Ma Y, Pradhan K. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 2009; 17(1): 60–65
CrossRef
Pubmed
Google scholar
|
[25] |
Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, Schenberg LC. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 2005; 133(4): 873–892
CrossRef
Pubmed
Google scholar
|
[26] |
McIntyre CC, Mori S, Sherman DL, Thakor NV, Vitek JL. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 2004; 115(3): 589–595
CrossRef
Pubmed
Google scholar
|
[27] |
LaLumiere RT. A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul 2011; 4(1): 1–6
CrossRef
Pubmed
Google scholar
|
[28] |
Menant O, Andersson F, Zelena D, Chaillou E. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. J Chem Neuroanat 2016; 77: 110–120
CrossRef
Pubmed
Google scholar
|
[29] |
Vianna DM, Brandão ML. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 2003; 36(5): 557–566
CrossRef
Pubmed
Google scholar
|
[30] |
Sébille SB, Belaid H, Philippe AC, André A, Lau B, François C, Karachi C, Bardinet E. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2017; 147: 66–78
CrossRef
Pubmed
Google scholar
|
[31] |
Chakravarthy VS, Joseph D, Bapi RS. What do the basal ganglia do? A modeling perspective. Biol Cybern 2010; 103(3): 237–253
CrossRef
Pubmed
Google scholar
|
[32] |
Sillery E, Bittar RG, Robson MD, Behrens TE, Stein J, Aziz TZ, Johansen-Berg H. Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg 2005; 103(6): 1030–1034
CrossRef
Pubmed
Google scholar
|
[33] |
Moers-Hornikx VM, Vles JS, Lim LW, Ayyildiz M, Kaplan S, Gavilanes AW, Hoogland G, Steinbusch HW, Temel Y. Periaqueductal grey stimulation induced panic-like behaviour is accompanied by deactivation of the deep cerebellar nuclei. Cerebellum 2011; 10(1): 61–69
CrossRef
Pubmed
Google scholar
|
[34] |
Stark-Inbar A, Dayan E. Preferential encoding of movement amplitude and speed in the primary motor cortex and cerebellum. Hum Brain Mapp 2017; 38(12): 5970–5986
CrossRef
Pubmed
Google scholar
|
[35] |
Garakani A, Buchsbaum MS, Newmark RE, Goodman C, Aaronson CJ, Martinez JM, Torosjan Y, Chu KW, Gorman JM. The effect of doxapram on brain imaging in patients with panic disorder. Eur Neuropsychopharmacol 2007; 17(10): 672–686
CrossRef
Pubmed
Google scholar
|
[36] |
Sobanski T, Wagner G. Functional neuroanatomy in panic disorder: status quo of the research. World J Psychiatry 2017; 7(1): 12–33
CrossRef
Pubmed
Google scholar
|
[37] |
Bisaga A, Katz JL, Antonini A, Wright CE, Margouleff C, Gorman JM, Eidelberg D. Cerebral glucose metabolism in women with panic disorder. Am J Psychiatry 1998; 155(9): 1178–1183
CrossRef
Pubmed
Google scholar
|
[38] |
Bernal-Casas D, Lee HJ, Weitz AJ, Lee JH. Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron 2017; 93(3): 522–532.e5
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |