A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications

Xiaolin Fan, Yanzhen Xiong, Yuan Wang

PDF(364 KB)
PDF(364 KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (5) : 531-539. DOI: 10.1007/s11684-019-0700-1
REVIEW
REVIEW

A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications

Author information +
History +

Abstract

Glioblastoma (GBM) is the most common and lethal primary neoplasm in the central nervous system. Despite intensive treatment, the prognosis for patients with GBM remains poor, with a median survival of 14--16 months. 90% of GBMs are primary GBMs that are full-blown at diagnosis without evidences of a pre-existing less-malignant precursor lesion. Therefore, identification of the cell(s) of origin for GBM---the normal cell or cell type that acquires the initial GBM-promoting genetic hit(s)---is the key to the understanding of the disease etiology and the development of novel therapies. Neural stem cells and oligodendrocyte precursor cells are the two major candidates for the cell(s) of origin for GBM. Latest data from human samples have reignited the longstanding debate over which cells are the clinically more relevant origin for GBMs. By critically analyzing evidences for or against the candidacy of each cell type, we highlight the most recent progress and debate in the field, explore the clinical implications, and propose future directions toward early diagnosis and preventive treatment of GBMs.

Keywords

glioblastoma / cell(s) of origin / neural stem cells / oligodendrocyte precursor cells / subventricular zone / early diagnosis

Cite this article

Download citation ▾
Xiaolin Fan, Yanzhen Xiong, Yuan Wang. A reignited debate over the cell(s) of origin for glioblastoma and its clinical implications. Front. Med., 2019, 13(5): 531‒539 https://doi.org/10.1007/s11684-019-0700-1

References

[1]
Sturm D, Bender S, Jones DT, Lichter P, Grill J, Becher O, Hawkins C, Majewski J, Jones C, Costello JF, Iavarone A, Aldape K, Brennan CW, Jabado N, Pfister SM. Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge. Nat Rev Cancer 2014; 14(2): 92–107
CrossRef Pubmed Google scholar
[2]
Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH, Beroukhim R, Bernard B, Wu CJ, Genovese G, Shmulevich I, Barnholtz-Sloan J, Zou L, Vegesna R, Shukla SA, Ciriello G, Yung WK, Zhang W, Sougnez C, Mikkelsen T, Aldape K, Bigner DD, Van Meir EG, Prados M, Sloan A, Black KL, Eschbacher J, Finocchiaro G, Friedman W, Andrews DW, Guha A, Iacocca M, O’Neill BP, Foltz G, Myers J, Weisenberger DJ, Penny R, Kucherlapati R, Perou CM, Hayes DN, Gibbs R, Marra M, Mills GB, Lander E, Spellman P, Wilson R, Sander C, Weinstein J, Meyerson M, Gabriel S, Laird PW, Haussler D, Getz G, Chin L; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell 2013; 155(2): 462–477
CrossRef Pubmed Google scholar
[3]
Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131(6): 803–820
CrossRef Pubmed Google scholar
[4]
Visvader JE. Cells of origin in cancer. Nature 2011; 469(7330): 314–322
CrossRef Pubmed Google scholar
[5]
Zong H, Parada LF, Baker SJ. Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harb Perspect Biol 2015; 7(5): a020610
CrossRef Pubmed Google scholar
[6]
Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, Um JY, Kim WK, Lee JK, Park J, Kim EH, Lee JH, Lee JH, Chung WS, Ju YS, Park SH, Chang JH, Kang SG, Lee JH. Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 2018; 560(7717): 243–247
CrossRef Pubmed Google scholar
[7]
Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018; 555(7696): 377–381
CrossRef Pubmed Google scholar
[8]
Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ, Hen R, Mann JJ. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 2018; 22(4):589–599.e5
CrossRef Pubmed Google scholar
[9]
Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 2015; 17(4): 385–395
CrossRef Pubmed Google scholar
[10]
Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 2009; 32(1): 149–184
CrossRef Pubmed Google scholar
[11]
Bergles DE, Richardson WD. Oligodendrocyte development and plasticity. Cold Spring Harb Perspect Biol 2015; 8(2): a020453
CrossRef Pubmed Google scholar
[12]
Nishiyama A, Komitova M, Suzuki R, Zhu X. Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nat Rev Neurosci 2009; 10(1): 9–22
CrossRef Pubmed Google scholar
[13]
Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Broniscer A, Ellison DW, Baker SJ. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell 2011; 19(3): 305–316
CrossRef Pubmed Google scholar
[14]
Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH, Verma IM. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science 2012; 338(6110): 1080–1084
CrossRef Pubmed Google scholar
[15]
Stiles CD, Rowitch DH. Glioma stem cells: a midterm exam. Neuron 2008; 58(6): 832–846
CrossRef Pubmed Google scholar
[16]
Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455(7216): 1061–1068
CrossRef Pubmed Google scholar
[17]
Griveau A, Seano G, Shelton SJ, Kupp R, Jahangiri A, Obernier K, Krishnan S, Lindberg OR, Yuen TJ, Tien AC, Sabo JK, Wang N, Chen I, Kloepper J, Larrouquere L, Ghosh M, Tirosh I, Huillard E, Alvarez-Buylla A, Oldham MC, Persson AI, Weiss WA, Batchelor TT, Stemmer-Rachamimov A, Suvà ML, Phillips JJ, Aghi MK, Mehta S, Jain RK, Rowitch DH. A glial signature and Wnt7 signaling regulate glioma-vascular interactions and tumor microenvironment. Cancer Cell 2018; 33(5): 874–889.e7
CrossRef Pubmed Google scholar
[18]
Hu B, Wang Q, Wang YA, Hua S, Sauvé CG, Ong D, Lan ZD, Chang Q, Ho YW, Monasterio MM, Lu X, Zhong Y, Zhang J, Deng P, Tan Z, Wang G, Liao WT, Corley LJ,Yan H, Zhang J, You Y, Liu N, Cai L, Finocchiaro G, Phillips JJ, Berger MS, Spring DJ, Hu J, Sulman EP, Fuller GN, Chin L, Verhaak RGW, DePinho RAEpigenetic activation of WNT5A drives glioblastoma stem cell differentiation and invasive growth. Cell 2016; 167(5): 1281–1295.e18
CrossRef Pubmed Google scholar
[19]
Ligon KL, Huillard E, Mehta S, Kesari S, Liu H, Alberta JA, Bachoo RM, Kane M, Louis DN, Depinho RA, Anderson DJ, Stiles CD, Rowitch DH. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 2007; 53(4): 503–517
CrossRef Pubmed Google scholar
[20]
Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X, Fu L, Li Y, Yang J, Zhang W, Bai R, Yi F, Suzuki K, Gao H, Esteban CR, Zhang C, Izpisua Belmonte JC, Chen Z, Wang X, Jiang T, Qu J, Tang F, Liu GH. PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 2015; 6(1): 10068
CrossRef Pubmed Google scholar
[21]
Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A, Parada LF. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005; 8(2): 119–130
CrossRef Pubmed Google scholar
[22]
Barami K, Sloan AE, Rojiani A, Schell MJ, Staller A, Brem S. Relationship of gliomas to the ventricular walls. J Clin Neurosci 2009; 16(2): 195–201
CrossRef Pubmed Google scholar
[23]
Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature 2008; 455(7216): 1129–1133
CrossRef Pubmed Google scholar
[24]
Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488(7412): 522–526
CrossRef Pubmed Google scholar
[25]
Akgül S, Li Y, Zheng S, Kool M, Treisman DM, Li C, Wang Y, Gröbner S, Ikenoue T, Shen Y, Camelo-Piragua S, Tomasek G, Stark S, Guduguntla V, Gusella JF, Guan KL, Pfister SM, Verhaak RGW, Zhu Y. Opposing tumor-promoting and-suppressive functions of Rictor/mTORC2 signaling in adult glioma and pediatric SHH medulloblastoma. Cell Rep 2018; 24(2): 463–478.e5
CrossRef Pubmed Google scholar
[26]
Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, Charles N, Michor F, Holland EC. Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 2014; 26(2): 288–300
CrossRef Pubmed Google scholar
[27]
Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359(5): 492–507
CrossRef Pubmed Google scholar
[28]
Alcantara Llaguno S, Chen J, Kwon CH, Jackson EL, Li Y, Burns DK, Alvarez-Buylla A, Parada LF. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 2009; 15(1): 45–56
CrossRef Pubmed Google scholar
[29]
Jacques TS, Swales A, Brzozowski MJ, Henriquez NV, Linehan JM, Mirzadeh Z, O’ Malley C, Naumann H, Alvarez-Buylla A, Brandner S. Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes. EMBO J 2010; 29(1): 222–235
CrossRef Pubmed Google scholar
[30]
Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 2009; 15(6): 514–526
CrossRef Pubmed Google scholar
[31]
Sanai N, Nguyen T, Ihrie RA, Mirzadeh Z, Tsai HH, Wong M, Gupta N, Berger MS, Huang E, Garcia-Verdugo JM, Rowitch DH, Alvarez-Buylla A. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 2011; 478(7369): 382–386
CrossRef Pubmed Google scholar
[32]
Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, Gould E, Hen R, Abrous DN, Toni N, Schinder AF, Zhao X, Lucassen PJ, Frisén J. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell 2018; 23(1): 25–30
CrossRef Pubmed Google scholar
[33]
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisén J. Neurogenesis in the striatum of the adult human brain. Cell 2014; 156(5): 1072–1083
CrossRef Pubmed Google scholar
[34]
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Boström E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisén J. Dynamics of hippocampal neurogenesis in adult humans. Cell 2013; 153(6): 1219–1227
CrossRef Pubmed Google scholar
[35]
Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4(11): 1313–1317
CrossRef Pubmed Google scholar
[36]
Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Tang Y, DeFrances J, Stover E, Weissleder R, Rowitch DH, Louis DN, DePinho RA. Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 2002; 1(3): 269–277
CrossRef Pubmed Google scholar
[37]
Alcantara Llaguno S, Sun D, Pedraza AM, Vera E, Wang Z, Burns DK, Parada LF. Cell-of-origin susceptibility to glioblastoma formation declines with neural lineage restriction. Nat Neurosci 2019; 22(4): 545–555
CrossRef Pubmed Google scholar
[38]
Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding L, Golub T, Mesirov JP, Alexe G, Lawrence M, O’Kelly M, Tamayo P, Weir BA, Gabriel S, Winckler W, Gupta S, Jakkula L, Feiler HS, Hodgson JG, James CD, Sarkaria JN, Brennan C, Kahn A, Spellman PT, Wilson RK, Speed TP, Gray JW, Meyerson M, Getz G, Perou CM, Hayes DN; Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010; 17(1): 98–110
CrossRef Pubmed Google scholar
[39]
Weiss WA, Burns MJ, Hackett C, Aldape K, Hill JR, Kuriyama H, Kuriyama N, Milshteyn N, Roberts T, Wendland MF, DePinho R, Israel MA. Genetic determinants of malignancy in a mouse model for oligodendroglioma. Cancer Res 2003; 63(7): 1589–1595
Pubmed
[40]
Lindberg N, Jiang Y, Xie Y, Bolouri H, Kastemar M, Olofsson T, Holland EC, Uhrbom L. Oncogenic signaling is dominant to cell of origin and dictates astrocytic or oligodendroglial tumor development from oligodendrocyte precursor cells. J Neurosci 2014; 34(44): 14644–14651
CrossRef Pubmed Google scholar
[41]
Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 2011; 146(2): 209–221
CrossRef Pubmed Google scholar
[42]
Zong H, Espinosa JS, Su HH, Muzumdar MD, Luo L. Mosaic analysis with double markers in mice. Cell 2005; 121(3): 479–492
CrossRef Pubmed Google scholar
[43]
Wang Y, Kim E, Wang X, Novitch BG, Yoshikawa K, Chang LS, Zhu Y. ERK inhibition rescues defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities. Cell 2012; 150(4): 816–830
CrossRef Pubmed Google scholar
[44]
Alcantara Llaguno SR, Wang Z, Sun D, Chen J, Xu J, Kim E, Hatanpaa KJ, Raisanen JM, Burns DK, Johnson JE, Parada LF. Adult lineage-restricted CNS progenitors specify distinct glioblastoma subtypes. Cancer Cell 2015; 28(4): 429–440
CrossRef Pubmed Google scholar
[45]
Galvao RP, Kasina A, McNeill RS, Harbin JE, Foreman O, Verhaak RG, Nishiyama A, Miller CR, Zong H. Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc Natl Acad Sci USA 2014; 111(40): E4214–E4223
CrossRef Pubmed Google scholar
[46]
Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S, Bruce JN, Canoll P. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One 2011; 6(5): e20041
CrossRef Pubmed Google scholar
[47]
Assanah M, Lochhead R, Ogden A, Bruce J, Goldman J, Canoll P. Glial progenitors in adult white matter are driven to form malignant gliomas by platelet-derived growth factor-expressing retroviruses. J Neurosci 2006; 26(25): 6781–6790
CrossRef Pubmed Google scholar
[48]
Yeung MS, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Brundin L, Druid H, Frisén J. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 2014; 159(4): 766–774
CrossRef Pubmed Google scholar
[49]
Wang Q, . Tumor evolution of glioma-Intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 2017; 32(1): 42–56.e6
CrossRef Pubmed Google scholar
[50]
Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017; 31(3): 326–341
CrossRef Pubmed Google scholar
[51]
Evers P, Lee PP, DeMarco J, Agazaryan N, Sayre JW, Selch M, Pajonk F. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer 2010; 10(1): 384
CrossRef Pubmed Google scholar
[52]
Nourallah B, Digpal R, Jena R, Watts C. Irradiating the subventricular zone in glioblastoma patients: is there a case for a clinical trial? Clin Oncol (R Coll Radiol) 2017; 29(1): 26–33
CrossRef Pubmed Google scholar
[53]
Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, Caldas C, Califano A, Doherty M, Elsner M, Esteller M, Fitzgerald R, Korbel JO, Lichter P, Mason CE, Navin N, Pe’er D, Polyak K, Roberts CW, Siu L, Snyder A, Stower H, Swanton C, Verhaak RG, Zenklusen JC, Zuber J, Zucman-Rossi J. Toward understanding and exploiting tumor heterogeneity. Nat Med 2015; 21(8): 846–853
CrossRef Pubmed Google scholar
[54]
Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suvà ML, Regev A, Bernstein BE. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 2014; 344(6190): 1396–1401
CrossRef Pubmed Google scholar
[55]
Kim J, Lee IH, Cho HJ, Park CK, Jung YS, Kim Y, Nam SH, Kim BS, Johnson MD, Kong DS, Seol HJ, Lee JI, Joo KM, Yoon Y, Park WY, Lee J, Park PJ, Nam DH. Spatiotemporal evolution of the primary glioblastoma genome. Cancer Cell 2015; 28(3): 318–328
CrossRef Pubmed Google scholar
[56]
Ben-David U, Ha G, Tseng YY, Greenwald NF, Oh C, Shih J, McFarland JM, Wong B, Boehm JS, Beroukhim R, Golub TR. Patient-derived xenografts undergo mouse-specific tumor evolution. Nat Genet 2017; 49(11): 1567–1575
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Key Research and Development Program of China, Stem Cell and Translational Research (No. 2017YFA0106500), Distinguished Young Scientists Program of Sichuan Province (No. 2019JDJQ0029), and Thousand Talents Program for Young Outstanding Scientists, China.

Compliance with ethics guidelines

Xiaolin Fan, Yanzhen Xiong, and Yuan Wang declare there is no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(364 KB)

Accesses

Citations

Detail

Sections
Recommended

/