Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease
Min Fei, Li Xiang, Xichen Chai, Jingchun Jin, Tao You, Yiming Zhao, Changgeng Ruan, Yiwen Hao, Li Zhu
Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease
Accumulating evidence suggests that C-type lectin-like receptor-2 (CLEC-2) plays an important role in atherothrombosis. In this case-control study, we investigated the association between CLEC-2 and incidence of coronary artery disease (CAD). A total of 216 patients, including 14 cases of stable angina pectoris (SAP, non-ACS) and 202 cases of acute coronary syndrome (ACS), and 89 non-CAD control subjects were enrolled. Plasma levels of soluble CLEC-2 (sCLEC-2) were measured using the enzyme-linked immunosorbent assay (ELISA). Compared with the control group (65.69 (55.36–143.22) pg/mL), the plasma levels of sCLEC-2 were significantly increased in patients with CAD (133.67 (88.76–220.09) pg/mL) and ACS (134.16 (88.88–225.81) pg/mL). The multivariate adjusted odds ratios (95% confidence interval) of CAD reached 2.01 (1.52–2.66) (Ptrend<0.001) for each 1-quartile increase in sCLEC-2. Restricted cubic splines showed a positive dose-response association between sCLEC2 and CAD incidence (Plinearity<0.001). The addition of sCLEC-2 to conventional risk factors improved the C statistic (0.821 vs. 0.761, P = 0.004) and reclassification ability (net reclassification improvement: 57.45%, P<0.001; integrated discrimination improvement: 8.27%, P<0.001) for CAD. In conclusion, high plasma sCLEC-2 is independently associated with CAD risk, and the prognostic value of sCLEC-2 may be evaluated in future prospective studies.
soluble C-type lectin-like receptor-2 / coronary artery disease / risk factor
[1] |
Dalen JE, Alpert JS, Goldberg RJ, Weinstein RS. The epidemic of the 20(th) century: coronary heart disease. Am J Med 2014; 127(9): 807–812
CrossRef
Pubmed
Google scholar
|
[2] |
Hu FB, Willett WC. Optimal diets for prevention of coronary heart disease. JAMA 2002; 288(20): 2569–2578
CrossRef
Pubmed
Google scholar
|
[3] |
Fuller GLJ, Williams JAE, Tomlinson MG, Eble JA, Hanna SL, Pöhlmann S, Suzuki-Inoue K, Ozaki Y, Watson SP, Pearce AC. The C-type lectin receptors CLEC-2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J Biol Chem 2007; 282(17): 12397–12409
CrossRef
Pubmed
Google scholar
|
[4] |
Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat Med 2011; 17(11): 1410–1422
CrossRef
Pubmed
Google scholar
|
[5] |
Falk E, Nakano M, Bentzon JF, Finn AV, Virmani R. Update on acute coronary syndromes: the pathologists’ view. Eur Heart J 2013; 34(10): 719–728
CrossRef
Pubmed
Google scholar
|
[6] |
Müller KA, Chatterjee M, Rath D, Geisler T. Platelets, inflammation and anti-inflammatory effects of antiplatelet drugs in ACS and CAD. Thromb Haemost 2015; 114(3): 498–518
CrossRef
Pubmed
Google scholar
|
[7] |
Furman MI, Benoit SE, Barnard MR, Valeri CR, Borbone ML, Becker RC, Hechtman HB, Michelson AD. Increased platelet reactivity and circulating monocyte-platelet aggregates in patients with stable coronary artery disease. J Am Coll Cardiol 1998; 31(2): 352–358
CrossRef
Pubmed
Google scholar
|
[8] |
Lorenz V, Stegner D, Stritt S, Vögtle T, Kiefer F, Witke W, Schymeinsky J, Watson SP, Walzog B, Nieswandt B. Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization. Blood 2015; 125(26): 4069–4077
CrossRef
Pubmed
Google scholar
|
[9] |
Colonna M, Samaridis J, Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000; 30(2): 697–704
CrossRef
Pubmed
Google scholar
|
[10] |
Suzuki-Inoue K, Osada M, Ozaki Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: partners from in utero to adulthood. J Thromb Haemost 2017; 15(2): 219–229
CrossRef
Pubmed
Google scholar
|
[11] |
Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, Narimatsu H, Ozaki Y. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282(36): 25993–26001
CrossRef
Pubmed
Google scholar
|
[12] |
Suzuki-Inoue K, Fuller GL, García A, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, Morita T, Tybulewicz VL, Ozaki Y, Watson SP. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006; 107(2): 542–549
CrossRef
Pubmed
Google scholar
|
[13] |
May F, Hagedorn I, Pleines I, Bender M, Vögtle T, Eble J, Elvers M, Nieswandt B. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 2009; 114(16): 3464–3472
CrossRef
Pubmed
Google scholar
|
[14] |
Hughes CE, Auger JM, McGlade J, Eble JA, Pearce AC, Watson SP. Differential roles for the adapters Gads and LAT in platelet activation by GPVI and CLEC-2. J Thromb Haemost 2008; 6(12): 2152–2159
CrossRef
Pubmed
Google scholar
|
[15] |
Parguiña AF, Alonso J, Rosa I, Vélez P, González-López MJ, Guitián E, Eble JA, Loza MI, García Á. A detailed proteomic analysis of rhodocytin-activated platelets reveals novel clues on the CLEC-2 signalosome: implications for CLEC-2 signaling regulation. Blood 2012; 120(26): e117–e126
CrossRef
Pubmed
Google scholar
|
[16] |
Gitz E, Pollitt AY, Gitz-Francois JJ, Alshehri O, Mori J, Montague S, Nash GB, Douglas MR, Gardiner EE, Andrews RK, Buckley CD, Harrison P, Watson SP. CLEC-2 expression is maintained on activated platelets and on platelet microparticles. Blood 2014; 124(14): 2262–2270
CrossRef
Pubmed
Google scholar
|
[17] |
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation 2003; 108(15): 1772–1778
CrossRef
Pubmed
Google scholar
|
[18] |
Schuijf JD, Poldermans D, Shaw LJ, Jukema JW, Lamb HJ, de Roos A, Wijns W, van der Wall EE, Bax JJ. Diagnostic and prognostic value of non-invasive imaging in known or suspected coronary artery disease. Eur J Nucl Med Mol Imaging 2006; 33(1): 93–104
CrossRef
Pubmed
Google scholar
|
[19] |
Chao SP, Law WY, Kuo CJ, Hung HF, Cheng JJ, Lo HM, Shyu KG. The diagnostic accuracy of 256-row computed tomographic angiography compared with invasive coronary angiography in patients with suspected coronary artery disease. Eur Heart J 2010; 31(15): 1916–1923
CrossRef
Pubmed
Google scholar
|
[20] |
Goodacre S, Thokala P, Carroll C, Stevens JW, Leaviss J, Al Khalaf M, Collinson P, Morris F, Evans P, Wang J. Systematic review, meta-analysis and economic modelling of diagnostic strategies for suspected acute coronary syndrome. Health Technol Assess 2013; 17(1): v–vi, 1–188
CrossRef
Pubmed
Google scholar
|
[21] |
Rubini Gimenez M, Twerenbold R, Mueller C. Beyond cardiac troponin: recent advances in the development of alternative biomarkers for cardiovascular disease. Expert Rev Mol Diagn 2015; 15(4): 547–556
CrossRef
Pubmed
Google scholar
|
[22] |
Gorog DA. Prognostic value of plasma fibrinolysis activation markers in cardiovascular disease. J Am Coll Cardiol 2010; 55(24): 2701–2709
CrossRef
Pubmed
Google scholar
|
[23] |
Amsterdam EA, Wenger NK, Brindis RG, Casey DE Jr, Ganiats TG, Holmes DR Jr, Jaffe AS, Jneid H, Kelly RF, Kontos MC, Levine GN, Liebson PR, Mukherjee D, Peterson ED, Sabatine MS, Smalling RW, Zieman SJ; ACC/AHA Task Force Members; Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014; 130(25): 2354–2394
CrossRef
Pubmed
Google scholar
|
[24] |
Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, Hochman JS, Krumholz HM, Kushner FG, Lamas GA, Mullany CJ, Ornato JP, Pearle DL, Sloan MA, Smith SC Jr, Alpert JS, Anderson JL, Faxon DP, Fuster V, Gibbons RJ, Gregoratos G, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK; American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction--executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1999 Guidelines for the Management of Patients With Acute Myocardial Infarction). Circulation 2004; 110(5): 588–636
CrossRef
Pubmed
Google scholar
|
[25] |
Fihn SD, Blankenship JC, Alexander KP, Bittl JA, Byrne JG, Fletcher BJ, Fonarow GC, Lange RA, Levine GN, Maddox TM, Naidu SS, Ohman EM, Smith PK. 2014 ACC/AHA/AATS/PCNA/SCAI/STS focused update of the guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines, and the American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2014; 64(18): 1929–1949
CrossRef
Pubmed
Google scholar
|
[26] |
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA 2013; 310(20): 2191–2194
CrossRef
Pubmed
Google scholar
|
[27] |
Fox KA, Anderson FA Jr, Dabbous OH, Steg PG, López-Sendón J, Van de Werf F, Budaj A, Gurfinkel EP, Goodman SG, Brieger D; GRACE investigators. Intervention in acute coronary syndromes: do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE). Heart 2007; 93(2): 177–182
CrossRef
Pubmed
Google scholar
|
[28] |
Anvari MS, Boroumand MA, karimi A, Alidoosti M, Yazdanifard P, Shirzad M, Abbasi SH, Soleymani A. Aortic and mitral valve atherosclerosis: predictive factors and associations with coronary atherosclerosis using Gensini score. Arch Med Res 2009; 40(2): 124–127
CrossRef
Pubmed
Google scholar
|
[29] |
Seizer P, Fuchs C, Ungern-Sternberg SN, Heinzmann D, Langer H, Gawaz M, May AE, Geisler T. Platelet-bound cyclophilin A in patients with stable coronary artery disease and acute myocardial infarction. Platelets 2016; 27(2): 155–158
Pubmed
|
[30] |
Rath D, Chatterjee M, Borst O, Müller K, Langer H, Mack AF, Schwab M, Winter S, Gawaz M, Geisler T. Platelet surface expression of stromal cell-derived factor-1 receptors CXCR4 and CXCR7 is associated with clinical outcomes in patients with coronary artery disease. J Thromb Haemost 2015; 13(5): 719–728
CrossRef
Pubmed
Google scholar
|
[31] |
George R, Bhatt A, Narayani J, Thulaseedharan JV, Sivadasanpillai H, Tharakan JA. Enhanced P-selectin expression on platelet––a marker of platelet activation, in young patients with angiographically proven coronary artery disease. Mol Cell Biochem 2016; 419(1-2): 125–133
CrossRef
Pubmed
Google scholar
|
[32] |
Kazama F, Nakamura J, Osada M, Inoue O, Oosawa M, Tamura S, Tsukiji N, Aida K, Kawaguchi A, Takizawa S, Kaneshige M, Tanaka S, Suzuki-Inoue K, Ozaki Y. Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets 2015; 26(8): 711–719
CrossRef
Pubmed
Google scholar
|
[33] |
Hughes CE, Sinha U, Pandey A, Eble JA, O’Callaghan CA, Watson SP. Critical role for an acidic amino acid region in platelet signaling by the HemITAM (hemi-immunoreceptor tyrosine-based activation motif) containing receptor CLEC-2 (C-type lectin receptor-2). J Biol Chem 2013; 288(7): 5127–5135
CrossRef
Pubmed
Google scholar
|
[34] |
Kaneko MK, Kato Y, Kitano T, Osawa M. Conservation of a platelet activating domain of Aggrus/podoplanin as a platelet aggregation-inducing factor. Gene 2006; 378: 52–57
CrossRef
Pubmed
Google scholar
|
[35] |
Payne H, Ponomaryov T, Watson SP, Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood 2017; 129(14): 2013–2020
CrossRef
Pubmed
Google scholar
|
[36] |
Riedl J, Preusser M, Nazari PM, Posch F, Panzer S, Marosi C, Birner P, Thaler J, Brostjan C, Lötsch D, Berger W, Hainfellner JA, Pabinger I, Ay C. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism. Blood 2017; 129(13): 1831–1839
CrossRef
Pubmed
Google scholar
|
[37] |
Suzuki-Inoue K. CLEC-2/podoplanin and thromboinflammation. Blood 2017; 129(14): 1896–1898
CrossRef
Pubmed
Google scholar
|
[38] |
Hitchcock JR, Cook CN, Bobat S, Ross EA, Flores-Langarica A, Lowe KL, Khan M, Dominguez-Medina CC, Lax S, Carvalho-Gaspar M, Hubscher S, Rainger GE, Cobbold M, Buckley CD, Mitchell TJ, Mitchell A, Jones ND, Van Rooijen N, Kirchhofer D, Henderson IR, Adams DH, Watson SP, Cunningham AF. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J Clin Invest 2015; 125(12): 4429–4446
CrossRef
Pubmed
Google scholar
|
[39] |
Inoue O, Hokamura K, Shirai T, Osada M, Tsukiji N, Hatakeyama K, Umemura K, Asada Y, Suzuki-Inoue K, Ozaki Y. Vascular smooth muscle cells stimulate platelets and facilitate thrombus formation through platelet CLEC-2: implications in atherothrombosis. PLoS One 2015; 10(9): e0139357
CrossRef
Pubmed
Google scholar
|
[40] |
Kerrigan AM, Dennehy KM, Mourão-Sá D, Faro-Trindade I, Willment JA, Taylor PR, Eble JA, Reis e Sousa C, Brown GD. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J Immunol 2009; 182(7): 4150–4157
CrossRef
Pubmed
Google scholar
|
[41] |
Ozaki Y, Tamura S, Suzuki-Inoue K. New horizon in platelet function: with special reference to a recently-found molecule, CLEC-2. Thromb J 2016; 14(Suppl 1): 27
CrossRef
Pubmed
Google scholar
|
[42] |
Pamukcu B, Lip GYH, Snezhitskiy V, Shantsila E. The CD40-CD40L system in cardiovascular disease. Ann Med 2011; 43(5): 331–340
CrossRef
Pubmed
Google scholar
|
[43] |
Choi WS, Jeon OH, Kim DS. CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin α(IIb)β(3). J Thromb Haemost 2010; 8(6): 1364–1371
CrossRef
Pubmed
Google scholar
|
[44] |
Heeschen C, Dimmeler S, Hamm CW, van den Brand MJ, Boersma E, Zeiher AM, Simoons ML; CAPTURE Study Investigators. Soluble CD40 ligand in acute coronary syndromes. N Engl J Med 2003; 348(12): 1104–1111
CrossRef
Pubmed
Google scholar
|
[45] |
Napoleão P, Cabral LB, Selas M, Freixo C, Monteiro MC, Criado MB, Costa MC, Enguita FJ, Viegas-Crespo AM, Saldanha C, Carmo MM, Ferreira RC, Pinheiro T. Stratification of ST-elevation myocardial infarction patients based on soluble CD40L longitudinal changes. Transl Res 2016; 176: 95–104
CrossRef
Pubmed
Google scholar
|
[46] |
Lindberg S. Prognostic utility of the soluble CD40 ligand in acute coronary syndrome. Coron Artery Dis 2014; 25(7): 548–549
CrossRef
Pubmed
Google scholar
|
[47] |
Gerdes N, Seijkens T, Lievens D, Kuijpers MJ, Winkels H, Projahn D, Hartwig H, Beckers L, Megens RT, Boon L, Noelle RJ, Soehnlein O, Heemskerk JW, Weber C, Lutgens E. Platelet CD40 exacerbates atherosclerosis by transcellular activation of endothelial cells and leukocytes. Arterioscler Thromb Vasc Biol 2016; 36(3): 482–490
CrossRef
Pubmed
Google scholar
|
[48] |
Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix IC, Wijnands E, Goossens P, van Kruchten R, Thevissen L, Boon L, Flavell RA, Noelle RJ, Gerdes N, Biessen EA, Daemen MJ, Heemskerk JW, Weber C, Lutgens E. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116(20): 4317–4327
CrossRef
Pubmed
Google scholar
|
[49] |
Mason PJ, Chakrabarti S, Albers AA, Rex S, Vitseva O, Varghese S, Freedman JE. Plasma, serum, and platelet expression of CD40 ligand in adults with cardiovascular disease. Am J Cardiol 2005; 96(10): 1365–1369
CrossRef
Pubmed
Google scholar
|
[50] |
Levine SP, Lindenfeld J, Ellis JB, Raymond NM, Krentz LS. Increased plasma concentrations of platelet factor 4 in coronary artery disease: a measure of in vivo platelet activation and secretion. Circulation 1981; 64(3): 626–632
CrossRef
Pubmed
Google scholar
|
[51] |
Strauss WE, Cella G, Parisi AF, Sasahara AA. Serial studies of platelet factor 4 and beta thromboglobulin during exercise in patients with coronary artery disease. Am Heart J 1985; 110(2): 293–299
CrossRef
Pubmed
Google scholar
|
[52] |
Shechter M, Bairey Merz CN, Paul-Labrador MJ, Shah PK, Kaul S. Plasma apolipoprotein B levels predict platelet-dependent thrombosis in patients with coronary artery disease. Cardiology 1999; 92(3): 151–155
CrossRef
Pubmed
Google scholar
|
[53] |
Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Röxe T, Müller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S. Circulating microRNAs in patients with coronary artery disease. Circ Res 2010; 107(5): 677–684
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |