Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats

Ruoxi Zhang , Jing Chen , Diangang Liu , Yu Wang

Front. Med. ›› 2019, Vol. 13 ›› Issue (3) : 398 -408.

PDF (5130KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (3) : 398 -408. DOI: 10.1007/s11684-019-0689-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats

Author information +
History +
PDF (5130KB)

Abstract

Increased serum urotensin II (UII) levels in human cirrhotic populations have been recently shown, but the long-term effects of UII receptor antagonist on the cirrhosis have not been investigated. To investigate the therapeutic effects of urotensin II receptor (UT) antagonist palosuran on rats with carbon tetrachloride (CCl4)-induced cirrhosis, the hepatic and systemic hemodynamics, liver fibrosis, the metalloproteinase-13 (MMP-13)/ tissue inhibitor of metalloproteinase-1 (TIMP-1) ratio, hepatic Rho-kinase activity, and the endothelial nitric oxide synthase (eNOS) activity are measured in CCl4-cirrhotic rats treated with palosuran or vehicle for 4 weeks. Primary hepatic stellate cells (HSCs) are used to investigate the changes in UII/UT expression and the in vitro effect of palosuran. Compared with the vehicle-treated cirrhotic rats, treatment with palosuran can reduce the portal pressure (PP), decrease the risk of liver fibrosis and the level of α smooth muscle actin, collagen-I (COL-I), and transforming growth factor β expression. However, treatment with palosuran can increase MMP-13/TIMP-1, p-vasodilator-stimulated phosphoprotein (p-VASP), and p-eNOS expression. Moreover, in vitro UII/UT mRNA expression increases during HSC activation. MMP-13/TIMP-1, COL-I, and p-VASP are inhibited after palosuran treatment. Our data indicate that long-term administration of palosuran can decrease PP in cirrhosis, which results from decreased hepatic fibrosis and enhanced eNOS-dependent HSC vasodilatation.

Keywords

portal hypertension / cirrhosis / urotensin II / palosuran / hepatic stellate cell

Cite this article

Download citation ▾
Ruoxi Zhang, Jing Chen, Diangang Liu, Yu Wang. Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats. Front. Med., 2019, 13(3): 398-408 DOI:10.1007/s11684-019-0689-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol 2005; 39(4 Suppl 2): S125–S130

[2]

McConnellM,  Iwakiri Y. Biology of portal hypertension. Hepatol Int 2018; 12(Suppl 1):11–23PMID:29075990

[3]

Vilaseca M, García-Calderó H, Lafoz E, García-Irigoyen O, Avila MA, Reverter JC, Bosch J, Hernández-Gea V, Gracia-Sancho J, García-Pagán JC. The anticoagulant rivaroxaban lowers portal hypertension in cirrhotic rats mainly by deactivating hepatic stellate cells. Hepatology 2017; 65(6): 2031–2044

[4]

Vilaseca M, García-Calderó H, Lafoz E, Ruart M, López-Sanjurjo CI, Murphy MP, Deulofeu R, Bosch J, Hernández-Gea V, Gracia-Sancho J, García-Pagán JC. Mitochondria-targeted antioxidant mitoquinone deactivates human and rat hepatic stellate cells and reduces portal hypertension in cirrhotic rats. Liver Int 2017; 37(7): 1002–1012

[5]

Rockey DC, Fouassier L, Chung JJ, Carayon A, Vallee P, Rey C, Housset C. Cellular localization of endothelin-1 and increased production in liver injury in the rat: potential for autocrine and paracrine effects on stellate cells. Hepatology 1998; 27(2): 472–480

[6]

Iwakiri Y. Pathophysiology of portal hypertension. Clin Liver Dis 2014; 18(2): 281–291

[7]

Nishimura Y, Ito T, Hoe K, Saavedra JM. Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res 2000; 871(1): 29–38

[8]

Ames RS, Sarau HM, Chambers JK, Willette RN, Aiyar NV, Romanic AM, Louden CS, Foley JJ, Sauermelch CF, Coatney RW, Ao Z, Disa J, Holmes SD, Stadel JM, Martin JD, Liu WS, Glover GI, Wilson S, McNulty DE, Ellis CE, Elshourbagy NA, Shabon U, Trill JJ, Hay DW, Ohlstein EH, Bergsma DJ, Douglas SA. Human urotensin-II is a potent vasoconstrictor and agonist for the orphan receptor GPR14. Nature 1999; 401(6750): 282–286

[9]

Ross B, McKendy K, Giaid A. Role of urotensin II in health and disease. Am J Physiol Regul Integr Comp Physiol 2010; 298(5): R1156–R1172

[10]

Thanassoulis G, Huyhn T, Giaid A. Urotensin II and cardiovascular diseases. Peptides 2004; 25(10): 1789–1794

[11]

Kemp W, Roberts S, Krum H. Increased circulating urotensin II in cirrhosis: potential implications in liver disease. Peptides 2008; 29(5): 868–872

[12]

Liu D, Chen J, Wang J, Zhang Z, Ma X, Jia J, Wang Y. Increased expression of urotensin II and GPR14 in patients with cirrhosis and portal hypertension. Int J Mol Med 2010; 25(6): 845–851

[13]

Liu DG, Wang J, Zhang ZT, Wang Y. The urotension II antagonist SB-710411 arrests fibrosis in CCl4 cirrhotic rats. Mol Med Rep 2009; 2(6): 953–961

[14]

Clozel M, Binkert C, Birker-Robaczewska M, Boukhadra C, Ding SS, Fischli W, Hess P, Mathys B, Morrison K, Müller C, Müller C, Nayler O, Qiu C, Rey M, Scherz MW, Velker J, Weller T, Xi JF, Ziltener P. Pharmacology of the urotensin-II receptor antagonist palosuran (ACT-058362; 1-[2-(4-benzyl-4-hydroxy-piperidin-1-yl)-ethyl]-3-(2-methyl-quinolin-4-yl)-urea sulfate salt): first demonstration of a pathophysiological role of the urotensin system. J Pharmacol Exp Ther 2004; 311(1): 204–212

[15]

Mejias M, Coch L, Berzigotti A, Garcia-Pras E, Gallego J, Bosch J, Fernandez M. Antiangiogenic and antifibrogenic activity of pigment epithelium-derived factor (PEDF) in bile duct-ligated portal hypertensive rats. Gut.  2015; 64(4): 657–666PMID:24848263

[16]

Clozel M, Hess P, Qiu C, Ding SS, Rey M. The urotensin-II receptor antagonist palosuran improves pancreatic and renal function in diabetic rats. J Pharmacol Exp Ther 2006; 316(3): 1115–1121

[17]

Hsu SJ, Lee FY, Wang SS, Hsin IF, Lin TY, Huang HC, Chang CC, Chuang CL, Ho HL, Lin HC, Lee SD. Caffeine ameliorates hemodynamic derangements and portosystemic collaterals in cirrhotic rats. Hepatology 2015; 61(5): 1672–1684

[18]

Delgado MG, Gracia-Sancho J, Marrone G, Rodríguez-Vilarrupla A, Deulofeu R, Abraldes JG, Bosch J, García-Pagán JC. Leptin receptor blockade reduces intrahepatic vascular resistance and portal pressure in an experimental model of rat liver cirrhosis. Am J Physiol Gastrointest Liver Physiol 2013; 305(7): G496–G502

[19]

Darlington AS, Dippel DW, Ribbers GM, van Balen R, Passchier J, Busschbach JJ. A prospective study on coping strategies and quality of life in patients after stroke, assessing prognostic relationships and estimates of cost-effectiveness. J Rehabil Med 2009; 41(4): 237–241

[20]

Mülsch A, Oelze M, Klöss S, Mollnau H, Töpfer A, Smolenski A, Walter U, Stasch JP, Warnholtz A, Hink U, Meinertz T, Münzel T. Effects of in vivo nitroglycerin treatment on activity and expression of the guanylyl cyclase and cGMP-dependent protein kinase and their downstream target vasodilator-stimulated phosphoprotein in aorta. Circulation 2001; 103(17): 2188–2194

[21]

Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3(6): 1101–1108

[22]

Ramm GA. Isolation and culture of rat hepatic stellate cells. J Gastroenterol Hepatol 1998; 13(8): 846–851

[23]

Rockey DC, Weisiger RA. Endothelin induced contractility of stellate cells from normal and cirrhotic rat liver: implications for regulation of portal pressure and resistance. Hepatology 1996; 24(1): 233–240

[24]

Liu J, Gong H, Zhang ZT, Wang Y. Effect of angiotensin II and angiotensin II type 1 receptor antagonist on the proliferation, contraction and collagen synthesis in rat hepatic stellate cells. Chin Med J (Engl) 2008; 121(2): 161–165

[25]

Kemp W, Krum H, Colman J, Bailey M, Yandle T, Richards M, Roberts S. Urotensin II: a novel vasoactive mediator linked to chronic liver disease and portal hypertension. Liver Int 2007; 27(9): 1232–1239

[26]

Kemp W, Kompa A, Phrommintikul A, Herath C, Zhiyuan J, Angus P, McLean C, Roberts S, Krum H. Urotensin II modulates hepatic fibrosis and portal hemodynamic alterations in rats. Am J Physiol Gastrointest Liver Physiol 2009; 297(4): G762–G767

[27]

Sidharta PN, Rave K, Heinemann L, Chiossi E, Krähenbühl S, Dingemanse J. Effect of the urotensin-II receptor antagonist palosuran on secretion of and sensitivity to insulin in patients with type 2 diabetes mellitus. Br J Clin Pharmacol 2009; 68(4): 502–510

[28]

Trebicka J, Leifeld L, Hennenberg M, Biecker E, Eckhardt A, Fischer N, Pröbsting AS, Clemens C, Lammert F, Sauerbruch T, Heller J. Hemodynamic effects of urotensin II and its specific receptor antagonist palosuran in cirrhotic rats. Hepatology 2008; 47(4): 1264–1276

[29]

Heller J, Schepke M, Neef M, Woitas R, Rabe C, Sauerbruch T. Increased urotensin II plasma levels in patients with cirrhosis and portal hypertension. J Hepatol 2002; 37(6): 767–772

[30]

Leifeld L, Clemens C, Heller J, Trebicka J, Sauerbruch T, Spengler U. Expression of urotensin II and its receptor in human liver cirrhosis and fulminant hepatic failure. Dig Dis Sci 2010; 55(5): 1458–1464

[31]

YadavL,  PuriN,  RastogiV,  Satpute P,  AhmadR,  KaurG. Matrix metalloproteinases and cancer-roles in threat and therapy. Asian Pac J Cancer Prev  2014; 15(3): 1085–1091. doi10.7314/APJCP.2014.15.3.1085 PMID:24606423

[32]

Liu LM, Liang DY, Ye CG, Tu WJ, Zhu T. The UII/UT system mediates upregulation of proinflammatory cytokines through p38 MAPK and NF-kB pathways in LPS-stimulated Kupffer cells. PLoS One 2015; 10(3): e0121383

[33]

Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology 2002; 35(2): 478–491

[34]

Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, Elst IV, Windmolders P, Vanuytsel T, Nevens F, Laleman W. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology 2014; 59(6): 2286–2298

[35]

MallatA,  Lotersztajn S. Targeting cannabinoid receptors in hepatocellular carcinoma. Gut  2016; 65(10):1582–1583PMID:27342953

[36]

Cheng K, Yang N, Mahato RI. TGF-b1 gene silencing for treating liver fibrosis. Mol Pharm 2009; 6(3): 772–779

[37]

Chen RJ, Wu HH, Wang YJ. Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol 2015; 89(10): 1727–1750

[38]

Trebicka J, Hennenberg M, Laleman W, Shelest N, Biecker E, Schepke M, Nevens F, Sauerbruch T, Heller J. Atorvastatin lowers portal pressure in cirrhotic rats by inhibition of RhoA/Rho-kinase and activation of endothelial nitric oxide synthase. Hepatology 2007; 46(1): 242–253

RIGHTS & PERMISSIONS

Higher Education Press and Springer–Verlag GmbH, Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (5130KB)

1938

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/