Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?

Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov

PDF(317 KB)
PDF(317 KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (4) : 420-426. DOI: 10.1007/s11684-019-0688-6
REVIEW
REVIEW

Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?

Author information +
History +

Abstract

This article presents a synopsis of the current data on the mechanisms of blood--brain barrier (BBB) alteration and autoimmune response in acute ischemic stroke. Most researchers confirm the relationship between the severity of immunobiochemical changes and clinical outcome of acute ischemic stroke. Ischemic stroke is accompanied by aseptic inflammation, which alters the brain tissue and exposes the co-stimulatory molecules of the immune system and the neuronal antigens. To date, BBB is not considered the border between the immune system and central nervous system, and the local immune subsystems are found within and behind the BBB. BBB disruption contributes to the leakage of brain autoantigens and induction of secondary autoimmune response to neuronal antigens and long-term inflammation. Glymphatic system function is altered and jeopardized both in hemorrhagic and ischemic stroke types. The receptors of innate immunity (toll-like receptor-2 and toll-like receptor-4) are also involved in acute ischemia--reperfusion injury. Immune response is related to the key processes of blood clotting and fibrinolysis. At the same time, the stroke-induced immune activation may promote reparation phenomena in the brain. Subsequent research on the reduction of the acute ischemic brain injury through the target regulation of the immune response is promising.

Keywords

stroke / blood–brain barrier / autoimmunity / innate immunity / inflammation / cell death

Cite this article

Download citation ▾
Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, Leonid P. Churilov. Autoimmunity in acute ischemic stroke and the role of blood--brain barrier: the dark side or the light one?. Front. Med., 2019, 13(4): 420‒426 https://doi.org/10.1007/s11684-019-0688-6

References

[1]
Kim AS, Cahill E, Cheng NT. Global stroke belt: geographic variation in stroke burden worldwide. Stroke 2015; 46(12): 3564–3570
CrossRef Pubmed Google scholar
[2]
Madsen TE, Khoury J, Alwell K, Moomaw CJ, Rademacher E, Flaherty ML, Woo D, De Los Rios La Rosa F, Martini S, Ferioli S, Adeoye O, Khatri P, Broderick JP, Kissela BM, Kleindorfer D. Sex-specific stroke incidence over time in the Greater Cincinnati/Northern Kentucky Stroke Study. Neurology 2017; 89(10): 990–996
CrossRef Pubmed Google scholar
[3]
Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Mackey JS, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey A, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2018 update: a report from the american heart association. Circulation 2018; 137(12): e67–e492
CrossRef Pubmed Google scholar
[4]
Ornello R, Degan D, Tiseo C, Di Carmine C, Perciballi L, Pistoia F, Carolei A, Sacco S. Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes: a systematic review and meta-analysis. Stroke 2018; 49(4): 814–819
CrossRef Pubmed Google scholar
[5]
Poletaev AB, Stepanyuk VL, Gershwin ME. Integrating immunity: the immunculus and self-reactivity. J Autoimmun 2008; 30(1-2): 68–73
CrossRef Pubmed Google scholar
[6]
Konstantinova EV, Kochetov AG, Shostak NA, Shurdumova MK, Eremin II, Lyang OV, Skvortsova VI. Characteristics of immune response and inflammatory reaction in atherothrombotic stroke and myocardial infarction. Zh Nevrol Psikhiatr Im S S Korsakova 2015; 115(12 Pt 2): 48–53 (in Russian)
CrossRef Pubmed Google scholar
[7]
Lopes Pinheiro MA, Kooij G, Mizee MR, Kamermans A, Enzmann G, Lyck R, Schwaninger M, Engelhardt B, de Vries HE. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim Biophys Acta 2016; 1862(3): 461–471
CrossRef Pubmed Google scholar
[8]
Janyou A, Wicha P, Jittiwat J, Suksamrarn A, Tocharus C, Tocharus J. Dihydrocapsaicin attenuates blood brain barrier and cerebral damage in focal cerebral ischemia/reperfusion via oxidative stress and inflammatory. Sci Rep 2017; 7(1): 10556
CrossRef Pubmed Google scholar
[9]
Zhirnova IG, Maximova MYu, Komelkova LV, Varakin YuA, Bolotova TA. Immunological changes in acute ischemic stroke. Ann Clin Exp Neurology 2012; 6: 25–30 (in Russian)
[10]
Zhao X, Wang H, Sun G, Zhang J, Edwards NJ, Aronowski J. Neuronal interleukin-4 as a modulator of microglial pathways and ischemic brain damage. J Neurosci 2015; 35(32): 11281–11291
CrossRef Pubmed Google scholar
[11]
Zhou K, Shi L, Wang Y, Chen S, Zhang J. Recent advances of the NLRP3 inflammasome in central nervous system disorders. J Immunol Res 2016; 2016: 9238290
CrossRef Pubmed Google scholar
[12]
Ren X, Akiyoshi K, Grafe MR, Vandenbark AA, Hurn PD, Herson PS, Offner H. Myelin specific cells infiltrate MCAO lesions and exacerbate stroke severity. Metab Brain Dis 2012; 27(1): 7–15
CrossRef Pubmed Google scholar
[13]
Becker K. Autoimmune responses to brain following stroke. Transl Stroke Res 2012; 3(3): 310–317
CrossRef Pubmed Google scholar
[14]
Odinak MM, Voznyuk IA. Damage and protection of the blood brain barrier in ischemia. In: Petrischev NN. Endothelial Dysfunction. Causes, Mechanisms, Pharmacological Correction. St. Petersburg: Publishing House of Saint-Petersburg State Medical University, 2003: 146–171 (in Russian)
[15]
Berezhanskaya SB, Lukyanova EA, Zhavoronkova TE, Kaushanskaya EY, Sozaeva DI. The modern concept of blood-brain barrier structural-functional organization and basic mechanisms of its resistance disorder. Pediatria Zh im GN Speransky 2017; 96(1): 135–141 (in Russian)
CrossRef Google scholar
[16]
Dembič Z. Immune system protects integrity of tissues. Mol Immunol 2000; 37(10): 563–569
CrossRef Pubmed Google scholar
[17]
Roitt IM. Prevailing theories in autoimmune disorders. Triangle 1984; 23: 67–76
[18]
Aarli JA. The immune system and the nervous system. J Neurol 1983; 229(3): 137–154
CrossRef Pubmed Google scholar
[19]
Shevelyov AS. Territorial problems of the immune system. Immunologiya 1991; 4: 68–72 (in Russian)
[20]
del Río-Hortega P. Microglia. In: Penfield W. Cytology and Cellular Pathology of the Nervous System. vol. 2. New York: Hoeber, 1932: 483–534
[21]
Zweiman B, Levinson AI. Immunologic aspects of neurological and neuromuscular diseases. JAMA 1992; 268(20): 2918–2922
CrossRef Pubmed Google scholar
[22]
Mori Y, Tomonaga D, Kalashnikova A, Furuya F, Akimoto N, Ifuku M, Okuno Y, Beppu K, Fujita K, Katafuchi T, Shimura H, Churilov LP, Noda M. Effects of 3,3′,5-triiodothyronine on microglial functions. Glia 2015; 63(5): 906–920
CrossRef Pubmed Google scholar
[23]
Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J. Structural and functional features of central nervous system lymphatic vessels. Nature 2015; 523(7560): 337–341
CrossRef Pubmed Google scholar
[24]
Bacyinski A, Xu M, Wang W, Hu J. The paravascular pathway for brain waste clearance: current understanding, significance and controversy. Front Neuroanat 2017; 11: 101
CrossRef Pubmed Google scholar
[25]
Eide PK, Vatnehol SAS, Emblem KE, Ringstad G. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep 2018; 8(1): 7194
CrossRef Pubmed Google scholar
[26]
Tsygan NV, Odinak MM, Khubulava GG, Tsygan VN, Peleshok AS, Andreev RV, Kurasov ES, Litvinenko IV. Postoperative cerebral dysfunction. Zh Nevrol Psikhiatr Im S SKorsakova 2017; 117(4): 34–39 (in Russian)
CrossRef Pubmed Google scholar
[27]
Zhang QY, Wang ZJ, Sun DM, Wang Y, Xu P, Wu WJ, Liu XH, Zhu YZ. Novel therapeutic effects of leonurine on ischemic stroke: new mechanisms of BBB integrity. Oxid Med Cell Longev 2017; 2017: 7150376
CrossRef Pubmed Google scholar
[28]
O’Connell GC, Treadway MB, Petrone AB, Tennant CS, Lucke-Wold N, Chantler PD, Barr TL. Peripheral blood AKAP7 expression as an early marker for lymphocyte-mediated post-stroke blood brain barrier disruption. Sci Rep 2017; 7(1): 1172
CrossRef Pubmed Google scholar
[29]
Gubarev YD, Sheremet AO. The role of the immune system in the pathogenesis of acute and chronic ischemic damages of the brain. Sci Bull Belgorod State University 2009; 4: 47–52 (in Russian)
[30]
Ortega SB, Noorbhai I, Poinsatte K, Kong X, Anderson A, Monson NL, Stowe AM. Stroke induces a rapid adaptive autoimmune response to novel neuronal antigens. Discov Med 2015; 19(106): 381–392
Pubmed
[31]
Jin WN, Gonzales R, Feng Y, Wood K, Chai Z, Dong JF, La Cava A, Shi FD, Liu Q. Brain ischemia induces diversified neuroantigen-specific T-cell responses that exacerbate brain injury. Stroke 2018; 49(6): 1471–1478
CrossRef Pubmed Google scholar
[32]
Wang ZK, Xue L, Wang T, Wang XJ, Su ZQ. Infiltration of invariant natural killer T cells occur and accelerate brain infarction in permanent ischemic stroke in mice. Neurosci Lett 2016; 633: 62–68
CrossRef Pubmed Google scholar
[33]
Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, Shi FD, Hao J. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci USA 2017; 114(3): E396–E405
CrossRef Pubmed Google scholar
[34]
Gill D, Veltkamp R. Dynamics of T cell responses after stroke. Curr Opin Pharmacol 2016; 26: 26–32
CrossRef Pubmed Google scholar
[35]
Zhang H, Park JH, Maharjan S, Park JA, Choi KS, Park H, Jeong Y, Ahn JH, Kim IH, Lee JC, Cho JH, Lee IK, Lee CH, Hwang IK, Kim YM, Suh YG, Won MH, Kwon YG. Sac-1004, a vascular leakage blocker, reduces cerebral ischemia–reperfusion injury by suppressing blood-brain barrier disruption and inflammation. J Neuroinflammation 2017; 14(1): 122
CrossRef Pubmed Google scholar
[36]
Venkat P, Chopp M, Chen J. Blood–brain barrier disruption, vascular impairment, and ischemia/reperfusion damage in diabetic stroke. J Am Heart Assoc 2017; 6(6): e005819
CrossRef Pubmed Google scholar
[37]
Kamel H, Iadecola C. Brain-immune interactions and ischemic stroke: clinical implications. Arch Neurol 2012; 69(5): 576–581
CrossRef Pubmed Google scholar
[38]
Boyajyan AS, Arakelov EA, Ayvazyan VA, Manukyan LA. Interleukins and chemokins in acute ischemic stroke, burdened and not burdened by diabetes. Cytokines Inflammation 2008; 1: 40–43 (in Russian)
[39]
Tsygan VN, Bubnov VA, Tsygan NV, Zinovev EV, Ivchenko EV, Anichkov NM, Mirolyubov AV,  Dergunov AV,  Kazachenko AI. The innate immunity and activation of the atherogenesis. Voen Med Zh 2016; 337: 47–54 (in Russian)
[40]
Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 2007; 115(12): 1599–1608
CrossRef Pubmed Google scholar
[41]
Broughton BRS, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke 2009; 40(5): e331–e339
CrossRef Pubmed Google scholar
[42]
Arslan F, Keogh B, McGuirk P, Parker AE. TLR2 and TLR4 in ischemia reperfusion injury. Mediators Inflamm 2010; 2010: 704202
CrossRef Pubmed Google scholar
[43]
Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol 2007; 184(1-2): 53–68
CrossRef Pubmed Google scholar
[44]
Arumugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience 2009; 158(3): 1074–1089
CrossRef Pubmed Google scholar
[45]
Cheon SY, Kim EJ, Kim JM, Kam EH, Ko BW, Koo BN. Regulation of microglia and macrophage polarization via apoptosis signal-regulating kinase 1 silencing after ischemic/hypoxic injury. Front Mol Neurosci 2017; 10: 261
CrossRef Pubmed Google scholar
[46]
Mizuma A, Yenari MA. Anti-inflammatory targets for the treatment of reperfusion injury in stroke. Front Neurol 2017; 8: 467
CrossRef Pubmed Google scholar
[47]
Gee JM, Kalil A, Shea C, Becker KJ. Lymphocytes: potential mediators of postischemic injury and neuroprotection. Stroke 2007; 38(2Suppl): 783–788
CrossRef Pubmed Google scholar
[48]
Li P, Wang L, Zhou Y, Gan Y, Zhu W, Xia Y, Jiang X, Watkins S, Vazquez A, Thomson AW, Chen J, Yu W, Hu X. C-C chemokine receptor type 5 (ccr5)-mediated docking of transferred tregs protects against early blood-brain barrier disruption after stroke. J Am Heart Assoc 2017; 6(8): e006387
CrossRef Pubmed Google scholar
[49]
Nalamolu KR, Smith NJ, Chelluboina B, Klopfenstein JD, Pinson DM, Wang DZ, Vemuganti R, Veeravalli KK. Prevention of the severity of post-ischemic inflammation and brain damage by simultaneous knockdown of Toll-like receptors 2 and 4. Neuroscience 2018; 373: 82–91
CrossRef Pubmed Google scholar
[50]
Fadakar K, Dadkhahfar S, Esmaeili A, Rezaei N. The role of Toll-like receptors (TLRs) in stroke. Rev Neurosci 2014; 25(5): 699–712
CrossRef Pubmed Google scholar
[51]
Yoles E, Hauben E, Palgi O, Agranov E, Gothilf A, Cohen A, Kuchroo V, Cohen IR, Weiner H, Schwartz M. Protective autoimmunity is a physiological response to CNS trauma. J Neurosci 2001; 21(11): 3740–3748
CrossRef Pubmed Google scholar
[52]
Martiñón S, García E, Gutierrez-Ospina G, Mestre H, Ibarra A. Development of protective autoimmunity by immunization with a neural-derived peptide is ineffective in severe spinal cord injury. PLoS One 2012; 7(2): e32027
CrossRef Pubmed Google scholar
[53]
Cruz Y, Lorea J, Mestre H, Kim-Lee JH, Herrera J, Mellado R, Gálvez V, Cuellar L, Musri C, Ibarra A. Copolymer-1 promotes neurogenesis and improves functional recovery after acute ischemic stroke in rats. PLoS One 2015; 10(3): e0121854
CrossRef Pubmed Google scholar
[54]
Cruz Y, García EE, Gálvez JV, Arias-Santiago SV, Carvajal HG, Silva-García R, Bonilla-Jaime H, Rojas-Castañeda J, Ibarra A. Release of interleukin-10 and neurotrophic factors in the choroid plexus: possible inductors of neurogenesis following copolymer-1 immunization after cerebral ischemia. Neural Regen Res 2018; 13(10): 1743–1752
CrossRef Pubmed Google scholar

Acknowledgements

This work was partially supported by the grant of the Government of the Russian Federation for the state support of scientific research carried out under the supervision of leading scientists, agreement 14.W03.31.0009, on the basis of SPbU project 15.34.3.2017.

Compliance with ethics guidelines

Nikolay V. Tsygan, Alexandr P. Trashkov, Igor V. Litvinenko, Viktoriya A. Yakovleva, Alexandr V. Ryabtsev, Andrey G. Vasiliev, and Leonid P. Churilov declare no financial conflicts of interests. This manuscript is a review article and does not involve a research protocol requiring approval by a relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH, Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(317 KB)

Accesses

Citations

Detail

Sections
Recommended

/