Targeted therapy of desmoid-type fibromatosis: mechanism, current situation, and future prospects

Zhen Wang, Jianhui Wu, Xiuyun Tian, Chunyi Hao

PDF(293 KB)
PDF(293 KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (4) : 427-437. DOI: 10.1007/s11684-018-0672-6
REVIEW
REVIEW

Targeted therapy of desmoid-type fibromatosis: mechanism, current situation, and future prospects

Author information +
History +

Abstract

Desmoid-type fibromatosis (DF) is a rare monoclonal fibroblastic proliferation that is characterized by locally infiltrative but rarely metastatic lesions. Tyrosine kinase and γ-secretase inhibitors are primarily used in the targeted therapy of DF. The use of these drugs, however, is mainly based on the recommendations of retrospective studies with small sample sizes. Previous studies that focused on the mechanism, efficacy, and safety of targeted therapy for DF were reviewed to provide references for clinical applications and research. The efficacy and safety of targeted therapy were compared with those of other systemic therapy options. Targeted therapy does not provide considerable advantages in efficacy and safety over other medical treatments and is usually applied after the failure of antihormonal therapies, nonsteroidal anti-inflammatory drugs, and chemotherapy. Further studies are required to explore the mechanism, indications, and appropriate drug dosage of the targeted therapy of DF.

Keywords

targeted therapy / desmoid-type fibromatosis / tyrosine kinase inhibitor / γ-secretase inhibitor

Cite this article

Download citation ▾
Zhen Wang, Jianhui Wu, Xiuyun Tian, Chunyi Hao. Targeted therapy of desmoid-type fibromatosis: mechanism, current situation, and future prospects. Front. Med., 2019, 13(4): 427‒437 https://doi.org/10.1007/s11684-018-0672-6

References

[1]
Kasper B, Baumgarten C, Garcia J, Bonvalot S, Haas R, Haller F, Hohenberger P, Penel N, Messiou C, van der Graaf WT, Gronchi A; Desmoid Working Group. An update on the management of sporadic desmoid-type fibromatosis: a European Consensus Initiative between Sarcoma PAtients EuroNet (SPAEN) and European Organization for Research and Treatment of Cancer (EORTC)/Soft Tissue and Bone Sarcoma Group (STBSG). Ann Oncol 2017; 28(10): 2399–2408
CrossRef Pubmed Google scholar
[2]
Otero S, Moskovic EC, Strauss DC, Benson C, Miah AB, Thway K, Messiou C. Desmoid-type fibromatosis. Clin Radiol 2015; 70(9): 1038–1045
CrossRef Pubmed Google scholar
[3]
Bertario L, Russo A, Sala P, Eboli M, Giarola M, D’amico F, Gismondi V, Varesco L, Pierotti MA, Radice P; Hereditary Colorectal Tumours Registry. Genotype and phenotype factors as determinants of desmoid tumors in patients with familial adenomatous polyposis. Int J Cancer 2001; 95(2): 102–107
CrossRef Pubmed Google scholar
[4]
Skubitz KM. Biology and treatment of aggressive fibromatosis or desmoid tumor. Mayo Clin Proc 2017; 92(6): 947–964
CrossRef Pubmed Google scholar
[5]
Lazar AJ, Tuvin D, Hajibashi S, Habeeb S, Bolshakov S, Mayordomo-Aranda E, Warneke CL, Lopez-Terrada D, Pollock RE, Lev D. Specific mutations in the β-catenin gene (CTNNB1) correlate with local recurrence in sporadic desmoid tumors. Am J Pathol 2008; 173(5): 1518–1527
CrossRef Pubmed Google scholar
[6]
Alman BA, Li C, Pajerski ME, Diaz-Cano S, Wolfe HJ. Increased β-catenin protein and somatic APC mutations in sporadic aggressive fibromatoses (desmoid tumors). Am J Pathol 1997; 151(2): 329–334
Pubmed
[7]
Salas S, Chibon F, Noguchi T, Terrier P, Ranchere-Vince D, Lagarde P, Benard J, Forget S, Blanchard C, Dômont J, Bonvalot S, Guillou L, Leroux A, Mechine-Neuville A, Schöffski P, Laë M, Collin F, Verola O, Carbonnelle A, Vescovo L, Bui B, Brouste V, Sobol H, Aurias A, Coindre JM. Molecular characterization by array comparative genomic hybridization and DNA sequencing of 194 desmoid tumors. Genes Chromosomes Cancer 2010; 49(6): 560–568
CrossRef Pubmed Google scholar
[8]
Le Guellec S, Soubeyran I, Rochaix P, Filleron T, Neuville A, Hostein I, Coindre JM. CTNNB1 mutation analysis is a useful tool for the diagnosis of desmoid tumors: a study of 260 desmoid tumors and 191 potential morphologic mimics. Mod Pathol 2012; 25(12): 1551–1558
CrossRef Pubmed Google scholar
[9]
Colombo C, Miceli R, Lazar AJ, Perrone F, Pollock RE, Le Cesne A, Hartgrink HH, Cleton-Jansen AM, Domont J, Bovée JV, Bonvalot S, Lev D, Gronchi A. CTNNB1 45F mutation is a molecular prognosticator of increased postoperative primary desmoid tumor recurrence: an independent, multicenter validation study. Cancer 2013; 119(20): 3696–3702
CrossRef Pubmed Google scholar
[10]
van Broekhoven DL, Verhoef C, Grünhagen DJ, van Gorp JM, den Bakker MA, Hinrichs JW, de Voijs CM, van Dalen T. Prognostic value of CTNNB1 gene mutation in primary sporadic aggressive fibromatosis. Ann Surg Oncol 2015; 22(5): 1464–1470
CrossRef Pubmed Google scholar
[11]
Lacroix-Triki M, Geyer FC, Lambros MB, Savage K, Ellis IO, Lee AH, Reis-Filho JS. β-catenin/Wnt signalling pathway in fibromatosis, metaplastic carcinomas and phyllodes tumours of the breast. Mod Pathol 2010; 23(11): 1438–1448
CrossRef Pubmed Google scholar
[12]
Couture J, Mitri A, Lagace R, Smits R, Berk T, Bouchard HL, Fodde R, Alman B, Bapat B. A germline mutation at the extreme 3′ end of the APC gene results in a severe desmoid phenotype and is associated with overexpression of β-catenin in the desmoid tumor. Clin Genet 2000; 57(3): 205–212
CrossRef Pubmed Google scholar
[13]
Harvey JC, Quan SH, Fortner JG. Gardner’s syndrome complicated by mesenteric desmoid tumors. Surgery 1979; 85(4): 475–477
Pubmed
[14]
Colombo C, Miceli R, Le Péchoux C, Palassini E, Honoré C, Stacchiotti S, Mir O, Casali PG, Dômont J, Fiore M, Le Cesne A, Gronchi A, Bonvalot S. Sporadic extra abdominal wall desmoid-type fibromatosis: surgical resection can be safely limited to a minority of patients. Eur J Cancer 2015; 51(2): 186–192
CrossRef Pubmed Google scholar
[15]
Kasper B, Baumgarten C, Bonvalot S, Haas R, Haller F, Hohenberger P, Moreau G, van der Graaf WT, Gronchi A; Desmoid Working Group. Management of sporadic desmoid-type fibromatosis: a European consensus approach based on patients’ and professionals’ expertise — a sarcoma patients EuroNet and European Organisation for Research and Treatment of Cancer/Soft Tissue and Bone Sarcoma Group initiative. Eur J Cancer 2015; 51(2): 127–136
CrossRef Pubmed Google scholar
[16]
Bonvalot S, Eldweny H, Haddad V, Rimareix F, Missenard G, Oberlin O, Vanel D, Terrier P, Blay JY, Le Cesne A, Le Péchoux C. Extra-abdominal primary fibromatosis: aggressive management could be avoided in a subgroup of patients. Eur J Surg Oncol 2008; 34(4): 462–468
CrossRef Pubmed Google scholar
[17]
Fiore M, Rimareix F, Mariani L, Domont J, Collini P, Le Péchoux C, Casali PG, Le Cesne A, Gronchi A, Bonvalot S. Desmoid-type fibromatosis: a front-line conservative approach to select patients for surgical treatment. Ann Surg Oncol 2009; 16(9): 2587–2593
CrossRef Pubmed Google scholar
[18]
Briand S, Barbier O, Biau D, Bertrand-Vasseur A, Larousserie F, Anract P, Gouin F. Wait-and-see policy as a first-line management for extra-abdominal desmoid tumors. J Bone Joint Surg Am 2014; 96(8): 631–638
CrossRef Pubmed Google scholar
[19]
Kasper B, Gruenwald V, Reichardt P, Bauer S, Rauch G, Limprecht R, Sommer M, Dimitrakopoulou-Strauss A, Pilz L, Haller F, Hohenberger P. Imatinib induces sustained progression arrest in RECIST progressive desmoid tumours: final results of a phase II study of the German Interdisciplinary Sarcoma Group (GISG). Eur J Cancer 2017; 76: 60–67
CrossRef Pubmed Google scholar
[20]
Penel N, Le Cesne A, Bui BN, Perol D, Brain EG, Ray-Coquard I, Guillemet C, Chevreau C, Cupissol D, Chabaud S, Jimenez M, Duffaud F, Piperno-Neumann S, Mignot L, Blay JY. Imatinib for progressive and recurrent aggressive fibromatosis (desmoid tumors): an FNCLCC/French Sarcoma Group phase II trial with a long-term follow-up. Ann Oncol 2011; 22(2): 452–457
CrossRef Pubmed Google scholar
[21]
Kummar S, O’Sullivan Coyne G, Do KT, Turkbey B, Meltzer PS, Polley E, Choyke PL, Meehan R, Vilimas R, Horneffer Y, Juwara L, Lih A, Choudhary A, Mitchell SA, Helman LJ, Doroshow JH, Chen AP. Clinical activity of the g-secretase inhibitor PF-03084014 in adults with desmoid tumors (aggressive fibromatosis). J Clin Oncol 2017; 35(14): 1561–1569
CrossRef Pubmed Google scholar
[22]
Szucs Z, Messiou C, Wong HH, Hatcher H, Miah A, Zaidi S, van der Graaf WT, Judson I, Jones RL, Benson C. Pazopanib, a promising option for the treatment of aggressive fibromatosis. Anticancer Drugs 2017; 28(4): 421–426
CrossRef Pubmed Google scholar
[23]
Brogsitter C, Faulhaber D, Kotzerke J. Intraarterial treatment of GEP NET: (68)Ga-DOTATOC SUV cannot predict (90)Y-DOTATOC uptake. Clin Cancer Res 2011; 17(7): 2065
CrossRef Pubmed Google scholar
[24]
Skubitz KM, Manivel JC, Clohisy DR, Frolich JW. Response of imatinib-resistant extra-abdominal aggressive fibromatosis to sunitinib: case report and review of the literature on response to tyrosine kinase inhibitors. Cancer Chemother Pharmacol 2009; 64(3): 635–640
CrossRef Pubmed Google scholar
[25]
Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000; 295(1): 139–145
Pubmed
[26]
Mace J, Sybil Biermann J, Sondak V, McGinn C, Hayes C, Thomas D, Baker L. Response of extraabdominal desmoid tumors to therapy with imatinib mesylate. Cancer 2002; 95(11): 2373–2379
CrossRef Pubmed Google scholar
[27]
Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 1997; 90(12): 4947–4952
Pubmed
[28]
Heinrich MC, McArthur GA, Demetri GD, Joensuu H, Bono P, Herrmann R, Hirte H, Cresta S, Koslin DB, Corless CL, Dirnhofer S, van Oosterom AT, Nikolova Z, Dimitrijevic S, Fletcher JA. Clinical and molecular studies of the effect of imatinib on advanced aggressive fibromatosis (desmoid tumor). J Clin Oncol 2006; 24(7): 1195–1203
CrossRef Pubmed Google scholar
[29]
Wcislo G, Szarlej-Wcislo K, Szczylik C. Control of aggressive fibromatosis by treatment with imatinib mesylate. A case report and review of the literature. J Cancer Res Clin Oncol 2007; 133(8): 533–538
CrossRef Pubmed Google scholar
[30]
Chugh R, Wathen JK, Patel SR, Maki RG, Meyers PA, Schuetze SM, Priebat DA, Thomas DG, Jacobson JA, Samuels BL, Benjamin RS, Baker LH; Sarcoma Alliance for Research through Collaboration (SARC). Efficacy of imatinib in aggressive fibromatosis: results of a phase II multicenter Sarcoma Alliance for Research through Collaboration (SARC) trial. Clin Cancer Res 2010; 16(19): 4884–4891
CrossRef Pubmed Google scholar
[31]
Verweij J, Casali PG, Zalcberg J, LeCesne A, Reichardt P, Blay JY, Issels R, van Oosterom A, Hogendoorn PC, Van Glabbeke M, Bertulli R, Judson I. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 2004; 364(9440): 1127–1134
CrossRef Pubmed Google scholar
[32]
Zalcberg JR, Verweij J, Casali PG, Le Cesne A, Reichardt P, Blay JY, Schlemmer M, Van Glabbeke M, Brown M, Judson IR; EORTC Soft Tissue and Bone Sarcoma Group, the Italian Sarcoma Group; Australasian Gastrointestinal Trials Group. Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eur J Cancer 2005; 41(12): 1751–1757
CrossRef Pubmed Google scholar
[33]
Blanke CD, Rankin C, Demetri GD, Ryan CW, von Mehren M, Benjamin RS, Raymond AK, Bramwell VH, Baker LH, Maki RG, Tanaka M, Hecht JR, Heinrich MC, Fletcher CD, Crowley JJ, Borden EC. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol 2008; 26(4): 626–632
CrossRef Pubmed Google scholar
[34]
Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD. AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 2006; 94(12): 1765–1769
CrossRef Pubmed Google scholar
[35]
Blay JY, von Mehren M. Nilotinib: a novel, selective tyrosine kinase inhibitor. Semin Oncol 2011; 38(Suppl 1): S3–S9
CrossRef Pubmed Google scholar
[36]
Manley PW, Stiefl N, Cowan-Jacob SW, Kaufman S, Mestan J, Wartmann M, Wiesmann M, Woodman R, Gallagher N. Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib. Bioorg Med Chem 2010; 18(19): 6977–6986
CrossRef Pubmed Google scholar
[37]
Manley PW, Drueckes P, Fendrich G, Furet P, Liebetanz J, Martiny-Baron G, Mestan J, Trappe J, Wartmann M, Fabbro D. Extended kinase profile and properties of the protein kinase inhibitor nilotinib. Biochim Biophys Acta 2010; 1804(3): 445–453
CrossRef Pubmed Google scholar
[38]
van der Graaf WT, Blay JY, Chawla SP, Kim DW, Bui-Nguyen B, Casali PG, Schöffski P, Aglietta M, Staddon AP, Beppu Y, Le Cesne A, Gelderblom H, Judson IR, Araki N, Ouali M, Marreaud S, Hodge R, Dewji MR, Coens C, Demetri GD, Fletcher CD, Dei Tos AP, Hohenberger P; EORTC Soft Tissue and Bone Sarcoma Group; PALETTE Study Group. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet 2012; 379(9829): 1879–1886
CrossRef Pubmed Google scholar
[39]
Martin-Liberal J, Benson C, McCarty H, Thway K, Messiou C, Judson I. Pazopanib is an active treatment in desmoid tumour/aggressive fibromatosis. Clin Sarcoma Res 2013; 3(1): 13
CrossRef Pubmed Google scholar
[40]
Gounder MM, Lefkowitz RA, Keohan ML, D’Adamo DR, Hameed M, Antonescu CR, Singer S, Stout K, Ahn L, Maki RG. Activity of sorafenib against desmoid tumor/deep fibromatosis. Clin Cancer Res 2011; 17(12): 4082–4090
CrossRef Pubmed Google scholar
[41]
Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T, Engstrom L, Pinzon-Ortiz M, Fine JS, Lee HJ, Zhang L, Higgins GA, Parker EM. Chronic treatment with the γ-secretase inhibitor LY-411,575 inhibits β-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279(13): 12876–12882
CrossRef Pubmed Google scholar
[42]
Pollack SJ, Lewis H. Secretase inhibitors for Alzheimer’s disease: challenges of a promiscuous protease. Curr Opin Investig Drugs 2005; 6(1): 35–47
Pubmed
[43]
Henley DB, Sundell KL, Sethuraman G, Dowsett SA, May PC. Safety profile of semagacestat, a γ-secretase inhibitor: IDENTITY trial findings. Curr Med Res Opin 2014; 30(10): 2021–2032
CrossRef Pubmed Google scholar
[44]
Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD, Sklar J. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66(4): 649–661
CrossRef Pubmed Google scholar
[45]
Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306(5694): 269–271
CrossRef Pubmed Google scholar
[46]
Zagouras P, Stifani S, Blaumueller CM, Carcangiu ML, Artavanis-Tsakonas S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci USA 1995; 92(14): 6414–6418
CrossRef Pubmed Google scholar
[47]
Miyamoto Y, Maitra A, Ghosh B, Zechner U, Argani P, Iacobuzio-Donahue CA, Sriuranpong V, Iso T, Meszoely IM, Wolfe MS, Hruban RH, Ball DW, Schmid RM, Leach SD. Notch mediates TGF α-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003; 3(6): 565–576
CrossRef Pubmed Google scholar
[48]
Rodilla V, Villanueva A, Obrador-Hevia A, Robert-Moreno A, Fernández-Majada V, Grilli A, López-Bigas N, Bellora N, Albà MM, Torres F, Duñach M, Sanjuan X, Gonzalez S, Gridley T, Capella G, Bigas A, Espinosa L. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA 2009; 106(15): 6315–6320
CrossRef Pubmed Google scholar
[49]
Kim HA, Koo BK, Cho JH, Kim YY, Seong J, Chang HJ, Oh YM, Stange DE, Park JG, Hwang D, Kong YY. Notch1 counteracts WNT/b-catenin signaling through chromatin modification in colorectal cancer. J Clin Invest 2012; 122(9): 3248–3259
CrossRef Pubmed Google scholar
[50]
Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137(2): 216–233
CrossRef Pubmed Google scholar
[51]
Yao J, Qian C, Shu T, Zhang X, Zhao Z, Liang Y. Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/b-catenin. Cancer Biol Ther 2013; 14(9): 833–839
CrossRef Pubmed Google scholar
[52]
Arcaroli JJ, Quackenbush KS, Purkey A, Powell RW, Pitts TM, Bagby S, Tan AC, Cross B, McPhillips K, Song EK, Tai WM, Winn RA, Bikkavilli K, Vanscoyk M, Eckhardt SG, Messersmith WA. Tumours with elevated levels of the Notch and Wnt pathways exhibit efficacy to PF-03084014, a g-secretase inhibitor, in a preclinical colorectal explant model. Br J Cancer 2013; 109(3): 667–675
CrossRef Pubmed Google scholar
[53]
Messersmith WA, Shapiro GI, Cleary JM, Jimeno A, Dasari A, Huang B, Shaik MN, Cesari R, Zheng X, Reynolds JM, English PA, McLachlan KR, Kern KA, LoRusso PM. A Phase I, dose-finding study in patients with advanced solid malignancies of the oral g-secretase inhibitor PF-03084014. Clin Cancer Res 2015; 21(1): 60–67
CrossRef Pubmed Google scholar
[54]
Roussin S, Mazouni C, Rimareix F, Honoré C, Terrier P, Mir O, Dômont J, Le Péchoux C, Le Cesne A, Bonvalot S. Toward a new strategy in desmoid of the breast? Eur J Surg Oncol 2015; 41(4): 571–576
CrossRef Pubmed Google scholar
[55]
Okuno S. The enigma of desmoid tumors. Curr Treat Options Oncol 2006; 7(6): 438–443
CrossRef Pubmed Google scholar
[56]
Lev D, Kotilingam D, Wei C, Ballo MT, Zagars GK, Pisters PW, Lazar AA, Patel SR, Benjamin RS, Pollock RE. Optimizing treatment of desmoid tumors. J Clin Oncol 2007; 25(13): 1785–1791
CrossRef Pubmed Google scholar
[57]
Rodriguez-Bigas MA, Mahoney MC, Karakousis CP, Petrelli NJ. Desmoid tumors in patients with familial adenomatous polyposis. Cancer 1994; 74(4): 1270–1274
CrossRef Pubmed Google scholar
[58]
Ballo MT, Zagars GK, Pollack A, Pisters PW, Pollack RA. Desmoid tumor: prognostic factors and outcome after surgery, radiation therapy, or combined surgery and radiation therapy. J Clin Oncol 1999; 17(1): 158–167
CrossRef Pubmed Google scholar
[59]
Gronchi A, Casali PG, Mariani L, Lo Vullo S, Colecchia M, Lozza L, Bertulli R, Fiore M, Olmi P, Santinami M, Rosai J. Quality of surgery and outcome in extra-abdominal aggressive fibromatosis: a series of patients surgically treated at a single institution. J Clin Oncol 2003; 21(7): 1390–1397
CrossRef Pubmed Google scholar
[60]
Johnson JG, Gilbert E, Zimmermann B, Watne AL. Gardner’s syndrome, colon cancer, and sarcoma. J Surg Oncol 1972; 4(4): 354–362
CrossRef Pubmed Google scholar
[61]
Leibel SA, Wara WM, Hill DR, Bovill EG Jr, de Lorimier AA, Beckstead JH, Phillips TL. Desmoid tumors: local control and patterns of relapse following radiation therapy. Int J Radiat Oncol Biol Phys 1983; 9(8): 1167–1171
CrossRef Pubmed Google scholar
[62]
Pignatti G, Barbanti-Bròdano G, Ferrari D, Gherlinzoni F, Bertoni F, Bacchini P, Barbieri E, Giunti A, Campanacci M. Extraabdominal desmoid tumor. A study of 83 cases. Clin Orthop Relat Res 2000; (375): 207–213
CrossRef Pubmed Google scholar
[63]
Posner MC, Shiu MH, Newsome JL, Hajdu SI, Gaynor JJ, Brennan MF. The desmoid tumor. Not a benign disease. Arch Surg 1989; 124(2): 191–196
CrossRef Pubmed Google scholar
[64]
Reitamo JJ. The desmoid tumor. IV. Choice of treatment, results, and complications. Arch Surg 1983; 118(11): 1318–1322
CrossRef Pubmed Google scholar
[65]
Sørensen A, Keller J, Nielsen OS, Jensen OM. Treatment of aggressive fibromatosis: a retrospective study of 72 patients followed for 1−27 years. Acta Orthop Scand 2002; 73(2): 213–219
CrossRef Pubmed Google scholar
[66]
Crago AM, Denton B, Salas S, Dufresne A, Mezhir JJ, Hameed M, Gonen M, Singer S, Brennan MF. A prognostic nomogram for prediction of recurrence in desmoid fibromatosis. Ann Surg 2013; 258(2): 347–353
CrossRef Pubmed Google scholar
[67]
Fiore M, Colombo C, Radaelli S, Callegaro D, Palassini E, Barisella M, Morosi C, Baldi GG, Stacchiotti S, Casali PG, Gronchi A. Hormonal manipulation with toremifene in sporadic desmoid-type fibromatosis. Eur J Cancer 2015; 51(18): 2800–2807
CrossRef Pubmed Google scholar
[68]
Quast DR, Schneider R, Burdzik E, Hoppe S, Möslein G. Long-term outcome of sporadic and FAP-associated desmoid tumors treated with high-dose selective estrogen receptor modulators and sulindac: a single-center long-term observational study in 134 patients. Fam Cancer 2016; 15(1): 31–40
CrossRef Pubmed Google scholar
[69]
Desurmont T, Lefèvre JH, Shields C, Colas C, Tiret E, Parc Y. Desmoid tumour in familial adenomatous polyposis patients: responses to treatments. Fam Cancer 2015; 14(1): 31–39
CrossRef Pubmed Google scholar
[70]
Hansmann A, Adolph C, Vogel T, Unger A, Moeslein G. High-dose tamoxifen and sulindac as first-line treatment for desmoid tumors. Cancer 2004; 100(3): 612–620
CrossRef Pubmed Google scholar
[71]
Howard JH, Pollock RE. Intra-abdominal and abdominal wall desmoid fibromatosis. Oncol Ther 2016; 4(1): 57–72
CrossRef Pubmed Google scholar
[72]
Fisher B, Costantino JP, Wickerham DL, Redmond CK, Kavanah M, Cronin WM, Vogel V, Robidoux A, Dimitrov N, Atkins J, Daly M, Wieand S, Tan-Chiu E, Ford L, Wolmark N. Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 1998; 90(18): 1371–1388
CrossRef Pubmed Google scholar
[73]
de Camargo VP, Keohan ML, D’Adamo DR, Antonescu CR, Brennan MF, Singer S, Ahn LS, Maki RG. Clinical outcomes of systemic therapy for patients with deep fibromatosis (desmoid tumor). Cancer 2010; 116(9): 2258–2265
CrossRef Pubmed Google scholar
[74]
Gega M, Yanagi H, Yoshikawa R, Noda M, Ikeuchi H, Tsukamoto K, Oshima T, Fujiwara Y, Gondo N, Tamura K, Utsunomiya J, Hashimoto-Tamaoki T, Yamamura T. Successful chemotherapeutic modality of doxorubicin plus dacarbazine for the treatment of desmoid tumors in association with familial adenomatous polyposis. J Clin Oncol 2006; 24(1): 102–105
CrossRef Pubmed Google scholar
[75]
Constantinidou A, Jones RL, Scurr M, Al-Muderis O, Judson I. Pegylated liposomal doxorubicin, an effective, well-tolerated treatment for refractory aggressive fibromatosis. Eur J Cancer 2009; 45(17): 2930–2934
CrossRef Pubmed Google scholar
[76]
Garbay D, Le Cesne A, Penel N, Chevreau C, Marec-Berard P, Blay JY, Debled M, Isambert N, Thyss A, Bompas E, Collard O, Salas S, Coindre JM, Bui B, Italiano A. Chemotherapy in patients with desmoid tumors: a study from the French Sarcoma Group (FSG). Ann Oncol 2012; 23(1): 182–186
CrossRef Pubmed Google scholar
[77]
Weiss AJ, Horowitz S, Lackman RD. Therapy of desmoid tumors and fibromatosis using vinorelbine. Am J Clin Oncol 1999; 22(2): 193–195
CrossRef Pubmed Google scholar
[78]
Azzarelli A, Gronchi A, Bertulli R, Tesoro JD, Baratti D, Pennacchioli E, Dileo P, Rasponi A, Ferrari A, Pilotti S, Casali PG. Low-dose chemotherapy with methotrexate and vinblastine for patients with advanced aggressive fibromatosis. Cancer 2001; 92(5): 1259–1264
CrossRef Pubmed Google scholar
[79]
Bertagnolli MM, Morgan JA, Fletcher CD, Raut CP, Dileo P, Gill RR, Demetri GD, George S. Multimodality treatment of mesenteric desmoid tumours. Eur J Cancer 2008; 44(16): 2404–2410
CrossRef Pubmed Google scholar
[80]
Tanaka K, Yoshikawa R, Yanagi H, Gega M, Fujiwara Y, Hashimoto-Tamaoki T, Hirota S, Tsujimura T, Tomita N. Regression of sporadic intra-abdominal desmoid tumour following administration of non-steroidal anti-inflammatory drug. World J Surg Oncol 2008; 6(1): 17
CrossRef Pubmed Google scholar
[81]
Bocale D, Rotelli MT, Cavallini A, Altomare DF. Anti-oestrogen therapy in the treatment of desmoid tumours: a systematic review. Colorectal Dis 2011; 13(12): e388–e395
CrossRef Pubmed Google scholar
[82]
Li S, Fan Z, Fang Z, Liu J, Bai C, Xue R, Zhang L, Gao T. Efficacy of vinorelbine combined with low-dose methotrexate for treatment of inoperable desmoid tumor and prognostic factor analysis. Chin J Cancer Res 2017; 29(5): 455–462
CrossRef Pubmed Google scholar

Acknowledgements

We would like to thank all faculty members who assisted us in this study. This work was supported by the Beijing Municipal Administration of Hospitals Clinical Medicine Development Special Funding Support (No. XMLX201708), the Capital Health Research and Development Special Funds (No. 2016-2-2151), Beijing Municipal Administration of Hospital’s Ascent Plan (No. DFL20181104), and the National Natural Science Foundation of China (No. 31770836).

Compliance with ethics guidelines

Zhen Wang, Jianhui Wu, Xiuyun Tian, and Chunyi Hao declare no competing financial interests. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(293 KB)

Accesses

Citations

Detail

Sections
Recommended

/