Calorie restriction and its impact on gut microbial composition and global metabolism
Xiaojiao Zheng, Shouli Wang, Wei Jia
Calorie restriction and its impact on gut microbial composition and global metabolism
Calorie restriction (CR) is a dietary regimen that reduces calorie intake without incurring malnutrition or a reduction in essential nutrients. It has long been recognized as a natural strategy for promoting health, extending longevity, and prevents the development of metabolic and age-related diseases. In the present review, we focus on the general effect of CR on gut microbiota composition and global metabolism. We also propose mechanisms for its beneficial effect. Results showed that probiotic and butyrate-producing microbes increased their relative abundance, whereas proinflammatory strains exhibited suppressed relative abundance following CR. Analyses of the gut microbial and host metabolisms revealed that most host microbial co-metabolites were changed due to CR. Examples of dramatic CR-induced changes in host metabolism included a decrease in the rate of lipid biosynthesis and an increase in the rates of fatty acid catabolism, β-oxidation, glycogenolysis, and gluconeogenesis. The observed phenotypes and the further verification of the direct link between gut microbiota and metabolome may benefit patients that are at risk for developing metabolic disease. Thus, improved gut microbiota composition and metabolome are potential biomarkers for determining the effectiveness of dietary interventions for age-related and metabolic diseases.
caloric restriction / gut microbiota / metabolome
[1] |
Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009; 325(5937): 201–204
CrossRef
Pubmed
Google scholar
|
[2] |
Fontana L, Klein S. Aging, adiposity, and calorie restriction. JAMA 2007; 297(9): 986–994
CrossRef
Pubmed
Google scholar
|
[3] |
Zhang C, Li S, Yang L, Huang P, Li W, Wang S, Zhao G, Zhang M, Pang X, Yan Z, Liu Y, Zhao L. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun 2013; 4(1): 2163
CrossRef
Pubmed
Google scholar
|
[4] |
Kim KE, Jung Y, Min S, Nam M, Heo RW, Jeon BT, Song DH, Yi CO, Jeong EA, Kim H, Kim J, Jeong SY, Kwak W, Ryu H, Horvath TL, Roh GS, Hwang GS. Caloric restriction of db/db mice reverts hepatic steatosis and body weight with divergent hepatic metabolism. Sci Rep 2016; 6(1): 30111
CrossRef
Pubmed
Google scholar
|
[5] |
Qu B, Halliwell B, Ong CN, Lee BL, Li QT. Caloric restriction prevents oxidative damage induced by the carcinogen clofibrate in mouse liver. FEBS Lett 2000; 473(1): 85–88
CrossRef
Pubmed
Google scholar
|
[6] |
Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab 2014; 19(2): 181–192
CrossRef
Pubmed
Google scholar
|
[7] |
Koubova J, Guarente L. How does calorie restriction work? Genes Dev 2003; 17(3): 313–321
CrossRef
Pubmed
Google scholar
|
[8] |
Wang Y, Lawler D, Larson B, Ramadan Z, Kochhar S, Holmes E, Nicholson JK. Metabonomic investigations of aging and caloric restriction in a life-long dog study. J Proteome Res 2007; 6(5): 1846–1854
CrossRef
Pubmed
Google scholar
|
[9] |
Kealy RD, Lawler DF, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD. Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 2002; 220(9): 1315–1320
CrossRef
Pubmed
Google scholar
|
[10] |
Masoro EJ. Food restriction in rodents: an evaluation of its role in the study of aging. J Gerontol 1988; 43(3): B59–B64
CrossRef
Pubmed
Google scholar
|
[11] |
Smilowitz JT, Wiest MM, Watkins SM, Teegarden D, Zemel MB, German JB, Van Loan MD. Lipid metabolism predicts changes in body composition during energy restriction in overweight humans. J Nutr 2009; 139(2): 222–229
CrossRef
Pubmed
Google scholar
|
[12] |
López-Lluch G, Hunt N, Jones B, Zhu M, Jamieson H, Hilmer S, Cascajo MV, Allard J, Ingram DK, Navas P, de Cabo R. Calorie restriction induces mitochondrial biogenesis and bioenergetic efficiency. Proc Natl Acad Sci USA 2006; 103(6): 1768–1773
CrossRef
Pubmed
Google scholar
|
[13] |
Rezzi S, Martin FP, Shanmuganayagam D, Colman RJ, Nicholson JK, Weindruch R. Metabolic shifts due to long-term caloric restriction revealed in nonhuman primates. Exp Gerontol 2009; 44(5): 356–362
CrossRef
Pubmed
Google scholar
|
[14] |
Su HY, Lee HC, Cheng WY, Huang SY. A calorie-restriction diet supplemented with fish oil and high-protein powder is associated with reduced severity of metabolic syndrome in obese women. Eur J Clin Nutr 2015; 69(3): 322–328
CrossRef
Pubmed
Google scholar
|
[15] |
Schmedes MS, Yde CC, Svensson U, Håkansson J, Baby S, Bertram HC. Impact of a 6-week very low-calorie diet and weight reduction on the serum and fecal metabolome of overweight subjects. Eur Food Res Technol 2015; 240(3): 583–594
CrossRef
Google scholar
|
[16] |
Kim M, Lee SH, Lee JH. Global metabolic profiling of plasma shows that three-year mild-caloric restriction lessens an age-related increase in sphingomyelin and reduces L-leucine and L-phenylalanine in overweight and obese subjects. Aging Dis 2016; 7(6): 721–733
CrossRef
Pubmed
Google scholar
|
[17] |
Guarente L. Mitochondria—a nexus for aging, calorie restriction, and sirtuins? Cell 2008; 132(2): 171–176
CrossRef
Pubmed
Google scholar
|
[18] |
Zheng X, Zhao A, Xie G, Chi Y, Zhao L, Li H, Wang C, Bao Y, Jia W, Luther M, Su M, Nicholson JK, Jia W. Melamine-induced renal toxicity is mediated by the gut microbiota. Sci Transl Med 2013; 5(172): 172ra22
CrossRef
Pubmed
Google scholar
|
[19] |
Goodman AL, Gordon JI. Our unindicted coconspirators: human metabolism from a microbial perspective. Cell Metab 2010; 12(2): 111–116
CrossRef
Pubmed
Google scholar
|
[20] |
David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014; 505(7484): 559–563
CrossRef
Pubmed
Google scholar
|
[21] |
Fraumene C, Manghina V, Cadoni E, Marongiu F, Abbondio M, Serra M, Palomba A, Tanca A, Laconi E, Uzzau S. Caloric restriction promotes rapid expansion and long-lasting increase of Lactobacillus in the rat fecal microbiota. Gut Microbes 2018; 9(2): 104–114
Pubmed
|
[22] |
Wu J, Yang L, Li S, Huang P, Liu Y, Wang Y, Tang H. Metabolomics insights into the modulatory effects of long-term low calorie intake in mice. J Proteome Res 2016; 15(7): 2299–2308
CrossRef
Pubmed
Google scholar
|
[23] |
Zheng X, Chen T, Zhao A, Wang X, Xie G, Huang F, Liu J, Zhao Q, Wang S, Wang C, Zhou M, Panee J, He Z, Jia W. The brain metabolome of male rats across the lifespan. Sci Rep 2016; 6(1): 24125
CrossRef
Pubmed
Google scholar
|
[24] |
Xie G, Zheng X, Qi X, Cao Y, Chi Y, Su M, Ni Y, Qiu Y, Liu Y, Li H, Zhao A, Jia W. Metabonomic evaluation of melamine-induced acute renal toxicity in rats. J Proteome Res 2010; 9(1): 125–133
CrossRef
Pubmed
Google scholar
|
[25] |
Zheng X, Xie G, Jia W. Metabolomic profiling in colorectal cancer: opportunities for personalized medicine. Per Med 2013; 10(7): 741–755
CrossRef
Pubmed
Google scholar
|
[26] |
Xu H, Zheng X, Jia W, Yin S. Chromatography/mass spectrometry-based biomarkers in the field of obstructive sleep apnea. Medicine (Baltimore) 2015; 94(40): e1541
CrossRef
Pubmed
Google scholar
|
[27] |
Ott B, Skurk T, Hastreiter L, Lagkouvardos I, Fischer S, Büttner J, Kellerer T, Clavel T, Rychlik M, Haller D, Hauner H. Effect of caloric restriction on gut permeability, inflammation markers, and fecal microbiota in obese women. Sci Rep 2017; 7(1): 11955
CrossRef
Pubmed
Google scholar
|
[28] |
Pataky Z, Genton L, Spahr L, Lazarevic V, Terraz S, Gaïa N, Rubbia-Brandt L, Golay A, Schrenzel J, Pichard C. Impact of hypocaloric hyperproteic diet on gut microbiota in overweight or obese patients with nonalcoholic fatty liver disease: a pilot study. Dig Dis Sci 2016; 61(9): 2721–2731
CrossRef
Pubmed
Google scholar
|
[29] |
Ruiz A, Cerdó T, Jáuregui R, Pieper DH, Marcos A, Clemente A, García F, Margolles A, Ferrer M, Campoy C, Suárez A. One-year calorie restriction impacts gut microbial composition but not its metabolic performance in obese adolescents. Environ Microbiol 2017; 19(4): 1536–1551
CrossRef
Pubmed
Google scholar
|
[30] |
Bartley JM, Zhou X, Kuchel GA, Weinstock GM, Haynes L. Impact of age, caloric restriction, and influenza infection on mouse gut microbiome: an exploratory study of the role of age-related microbiome changes on influenza responses. Front Immunol 2017; 8: 1164
CrossRef
Pubmed
Google scholar
|
[31] |
Henderson AL, Cao WW, Wang RF, Lu MH, Cerniglia CE. The effect of food restriction on the composition of intestinal microflora in rats. Exp Gerontol 1998; 33(3): 239–247
CrossRef
Pubmed
Google scholar
|
[32] |
Mai V, Colbert LH, Perkins SN, Schatzkin A, Hursting SD. Intestinal microbiota: a potential diet-responsive prevention target in ApcMin mice. Mol Carcinog 2007; 46(1): 42–48
CrossRef
Pubmed
Google scholar
|
[33] |
Santacruz A, Marcos A, Wärnberg J, Martí A, Martin-Matillas M, Campoy C, Moreno LA, Veiga O, Redondo-Figuero C, Garagorri JM, Azcona C, Delgado M, García-Fuentes M, Collado MC, Sanz Y; EVASYON Study Group. Interplay between weight loss and gut microbiota composition in overweight adolescents. Obesity (Silver Spring) 2009; 17(10): 1906–1915
CrossRef
Pubmed
Google scholar
|
[34] |
Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, Huson DH, Bischoff SC. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. BioMed Res Int 2015; 2015: 806248
CrossRef
Pubmed
Google scholar
|
[35] |
Russo M, Fabersani E, Abeijón-Mukdsi MC, Ross R, Fontana C, Benítez-Páez A, Gauffin-Cano P, Medina RB. Lactobacillus fermentum CRL1446 ameliorates oxidative and metabolic parameters by increasing intestinal feruloyl esterase activity and modulating microbiota in caloric-restricted mice. Nutrients 2016; 8(7): E415
CrossRef
Pubmed
Google scholar
|
[36] |
Bernardeau M, Guguen M, Vernoux JP. Beneficial lactobacilli in food and feed: long-term use, biodiversity and proposals for specific and realistic safety assessments. FEMS Microbiol Rev 2006; 30(4): 487–513
CrossRef
Pubmed
Google scholar
|
[37] |
Zareie M, Johnson-Henry K, Jury J, Yang PC, Ngan BY, McKay DM, Soderholm JD, Perdue MH, Sherman PM. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 2006; 55(11): 1553–1560
CrossRef
Pubmed
Google scholar
|
[38] |
Sun J, Buys N. Effects of probiotics consumption on lowering lipids and CVD risk factors: a systematic review and meta-analysis of randomized controlled trials. Ann Med 2015; 47(6): 430–440
CrossRef
Pubmed
Google scholar
|
[39] |
Zhang C, Zhang M, Wang S, Han R, Cao Y, Hua W, Mao Y, Zhang X, Pang X, Wei C, Zhao G, Chen Y, Zhao L. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J 2010; 4(2): 232–241
CrossRef
Pubmed
Google scholar
|
[40] |
Price LB, Liu CM, Melendez JH, Frankel YM, Engelthaler D, Aziz M, Bowers J, Rattray R, Ravel J, Kingsley C, Keim PS, Lazarus GS, Zenilman JM. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 2009; 4(7): e6462
CrossRef
Pubmed
Google scholar
|
[41] |
Kuehbacher T, Rehman A, Lepage P, Hellmig S, Fölsch UR, Schreiber S, Ott SJ. Intestinal TM7 bacterial phylogenies in active inflammatory bowel disease. J Med Microbiol 2008; 57(Pt 12): 1569–1576
CrossRef
Pubmed
Google scholar
|
[42] |
Zweigner J, Schumann RR, Weber JR. The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbes Infect 2006; 8(3): 946–952
CrossRef
Pubmed
Google scholar
|
[43] |
Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmée E, Cousin B, Sulpice T, Chamontin B, Ferrières J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56(7): 1761–1772
CrossRef
Pubmed
Google scholar
|
[44] |
Brahe LK, Astrup A, Larsen LH. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes Rev 2013; 14(12): 950–959
CrossRef
Pubmed
Google scholar
|
[45] |
Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11(10): 577–591
CrossRef
Pubmed
Google scholar
|
[46] |
Endo H, Niioka M, Kobayashi N, Tanaka M, Watanabe T. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats: new insight into the probiotics for the gut-liver axis. PLoS One 2013; 8(5): e63388
CrossRef
Pubmed
Google scholar
|
[47] |
Schwiertz A, Taras D, Schäfer K, Beijer S, Bos NA, Donus C, Hardt PD. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring) 2010; 18(1): 190–195
CrossRef
Pubmed
Google scholar
|
[48] |
Selman C, Kerrison ND, Cooray A, Piper MD, Lingard SJ, Barton RH, Schuster EF, Blanc E, Gems D, Nicholson JK, Thornton JM, Partridge L, Withers DJ. Coordinated multitissue transcriptional and plasma metabonomic profiles following acute caloric restriction in mice. Physiol Genomics 2006; 27(3): 187–200
CrossRef
Pubmed
Google scholar
|
[49] |
Richards SE, Wang Y, Lawler D, Kochhar S, Holmes E, Lindon JC, Nicholson JK. Self-modeling curve resolution recovery of temporal metabolite signal modulation in NMR spectroscopic data sets: application to a life-long caloric restriction study in dogs. Anal Chem 2008; 80(13): 4876–4885
CrossRef
Pubmed
Google scholar
|
[50] |
Margolis LM, Rivas DA, Ezzyat Y, Gaffney-Stomberg E, Young AJ, McClung JP, Fielding RA, Pasiakos SM. Calorie restricted high protein diets downregulate lipogenesis and lower intrahepatic triglyceride concentrations in male rats. Nutrients 2016; 8(9): E571
CrossRef
Pubmed
Google scholar
|
[51] |
Krebs M, Krssak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W, Roden M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 2002; 51(3): 599–605
CrossRef
Pubmed
Google scholar
|
[52] |
Solon-Biet SM, Mitchell SJ, Coogan SC, Cogger VC, Gokarn R, McMahon AC, Raubenheimer D, de Cabo R, Simpson SJ, Le Couteur DG. Dietary protein to carbohydrate ratio and caloric restriction: comparing metabolic outcomes in mice. Cell Reports 2015; 11(10): 1529–1534
CrossRef
Pubmed
Google scholar
|
[53] |
Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, Slentz CA, Tanner CJ, Kuchibhatla M, Houmard JA, Newgard CB, Kraus WE. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009; 32(9): 1678–1683
CrossRef
Pubmed
Google scholar
|
[54] |
Shaham O, Wei R, Wang TJ, Ricciardi C, Lewis GD, Vasan RS, Carr SA, Thadhani R, Gerszten RE, Mootha VK. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 2008; 4: 214
CrossRef
Pubmed
Google scholar
|
[55] |
Walsh MC, Brennan L, Malthouse JP, Roche HM, Gibney MJ. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 2006; 84(3): 531–539
CrossRef
Pubmed
Google scholar
|
[56] |
Mellert W, Kapp M, Strauss V, Wiemer J, Kamp H, Walk T, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B. Nutritional impact on the plasma metabolome of rats. Toxicol Lett 2011; 207(2): 173–181
CrossRef
Pubmed
Google scholar
|
[57] |
Simón E, Portillo MP, Fernández-Quintela A, Zulet MA, Martínez JA, Del Barrio AS. Responses to dietary macronutrient distribution of overweight rats under restricted feeding. Ann Nutr Metab 2002; 46(1): 24–31
CrossRef
Pubmed
Google scholar
|
[58] |
Selmer T, Andrei PI. p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol. Eur J Biochem 2001; 268(5): 1363–1372
CrossRef
Pubmed
Google scholar
|
[59] |
Lees HJ, Swann JR, Wilson ID, Nicholson JK, Holmes E. Hippurate: the natural history of a mammalian-microbial cometabolite. J Proteome Res 2013; 12(4): 1527–1546
CrossRef
Pubmed
Google scholar
|
[60] |
Jové M, Naudí A, Ramírez-Núñez O, Portero-Otín M, Selman C, Withers DJ, Pamplona R. Caloric restriction reveals a metabolomic and lipidomic signature in liver of male mice. Aging Cell 2014; 13(5): 828–837
CrossRef
Pubmed
Google scholar
|
[61] |
Zheng H, Lorenzen JK, Astrup A, Larsen LH, Yde CC, Clausen MR, Bertram HC. Metabolic effects of a 24-week energy-restricted intervention combined with low or high dairy intake in overweight women: an NMR-based metabolomics investigation. Nutrients 2016; 8(3): 108
CrossRef
Pubmed
Google scholar
|
[62] |
Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012; 336(6086): 1262–1267
CrossRef
Pubmed
Google scholar
|
[63] |
Zheng X, Xie G, Zhao A, Zhao L, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 2011; 10(12): 5512–5522
CrossRef
Pubmed
Google scholar
|
[64] |
Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS. Mol Biosyst 2005; 1(2): 166–175
CrossRef
Pubmed
Google scholar
|
[65] |
Schnackenberg LK, Sun J, Espandiari P, Holland RD, Hanig J, Beger RD. Metabonomics evaluations of age-related changes in the urinary compositions of male Sprague Dawley rats and effects of data normalization methods on statistical and quantitative analysis. BMC Bioinformatics 2007; 8(Suppl 7): S3
CrossRef
Pubmed
Google scholar
|
[66] |
Hennebelle M, Roy M, St-Pierre V, Courchesne-Loyer A, Fortier M, Bouzier-Sore AK, Gallis JL, Beauvieux MC, Cunnane SC. Energy restriction does not prevent insulin resistance but does prevent liver steatosis in aging rats on a Western-style diet. Nutrition 2015; 31(3): 523–530
CrossRef
Pubmed
Google scholar
|
[67] |
Nestor G, Eriksson J, Sandström C, Malmlöf K. Nuclear magnetic resonance-based blood metabolic profiles of rats exposed to short-term caloric restriction. Anal Lett 2015; 48(16): 2613–2625
CrossRef
Google scholar
|
[68] |
al-Waiz M, Mikov M, Mitchell SC, Smith RL. The exogenous origin of trimethylamine in the mouse. Metabolism 1992; 41(2): 135–136
CrossRef
Pubmed
Google scholar
|
[69] |
De Guzman JM, Ku G, Fahey R, Youm YH, Kass I, Ingram DK, Dixit VD, Kheterpal I. Chronic caloric restriction partially protects against age-related alteration in serum metabolome. Age (Dordr) 2013; 35(4): 1091–1104
CrossRef
Pubmed
Google scholar
|
[70] |
Zhang Y, Yan S, Gao X, Dai W, Liu S, Jin H, Zhang W, Mei C. Metabonomic investigation on the protective effects of rosiglitazone and caloric restriction for renal senescence in a rat model. Aging Clin Exp Res 2012; 24(5): 430–438
Pubmed
|
[71] |
Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and calorie restriction on plasma metabolites and lipids in C57BL/6J mice. Nutr Metab (Lond) 2014; 11(1): 23
CrossRef
Pubmed
Google scholar
|
[72] |
Malandrucco I, Pasqualetti P, Giordani I, Manfellotto D, De Marco F, Alegiani F, Sidoti AM, Picconi F, Di Flaviani A, Frajese G, Bonadonna RC, Frontoni S. Very-low-calorie diet: a quick therapeutic tool to improve β cell function in morbidly obese patients with type 2 diabetes. Am J Clin Nutr 2012; 95(3): 609–613
CrossRef
Pubmed
Google scholar
|
[73] |
Szapary PO, Rader DJ. The triglyceride-high-density lipoprotein axis: an important target of therapy? Am Heart J 2004; 148(2): 211–221
CrossRef
Pubmed
Google scholar
|
[74] |
Cazzola R, Rondanelli M, Trotti R, Cestaro B. Effects of weight loss on erythrocyte membrane composition and fluidity in overweight and moderately obese women. J Nutr Biochem 2011; 22(4): 388–392
CrossRef
Pubmed
Google scholar
|
[75] |
Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 2006; 55(9): 2579–2587
CrossRef
Pubmed
Google scholar
|
[76] |
Weir JM, Wong G, Barlow CK, Greeve MA, Kowalczyk A, Almasy L, Comuzzie AG, Mahaney MC, Jowett JB, Shaw J, Curran JE, Blangero J, Meikle PJ. Plasma lipid profiling in a large population-based cohort. J Lipid Res 2013; 54(10): 2898–2908
CrossRef
Pubmed
Google scholar
|
[77] |
Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM, Czaja MJ. Autophagy regulates lipid metabolism. Nature 2009; 458(7242): 1131–1135
CrossRef
Pubmed
Google scholar
|
[78] |
Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 2005; 365(9468): 1415–1428
CrossRef
Pubmed
Google scholar
|
[79] |
Ni Y, Zhao L, Yu H, Ma X, Bao Y, Rajani C, Loo LW, Shvetsov YB, Yu H, Chen T, Zhang Y, Wang C, Hu C, Su M, Xie G, Zhao A, Jia W, Jia W. Circulating unsaturated fatty acids delineate the metabolic status of obese individuals. EBioMedicine 2015; 2(10): 1513–1522
CrossRef
Pubmed
Google scholar
|
[80] |
Wijeyesekera A, Selman C, Barton RH, Holmes E, Nicholson JK, Withers DJ. Metabotyping of long-lived mice using 1H NMR spectroscopy. J Proteome Res 2012; 11(4): 2224–2235
CrossRef
Pubmed
Google scholar
|
[81] |
Javitt NB. Bile acid synthesis from cholesterol: regulatory and auxiliary pathways. FASEB J 1994; 8(15): 1308–1311
CrossRef
Pubmed
Google scholar
|
[82] |
Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol 2017; 15(2): 111–128
CrossRef
Pubmed
Google scholar
|
[83] |
Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7(8): 678–693
CrossRef
Pubmed
Google scholar
|
[84] |
Fu ZD, Klaassen CD. Increased bile acids in enterohepatic circulation by short-term calorie restriction in male mice. Toxicol Appl Pharmacol 2013; 273(3): 680–690
CrossRef
Pubmed
Google scholar
|
[85] |
Straniero S, Rosqvist F, Edholm D, Ahlström H, Kullberg J, Sundbom M, Risérus U, Rudling M. Acute caloric restriction counteracts hepatic bile acid and cholesterol deficiency in morbid obesity. J Intern Med 2017; 281(5): 507–517
CrossRef
Pubmed
Google scholar
|
[86] |
Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell 2017; 16(3): 529–540
CrossRef
Pubmed
Google scholar
|
[87] |
Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick JA, Ellisman MH, Panda S. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 2012; 15(6): 848–860
CrossRef
Pubmed
Google scholar
|
[88] |
Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439(7075): 484–489
CrossRef
Pubmed
Google scholar
|
[89] |
Ferbeyre G. Bile acids in the fountain of youth. Aging (Albany NY) 2010; 2(7): 383–384
CrossRef
Pubmed
Google scholar
|
[90] |
MacDonald M, Neufeldt N, Park BN, Berger M, Ruderman N. Alanine metabolism and gluconeogenesis in the rat. Am J Physiol 1976; 231(2): 619–626
CrossRef
Pubmed
Google scholar
|
[91] |
Lee CK, Klopp RG, Weindruch R, Prolla TA. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285(5432): 1390–1393
CrossRef
Pubmed
Google scholar
|
[92] |
Lee CK, Weindruch R, Prolla TA. Gene-expression profile of the ageing brain in mice. Nat Genet 2000; 25(3): 294–297
CrossRef
Pubmed
Google scholar
|
[93] |
Wu C, Kang JE, Peng LJ, Li H, Khan SA, Hillard CJ, Okar DA, Lange AJ. Enhancing hepatic glycolysis reduces obesity: differential effects on lipogenesis depend on site of glycolytic modulation. Cell Metab 2005; 2(2): 131–140
CrossRef
Pubmed
Google scholar
|
[94] |
Lee CH, Olson P, Hevener A, Mehl I, Chong LW, Olefsky JM, Gonzalez FJ, Ham J, Kang H, Peters JM, Evans RM. PPARδ regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 2006; 103(9): 3444–3449
CrossRef
Pubmed
Google scholar
|
[95] |
Gu Y, Zhao A, Huang F, Zhang Y, Liu J, Wang C, Jia W, Xie G, Jia W. Very low carbohydrate diet significantly alters the serum metabolic profiles in obese subjects. J Proteome Res 2013; 12(12): 5801–5811
CrossRef
Pubmed
Google scholar
|
[96] |
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, Rochon J, Gallup D, Ilkayeva O, Wenner BR, Yancy WS Jr, Eisenson H, Musante G, Surwit RS, Millington DS, Butler MD, Svetkey LP. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 2009; 9(4): 311–326
CrossRef
Pubmed
Google scholar
|
[97] |
Shah SH, Crosslin DR, Haynes CS, Nelson S, Turer CB, Stevens RD, Muehlbauer MJ, Wenner BR, Bain JR, Laferrère B, Gorroochurn P, Teixeira J, Brantley PJ, Stevens VJ, Hollis JF, Appel LJ, Lien LF, Batch B, Newgard CB, Svetkey LP. Branched-chain amino acid levels are associated with improvement in insulin resistance with weight loss. Diabetologia 2012; 55(2): 321–330
CrossRef
Pubmed
Google scholar
|
[98] |
Nilsson M, Holst JJ, Björck IM. Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks. Am J Clin Nutr 2007; 85(4): 996–1004
CrossRef
Pubmed
Google scholar
|
[99] |
Tavernarakis N, Driscoll M. Caloric restriction and lifespan: a role for protein turnover? Mech Ageing Dev 2002; 123(2-3): 215–229
CrossRef
Pubmed
Google scholar
|
[100] |
Ingram DK, Young J, Mattison JA. Calorie restriction in nonhuman primates: assessing effects on brain and behavioral aging. Neuroscience 2007; 145(4): 1359–1364
CrossRef
Pubmed
Google scholar
|
[101] |
Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, Kayser BD, Levenez F, Chilloux J, Hoyles L; MICRO-Obes Consortium, Dumas ME, Rizkalla SW, Doré J, Cani PD, Clément K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 2016; 65(3): 426–436
CrossRef
Pubmed
Google scholar
|
[102] |
Griffin NW, Ahern PP, Cheng J, Heath AC, Ilkayeva O, Newgard CB, Fontana L, Gordon JI. Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions. Cell Host Microbe 2017; 21(1): 84–96
CrossRef
Pubmed
Google scholar
|
[103] |
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium, Bork P, Wang J, Ehrlich SD, Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500(7464): 541–546
CrossRef
Pubmed
Google scholar
|
[104] |
Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium,Doré J, Zucker JD, Clément K, Ehrlich SD. Dietary intervention impact on gut microbial gene richness. Nature 2013; 500(7464): 585–588
CrossRef
Pubmed
Google scholar
|
[105] |
Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, Tjota MY, Seo GY, Cao S, Theriault BR, Antonopoulos DA, Zhou L, Chang EB, Fu YX, Nagler CR. Commensal bacteria protect against food allergen sensitization. Proc Natl Acad Sci USA 2014; 111(36): 13145–13150
CrossRef
Pubmed
Google scholar
|
[106] |
Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalová L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized nutrition by prediction of glycemic responses. Cell 2015; 163(5): 1079–1094
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |