Histone variants: critical determinants in tumour heterogeneity
Tao Wang, Florent Chuffart, Ekaterina Bourova-Flin, Jin Wang, Jianqing Mi, Sophie Rousseaux, Saadi Khochbin
Histone variants: critical determinants in tumour heterogeneity
Malignant cell transformation could be considered as a series of cell reprogramming events driven by oncogenic transcription factors and upstream signalling pathways. Chromatin plasticity and dynamics are critical determinants in the control of cell reprograming. An increase in chromatin dynamics could therefore constitute an essential step in driving oncogenesis and in generating tumour cell heterogeneity, which is indispensable for the selection of aggressive properties, including the ability of cells to disseminate and acquire resistance to treatments. Histone supply and dosage, as well as histone variants, are the best-known regulators of chromatin dynamics. By facilitating cell reprogramming, histone under-dosage and histone variants should also be crucial in cell transformation and tumour metastasis. Here we summarize and discuss our knowledge of the role of histone supply and histone variants in chromatin dynamics and their ability to enhance oncogenic cell reprogramming and tumour heterogeneity.
cancer-testis / TH2B / TH2A / H1T / H1.0 / H1F0 / linker histones
[1] |
Assenov Y, Brocks D, Gerhäuser C. Intratumor heterogeneity in epigenetic patterns. Semin Cancer Biol 2018; 51: 12–21
CrossRef
Pubmed
Google scholar
|
[2] |
Mazor T, Pankov A, Song JS, Costello JF. Intratumoral heterogeneity of the epigenome. Cancer Cell 2016; 29(4): 440–451
CrossRef
Pubmed
Google scholar
|
[3] |
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
CrossRef
Pubmed
Google scholar
|
[4] |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663–676
CrossRef
Pubmed
Google scholar
|
[5] |
Ecker S, Pancaldi V, Valencia A, Beck S, Paul DS. Epigenetic and transcriptional variability shape phenotypic plasticity. BioEssays 2018; 40(2): 1700148
CrossRef
Pubmed
Google scholar
|
[6] |
Puisieux A, Pommier RM, Morel AP, Lavial F. Cellular pliancy and the multistep process of tumorigenesis. Cancer Cell 2018; 33(2): 164–172
CrossRef
Pubmed
Google scholar
|
[7] |
Decottignies A, d’Adda di Fagagna F. Epigenetic alterations associated with cellular senescence: a barrier against tumorigenesis or a red carpet for cancer? Semin Cancer Biol 2011; 21(6): 360–366
CrossRef
Pubmed
Google scholar
|
[8] |
De Carvalho DD, You JS, Jones PA. DNA methylation and cellular reprogramming. Trends Cell Biol 2010; 20(10): 609–617
CrossRef
Pubmed
Google scholar
|
[9] |
Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 2016; 32(1): 29–41
CrossRef
Pubmed
Google scholar
|
[10] |
Burton A, Torres-Padilla ME. Chromatin dynamics in the regulation of cell fate allocation during early embryogenesis. Nat Rev Mol Cell Biol 2014; 15(11): 723–734
CrossRef
Pubmed
Google scholar
|
[11] |
Apostolou E, Hochedlinger K. Chromatin dynamics during cellular reprogramming. Nature 2013; 502(7472): 462–471
CrossRef
Pubmed
Google scholar
|
[12] |
Cheloufi S, Hochedlinger K. Emerging roles of the histone chaperone CAF-1 in cellular plasticity. Curr Opin Genet Dev 2017; 46: 83–94
CrossRef
Pubmed
Google scholar
|
[13] |
Hauer MH, Gasser SM. Chromatin and nucleosome dynamics in DNA damage and repair. Genes Dev 2017; 31(22): 2204–2221
CrossRef
Pubmed
Google scholar
|
[14] |
Hoghoughi N, Barral S, Vargas A, Rousseaux S, Khochbin S. Histone variants: essential actors in male genome programming. J Biochem 2018; 163(2): 97–103
CrossRef
Pubmed
Google scholar
|
[15] |
Gaume X, Torres-Padilla ME. Regulation of reprogramming and cellular plasticity through histone exchange and histone variant incorporation. Cold Spring Harb Symp Quant Biol 2015; 80: 165–175
CrossRef
Pubmed
Google scholar
|
[16] |
Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. BioEssays 2015; 37(1): 52–59
CrossRef
Pubmed
Google scholar
|
[17] |
Gurard-Levin ZA, Quivy JP, Almouzni G. Histone chaperones: assisting histone traffic and nucleosome dynamics. Annu Rev Biochem 2014; 83(1): 487–517
CrossRef
Pubmed
Google scholar
|
[18] |
Cheloufi S, Elling U, Hopfgartner B, Jung YL, Murn J, Ninova M, Hubmann M, Badeaux AI, Euong Ang C, Tenen D, Wesche DJ, Abazova N, Hogue M, Tasdemir N, Brumbaugh J, Rathert P, Jude J, Ferrari F, Blanco A, Fellner M, Wenzel D, Zinner M, Vidal SE, Bell O, Stadtfeld M, Chang HY, Almouzni G, Lowe SW, Rinn J, Wernig M, Aravin A, Shi Y, Park PJ, Penninger JM, Zuber J, Hochedlinger K. The histone chaperone CAF-1 safeguards somatic cell identity. Nature 2015; 528(7581): 218–224
CrossRef
Pubmed
Google scholar
|
[19] |
Ishiuchi T, Enriquez-Gasca R, Mizutani E, Bošković A, Ziegler-Birling C, Rodriguez-Terrones D, Wakayama T, Vaquerizas JM, Torres-Padilla ME. Early embryonic-like cells are induced by downregulating replication-dependent chromatin assembly. Nat Struct Mol Biol 2015; 22(9): 662–671
CrossRef
Pubmed
Google scholar
|
[20] |
Rivera-Casas C, Gonzalez-Romero R, Cheema MS, Ausió J, Eirín-López JM. The characterization of macroH2A beyond vertebrates supports an ancestral origin and conserved role for histone variants in chromatin. Epigenetics 2016; 11(6): 415–425
CrossRef
Pubmed
Google scholar
|
[21] |
Soboleva TA, Nekrasov M, Pahwa A, Williams R, Huttley GA, Tremethick DJ. A unique H2A histone variant occupies the transcriptional start site of active genes. Nat Struct Mol Biol 2011; 19(1): 25–30
CrossRef
Pubmed
Google scholar
|
[22] |
Barral S, Morozumi Y, Tanaka H, Montellier E, Govin J, de Dieuleveult M, Charbonnier G, Couté Y, Puthier D, Buchou T, Boussouar F, Urahama T, Fenaille F, Curtet S, Héry P, Fernandez-Nunez N, Shiota H, Gérard M, Rousseaux S, Kurumizaka H, Khochbin S. Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells. Mol Cell 2017; 66(1): 89–101.e8
CrossRef
Pubmed
Google scholar
|
[23] |
Pasque V, Gillich A, Garrett N, Gurdon JB. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J 2011; 30(12): 2373–2387
CrossRef
Pubmed
Google scholar
|
[24] |
Shinagawa T, Takagi T, Tsukamoto D, Tomaru C, Huynh LM, Sivaraman P, Kumarevel T, Inoue K, Nakato R, Katou Y, Sado T, Takahashi S, Ogura A, Shirahige K, Ishii S. Histone variants enriched in oocytes enhance reprogramming to induced pluripotent stem cells. Cell Stem Cell 2014; 14(2): 217–227
CrossRef
Pubmed
Google scholar
|
[25] |
Quénet D. Histone variants and disease. Int Rev Cell Mol Biol 2018; 335: 1–39
CrossRef
Pubmed
Google scholar
|
[26] |
Rousseaux S, Debernardi A, Jacquiau B, Vitte AL, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon PY, Lantuejoul S, Hainaut P, Laffaire J, de Reyniès A, Beer DG, Timsit JF, Brambilla C, Brambilla E, Khochbin S. Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Sci Transl Med 2013; 5(186): 186ra66
CrossRef
Pubmed
Google scholar
|
[27] |
Govin J, Caron C, Rousseaux S, Khochbin S. Testis-specific histone H3 expression in somatic cells. Trends Biochem Sci 2005; 30(7): 357–359
CrossRef
Pubmed
Google scholar
|
[28] |
Mohammad F, Helin K. Oncohistones: drivers of pediatric cancers. Genes Dev 2017; 31(23-24): 2313–2324
CrossRef
Pubmed
Google scholar
|
[29] |
Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 2010; 277(3): 599–604
CrossRef
Pubmed
Google scholar
|
[30] |
Ueda J, Harada A, Urahama T, Machida S, Maehara K, Hada M, Makino Y, Nogami J, Horikoshi N, Osakabe A, Taguchi H, Tanaka H, Tachiwana H, Yao T, Yamada M, Iwamoto T, Isotani A, Ikawa M, Tachibana T, Okada Y, Kimura H, Ohkawa Y, Kurumizaka H, Yamagata K. Testis-specific histone variant H3t gene is essential for entry into spermatogenesis. Cell Reports 2017; 18(3): 593–600
CrossRef
Pubmed
Google scholar
|
[31] |
Tachiwana H, Kagawa W, Osakabe A, Kawaguchi K, Shiga T, Hayashi-Takanaka Y, Kimura H, Kurumizaka H. Structural basis of instability of the nucleosome containing a testis-specific histone variant, human H3T. Proc Natl Acad Sci USA 2010; 107(23): 10454–10459
CrossRef
Pubmed
Google scholar
|
[32] |
Zhou J, Fan JY, Rangasamy D, Tremethick DJ. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 2007; 14(11): 1070–1076
CrossRef
Pubmed
Google scholar
|
[33] |
Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Héry P, Curtet S, Jamshidikia M, Barral S, Holota H, Bergon A, Lopez F, Guardiola P, Pernet K, Imbert J, Petosa C, Tan M, Zhao Y, Gérard M, Khochbin S. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 2013; 27(15): 1680–1692
CrossRef
Pubmed
Google scholar
|
[34] |
Shinagawa T, Huynh LM, Takagi T, Tsukamoto D, Tomaru C, Kwak HG, Dohmae N, Noguchi J, Ishii S. Disruption of Th2a and Th2b genes causes defects in spermatogenesis. Development 2015; 142(7): 1287–1292
CrossRef
Pubmed
Google scholar
|
[35] |
Iuso D, Czernik M, Toschi P, Fidanza A, Zacchini F, Feil R, Curtet S, Buchou T, Shiota H, Khochbin S, Ptak GE, Loi P. Exogenous expression of human protamine 1 (hPrm1) remodels fibroblast nuclei into spermatid-like structures. Cell Reports 2015; 13(9): 1765–1771
CrossRef
Pubmed
Google scholar
|
[36] |
Chodaparambil JV, Barbera AJ, Lu X, Kaye KM, Hansen JC, Luger K. A charged and contoured surface on the nucleosome regulates chromatin compaction. Nat Struct Mol Biol 2007; 14(11): 1105–1107
CrossRef
Pubmed
Google scholar
|
[37] |
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 1997; 389(6648): 251–260
CrossRef
Pubmed
Google scholar
|
[38] |
Molaro A, Young JM, Malik HS. Evolutionary origins and diversification of testis-specific short histone H2A variants in mammals. Genome Res 2018; 28(4): 460–473
CrossRef
Pubmed
Google scholar
|
[39] |
Bao Y, Konesky K, Park YJ, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K. Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 2004; 23(16): 3314–3324
CrossRef
Pubmed
Google scholar
|
[40] |
Syed SH, Boulard M, Shukla MS, Gautier T, Travers A, Bednar J, Faivre-Moskalenko C, Dimitrov S, Angelov D. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res 2009; 37(14): 4684–4695
CrossRef
Pubmed
Google scholar
|
[41] |
Winkler C, Steingrube DS, Altermann W, Schlaf G, Max D, Kewitz S, Emmer A, Kornhuber M, Banning-Eichenseer U, Staege MS. Hodgkin’s lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother 2012; 61(10): 1769–1779
CrossRef
Pubmed
Google scholar
|
[42] |
Sansoni V, Casas-Delucchi CS, Rajan M, Schmidt A, Bönisch C, Thomae AW, Staege MS, Hake SB, Cardoso MC, Imhof A. The histone variant H2A.Bbd is enriched at sites of DNA synthesis. Nucleic Acids Res 2014; 42(10): 6405–6420
CrossRef
Pubmed
Google scholar
|
[43] |
Khochbin S. Histone H1 diversity: bridging regulatory signals to linker histone function. Gene 2001; 271(1): 1–12
CrossRef
Pubmed
Google scholar
|
[44] |
Peretti M, Khochbin S. The evolution of the differentiation-specific histone H1 gene basal promoter. J Mol Evol 1997; 44(2): 128–134
CrossRef
Pubmed
Google scholar
|
[45] |
Rousseau D, Khochbin S, Gorka C, Lawrence JJ. Regulation of histone H1(0) accumulation during induced differentiation of murine erythroleukemia cells. J Mol Biol 1991; 217(1): 85–92
CrossRef
Pubmed
Google scholar
|
[46] |
Rousseau D, Khochbin S, Gorka C, Lawrence JJ. Induction of H1(0)-gene expression in B16 murine melanoma cells. Eur J Biochem 1992; 208(3): 775–779
CrossRef
Pubmed
Google scholar
|
[47] |
Khochbin S, Wolffe AP. Developmental regulation and butyrate-inducible transcription of the Xenopus histone H1(0) promoter. Gene 1993; 128(2): 173–180
CrossRef
Pubmed
Google scholar
|
[48] |
Seigneurin D, Grunwald D, Lawrence JJ, Khochbin S. Developmentally regulated chromatin acetylation and histone H1(0) accumulation. Int J Dev Biol 1995; 39(4): 597–603
Pubmed
|
[49] |
Grunwald D, Lawrence JJ, Khochbin S. Accumulation of histone H1(0) during early Xenopus laevis development. Exp Cell Res 1995; 218(2): 586–595
CrossRef
Pubmed
Google scholar
|
[50] |
Izzo A, Ziegler-Birling C, Hill PWS, Brondani L, Hajkova P, Torres-Padilla ME, Schneider R. Dynamic changes in H1 subtype composition during epigenetic reprogramming. J Cell Biol 2017; jcb.201611012
CrossRef
Pubmed
Google scholar
|
[51] |
Torres CM, Biran A, Burney MJ, Patel H, Henser-Brownhill T, Cohen AS, Li Y, Ben-Hamo R, Nye E, Spencer-Dene B, Chakravarty P, Efroni S, Matthews N, Misteli T, Meshorer E, Scaffidi P. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science 2016; 353(6307): aaf1644
CrossRef
Pubmed
Google scholar
|
[52] |
Gorka C, Lawrence JJ, Khochbin S. Variation of H1(0) content throughout the cell cycle in regenerating rat liver. Exp Cell Res 1995; 217(2): 528–533
CrossRef
Pubmed
Google scholar
|
[53] |
Khochbin S, Wolffe AP. Developmentally regulated expression of linker-histone variants in vertebrates. Eur J Biochem 1994; 225(2): 501–510
CrossRef
Pubmed
Google scholar
|
[54] |
Grunwald D, Khochbin S, Lawrence JJ. Cell cycle-related accumulation of H1(0) mRNA: induction in murine erythroleukemia cells. Exp Cell Res 1991; 194(2): 174–179
CrossRef
Pubmed
Google scholar
|
[55] |
Brocard MP, Triebe S, Peretti M, Doenecke D, Khochbin S. Characterization of the two H1(zero)-encoding genes from Xenopus laevis. Gene 1997; 189(1): 127–134
CrossRef
Pubmed
Google scholar
|
[56] |
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G, Garcia F, Young N, Foster B, Moser M, Karasik E, Gillard B, Ramsey K, Sullivan S, Bridge J, Magazine H, Syron J, Fleming J, Siminoff L, Traino H, Mosavel M, Barker L, Jewell S, Rohrer D, Maxim D, Filkins D, Harbach P, Cortadillo E, Berghuis B, Turner L, Hudson E, Feenstra K, Sobin L, Robb J, Branton P, Korzeniewski G, Shive C, Tabor D, Qi L, Groch K, Nampally S, Buia S, Zimmerman A, Smith A, Burges R, Robinson K, Valentino K, Bradbury D, Cosentino M, Diaz-Mayoral N, Kennedy M, Engel T, Williams P, Erickson K, Ardlie K, Winckler W, Getz G, DeLuca D, MacArthur D, Kellis M, Thomson A, Young T, Gelfand E, Donovan M, Meng Y, Grant G, Mash D, Marcus Y, Basile M, Liu J, Zhu J, Tu Z, Cox NJ, Nicolae DL, Gamazon ER, Im HK, Konkashbaev A, Pritchard J, Stevens M, Flutre T, Wen X, Dermitzakis ET, Lappalainen T, Guigo R, Monlong J, Sammeth M, Koller D, Battle A, Mostafavi S, McCarthy M, Rivas M, Maller J, Rusyn I, Nobel A, Wright F, Shabalin A, Feolo M, Sharopova N, Sturcke A, Paschal J, Anderson JM, Wilder EL, Derr LK, Green ED, Struewing JP, Temple G, Volpi S, Boyer JT, Thomson EJ, Guyer MS, Ng C, Abdallah A, Colantuoni D, Insel TR, Koester SE, Little AR, Bender PK, Lehner T, Yao Y, Compton CC, Vaught JB, Sawyer S, Lockhart NC, Demchok J, Moore HF; GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013; 45(6): 580–585
CrossRef
Pubmed
Google scholar
|
[57] |
Peng L, Bian XW, Li DK, Xu C, Wang GM, Xia QY, Xiong Q. Large-scale RNA-seq transcriptome analysis of 4043 cancers and 548 normal tissue controls across 12 TCGA cancer types. Sci Rep 2015; 5(1): 13413
CrossRef
Pubmed
Google scholar
|
[58] |
Djureinovic D, Hallström BM, Horie M, Mattsson JSM, La Fleur L, Fagerberg L, Brunnström H, Lindskog C, Madjar K, Rahnenführer J, Ekman S, Ståhle E, Koyi H, Brandén E, Edlund K, Hengstler JG, Lambe M, Saito A, Botling J, Pontén F, Uhlén M, Micke P. Profiling cancer testis antigens in non-small-cell lung cancer. JCI Insight 2016; 1(10): e86837
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |