Deubiquitinases as pivotal regulators of T cell functions

Xiao-Dong Yang, Shao-Cong Sun

PDF(300 KB)
PDF(300 KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (4) : 451-462. DOI: 10.1007/s11684-018-0651-y
REVIEW
REVIEW

Deubiquitinases as pivotal regulators of T cell functions

Author information +
History +

Abstract

T cells efficiently respond to foreign antigens to mediate immune responses against infections but are tolerant to self-tissues. Defect in T cell activation is associated with severe immune deficiencies, whereas aberrant T cell activation contributes to the pathogenesis of diverse autoimmune and inflammatory diseases. An emerging mechanism that regulates T cell activation and tolerance is ubiquitination, a reversible process of protein modification that is counter-regulated by ubiquitinating enzymes and deubiquitinases (DUBs). DUBs are isopeptidases that cleave polyubiquitin chains and remove ubiquitin from target proteins, thereby controlling the magnitude and duration of ubiquitin signaling. It is now well recognized that DUBs are crucial regulators of T cell responses and serve as potential therapeutic targets for manipulating immune responses in the treatment of immunological disorders and cancer. This review will discuss the recent progresses regarding the functions of DUBs in T cells.

Keywords

deubiquitinase / ubiquitination / T cell activation / T cell differentiation / T cell tolerance

Cite this article

Download citation ▾
Xiao-Dong Yang, Shao-Cong Sun. Deubiquitinases as pivotal regulators of T cell functions. Front. Med., 2018, 12(4): 451‒462 https://doi.org/10.1007/s11684-018-0651-y

References

[1]
Smith-Garvin JE, Koretzky GA, Jordan MS. T cell activation. Annu Rev Immunol 2009; 27(1): 591–619
CrossRef Pubmed Google scholar
[2]
Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol 2010; 28(1): 445–489
CrossRef Pubmed Google scholar
[3]
Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005; 435(7042): 590–597
CrossRef Pubmed Google scholar
[4]
Xing Y, Hogquist KA. T-cell tolerance: central and peripheral. Cold Spring Harb Perspect Biol 2012; 4(6): a006957
CrossRef Pubmed Google scholar
[5]
O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 2010; 327(5969): 1098–1102
CrossRef Pubmed Google scholar
[6]
Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity 2014; 41(4): 529–542
CrossRef Pubmed Google scholar
[7]
Damsker JM, Hansen AM, Caspi RR. Th1 and Th17 cells: adversaries and collaborators. Ann N Y Acad Sci 2010; 1183(1): 211–221
CrossRef Pubmed Google scholar
[8]
Zhang N, Bevan MJ. CD8+ T cells: foot soldiers of the immune system. Immunity 2011; 35(2): 161–168
CrossRef Pubmed Google scholar
[9]
Halle S, Halle O, Förster R. Mechanisms and dynamics of T cell-mediated cytotoxicity in vivo. Trends Immunol 2017; 38(6): 432–443
CrossRef Pubmed Google scholar
[10]
Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9(1): 271–296
CrossRef Pubmed Google scholar
[11]
Kennedy R, Celis E. Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 2008; 222(1): 129–144
CrossRef Pubmed Google scholar
[12]
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228(1): 9–22
CrossRef Pubmed Google scholar
[13]
Ohashi PS. T-cell signalling and autoimmunity: molecular mechanisms of disease. Nat Rev Immunol 2002; 2(6): 427–438
CrossRef Pubmed Google scholar
[14]
Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67(1): 425–479
CrossRef Pubmed Google scholar
[15]
Kulathu Y, Komander D. Atypical ubiquitylation — the unexplored world of polyubiquitin beyond Lys48 and Lys63 linkages. Nat Rev Mol Cell Biol 2012; 13(8): 508–523
CrossRef Pubmed Google scholar
[16]
Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. J Cell Sci 2016; 129(5): 875–880
CrossRef Pubmed Google scholar
[17]
Ikeda F. Linear ubiquitination signals in adaptive immune responses. Immunol Rev 2015; 266(1): 222–236
CrossRef Pubmed Google scholar
[18]
Chen J, Chen ZJ. Regulation of NF-kB by ubiquitination. Curr Opin Immunol 2013; 25(1): 4–12
CrossRef Pubmed Google scholar
[19]
Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R. A genomic and functional inventory of deubiquitinating enzymes. Cell 2005; 123(5): 773–786
CrossRef Pubmed Google scholar
[20]
Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y. MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell 2016; 63(1): 146–155
CrossRef Pubmed Google scholar
[21]
Mevissen TET, Komander D. Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 2017; 86(1): 159–192
CrossRef Pubmed Google scholar
[22]
Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002; 2(5): 309–322
CrossRef Pubmed Google scholar
[23]
Klein L, Kyewski B, Allen PM, Hogquist KA. Positive and negative selection of the T cell repertoire: what thymocytes see (and don’t see). Nat Rev Immunol 2014; 14(6): 377–391
CrossRef Pubmed Google scholar
[24]
Hu H, Sun SC. Ubiquitin signaling in immune responses. Cell Res 2016; 26(4): 457–483
CrossRef Pubmed Google scholar
[25]
Reiley WW, Zhang M, Jin W, Losiewicz M, Donohue KB, Norbury CC, Sun SC. Regulation of T cell development by the deubiquitinating enzyme CYLD. Nat Immunol 2006; 7(4): 411–417
CrossRef Pubmed Google scholar
[26]
Sun SC. CYLD: a tumor suppressor deubiquitinase regulating NF-kB activation. Cell Death Differ 2010; 17(1): 25–34 doi:10.1038/cdd.2009.43
Pubmed
[27]
Tsagaratou A, Trompouki E, Grammenoudi S, Kontoyiannis DL, Mosialos G. Thymocyte-specific truncation of the deubiquitinating domain of CYLD impairs positive selection in a NF-kB essential modulator-dependent manner. J Immunol 2010; 185(4): 2032–2043
CrossRef Pubmed Google scholar
[28]
Reissig S, Hövelmeyer N, Tang Y, Weih D, Nikolaev A, Riemann M, Weih F, Waisman A. The deubiquitinating enzyme CYLD regulates the differentiation and maturation of thymic medullary epithelial cells. Immunol Cell Biol 2015; 93(6): 558–566
CrossRef Pubmed Google scholar
[29]
Lee AJ, Zhou X, Chang M, Hunzeker J, Bonneau RH, Zhou D, Sun SC. Regulation of natural killer T-cell development by deubiquitinase CYLD. EMBO J 2010; 29(9): 1600–1612
CrossRef Pubmed Google scholar
[30]
Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol 2007; 25(1): 297–336
CrossRef Pubmed Google scholar
[31]
Crosby CM, Kronenberg M. Invariant natural killer T cells: front line fighters in the war against pathogenic microbes. Immunogenetics 2016; 68(8): 639–648
CrossRef Pubmed Google scholar
[32]
Dashtsoodol N, Shigeura T, Aihara M, Ozawa R, Kojo S, Harada M, Endo TA, Watanabe T, Ohara O, Taniguchi M. Alternative pathway for the development of Va14+ NKT cells directly from CD4CD8 thymocytes that bypasses the CD4+CD8+ stage. Nat Immunol 2017; 18(3): 274–282
CrossRef Pubmed Google scholar
[33]
Drennan MB, Govindarajan S, Verheugen E, Coquet JM, Staal J, McGuire C, Taghon T, Leclercq G, Beyaert R, van Loo G, Lambrecht BN, Elewaut D. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med 2016; 213(10): 1973–1981
CrossRef Pubmed Google scholar
[34]
Lee YJ, Holzapfel KL, Zhu J, Jameson SC, Hogquist KA. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat Immunol 2013; 14(11): 1146–1154
CrossRef Pubmed Google scholar
[35]
Dufner A, Kisser A, Niendorf S, Basters A, Reissig S, Schönle A, Aichem A, Kurz T, Schlosser A, Yablonski D, Groettrup M, Buch T, Waisman A, Schamel WW, Prinz M, Knobeloch KP. The ubiquitin-specific protease USP8 is critical for the development and homeostasis of T cells. Nat Immunol 2015; 16(9): 950–960
CrossRef Pubmed Google scholar
[36]
Adoro S, Park KH, Bettigole SE, Lis R, Shin HR, Seo H, Kim JH, Knobeloch KP, Shim JH, Glimcher LH. Post-translational control of T cell development by the ESCRT protein CHMP5. Nat Immunol 2017; 18(7): 780–790
CrossRef Pubmed Google scholar
[37]
Chen ZJ. Ubiquitination in signaling to and activation of IKK. Immunol Rev 2012; 246(1): 95–106
CrossRef Pubmed Google scholar
[38]
Thiefes A, Wolf A, Doerrie A, Grassl GA, Matsumoto K, Autenrieth I, Bohn E, Sakurai H, Niedenthal R, Resch K, Kracht M. The Yersinia enterocolitica effector YopP inhibits host cell signalling by inactivating the protein kinase TAK1 in the IL-1 signalling pathway. EMBO Rep 2006; 7(8): 838–844
Pubmed
[39]
Reiley WW, Jin W, Lee AJ, Wright A, Wu X, Tewalt EF, Leonard TO, Norbury CC, Fitzpatrick L, Zhang M, Sun SC. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin-dependent kinase Tak1 and prevents abnormal T cell responses. J Exp Med 2007; 204(6): 1475–1485
CrossRef Pubmed Google scholar
[40]
Schmid U, Stenzel W, Koschel J, Raptaki M, Wang X, Naumann M, Matuschewski K, Schlüter D, Nishanth G. The deubiquitinating enzyme cylindromatosis dampens CD8+ T cell responses and is a critical factor for experimental cerebral malaria and blood-brain barrier damage. Front Immunol 2017; 8: 27
CrossRef Pubmed Google scholar
[41]
Liu X, Li H, Zhong B, Blonska M, Gorjestani S, Yan M, Tian Q, Zhang DE, Lin X, Dong C. USP18 inhibits NF-kB and NFAT activation during Th17 differentiation by deubiquitinating the TAK1-TAB1 complex. J Exp Med 2013; 210(8): 1575–1590
CrossRef Pubmed Google scholar
[42]
Harhaj EW, Dixit VM. Deubiquitinases in the regulation of NF-kB signaling. Cell Res 2011; 21(1): 22–39
CrossRef Pubmed Google scholar
[43]
Giordano M, Roncagalli R, Bourdely P, Chasson L, Buferne M, Yamasaki S, Beyaert R, van Loo G, Auphan-Anezin N, Schmitt-Verhulst AM, Verdeil G. The tumor necrosis factor α-induced protein 3 (TNFAIP3, A20) imposes a brake on antitumor activity of CD8 T cells. Proc Natl Acad Sci USA 2014; 111(30): 11115–11120
CrossRef Pubmed Google scholar
[44]
Just S, Nishanth G, Buchbinder JH, Wang X, Naumann M, Lavrik I, Schlüter D. A20 curtails primary but augments secondary CD8+ T cell responses in intracellular bacterial infection. Sci Rep 2016; 6(1): 39796
CrossRef Pubmed Google scholar
[45]
Onizawa M, Oshima S, Schulze-Topphoff U, Oses-Prieto JA, Lu T, Tavares R, Prodhomme T, Duong B, Whang MI, Advincula R, Agelidis A, Barrera J, Wu H, Burlingame A, Malynn BA, Zamvil SS, Ma A. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat Immunol 2015; 16(6): 618–627
CrossRef Pubmed Google scholar
[46]
Matsuzawa Y, Oshima S, Takahara M, Maeyashiki C, Nemoto Y, Kobayashi M, Nibe Y, Nozaki K, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Ma A, Watanabe M. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy. Autophagy 2015; 11(7): 1052–1062
CrossRef Pubmed Google scholar
[47]
Linares JF, Duran A, Yajima T, Pasparakis M, Moscat J, Diaz-Meco MT. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in nutrient-activated cells. Mol Cell 2013; 51(3): 283–296
CrossRef Pubmed Google scholar
[48]
Park Y, Jin HS, Liu YC. Regulation of T cell function by the ubiquitin-specific protease USP9X via modulating the Carma1-Bcl10-Malt1 complex. Proc Natl Acad Sci USA 2013; 110(23): 9433–9438
CrossRef Pubmed Google scholar
[49]
Zou Q, Jin J, Hu H, Li HS, Romano S, Xiao Y, Nakaya M, Zhou X, Cheng X, Yang P, Lozano G, Zhu C, Watowich SS, Ullrich SE, Sun SC. USP15 stabilizes MDM2 to mediate cancer-cell survival and inhibit antitumor T cell responses. Nat Immunol 2014; 15(6): 562–570
CrossRef Pubmed Google scholar
[50]
Hu H, Wang H, Xiao Y, Jin J, Chang JH, Zou Q, Xie X, Cheng X, Sun SC. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med 2016; 213(3): 399–414
CrossRef Pubmed Google scholar
[51]
Carpino N, Chen Y, Nassar N, Oh HW. The Sts proteins target tyrosine phosphorylated, ubiquitinated proteins within TCR signaling pathways. Mol Immunol 2009; 46(16): 3224–3231
CrossRef Pubmed Google scholar
[52]
Yang M, Chen T, Li X, Yu Z, Tang S, Wang C, Gu Y, Liu Y, Xu S, Li W, Zhang X, Wang J, Cao X. K33-linked polyubiquitination of Zap70 by Nrdp1 controls CD8+ T cell activation. Nat Immunol 2015; 16(12): 1253–1262
CrossRef Pubmed Google scholar
[53]
Naik E, Webster JD, DeVoss J, Liu J, Suriben R, Dixit VM. Regulation of proximal T cell receptor signaling and tolerance induction by deubiquitinase Usp9X. J Exp Med 2014; 211(10): 1947–1955
CrossRef Pubmed Google scholar
[54]
Naik E, Dixit VM. Usp9X is required for lymphocyte activation and homeostasis through its control of ZAP70 ubiquitination and PKCb kinase activity. J Immunol 2016; 196(8): 3438–3451
CrossRef Pubmed Google scholar
[55]
Garreau A, Blaize G, Argenty J, Rouquié N, Tourdès A, Wood SA, Saoudi A, Lesourne R. Grb2-mediated recruitment of USP9X to LAT enhances themis stability following thymic selection. J Immunol 2017; 199(8): 2758–2766
CrossRef Pubmed Google scholar
[56]
Yamane H, Paul WE. Early signaling events that underlie fate decisions of naive CD4+ T cells toward distinct T-helper cell subsets. Immunol Rev 2013; 252(1): 12–23PMID:23405892
CrossRef Google scholar
[57]
Tu E, Chia CPZ, Chen W, Zhang D, Park SA, Jin W, Wang D, Alegre ML, Zhang YE, Sun L, Chen W. T Cell receptor-regulated TGF-β type I receptor expression determines T cell quiescence and activation. Immunity2018; 48(4): 745–759e6
[58]
Walsh KP, Mills KH. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol 2013; 34(11): 521–530
CrossRef Pubmed Google scholar
[59]
Berenson LS, Ota N, Murphy KM. Issues in T-helper 1 development—resolved and unresolved. Immunol Rev 2004; 202(1): 157–174
CrossRef Pubmed Google scholar
[60]
Pan L, Chen Z, Wang L, Chen C, Li D, Wan H, Li B, Shi G. Deubiquitination and stabilization of T-bet by USP10. Biochem Biophys Res Commun 2014; 449(3): 289–294
CrossRef Pubmed Google scholar
[61]
Rutz S, Kayagaki N, Phung QT, Eidenschenk C, Noubade R, Wang X, Lesch J, Lu R, Newton K, Huang OW, Cochran AG, Vasser M, Fauber BP, DeVoss J, Webster J, Diehl L, Modrusan Z, Kirkpatrick DS, Lill JR, Ouyang W, Dixit VM. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature 2015; 518(7539): 417–421
CrossRef Pubmed Google scholar
[62]
Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O’Rourke KM, Eby M, Pietras E, Cheng G, Bazan JF, Zhang Z, Arnott D, Dixit VM. DUBA: a deubiquitinase that regulates type I interferon production. Science 2007; 318(5856): 1628–1632
CrossRef Pubmed Google scholar
[63]
Han L, Yang J, Wang X, Wu Q, Yin S, Li Z, Zhang J, Xing Y, Chen Z, Tsun A, Li D, Piccioni M, Zhang Y, Guo Q, Jiang L, Bao L, Lv L, Li B. The E3 deubiquitinase USP17 is a positive regulator of retinoic acid-related orphan nuclear receptor gt (RORgt) in Th17 cells. J Biol Chem 2014; 289(37): 25546–25555
CrossRef Pubmed Google scholar
[64]
Yang J, Xu P, Han L, Guo Z, Wang X, Chen Z, Nie J, Yin S, Piccioni M, Tsun A, Lv L, Ge S, Li B. Cutting edge: Ubiquitin-specific protease 4 promotes Th17 cell function under inflammation by deubiquitinating and stabilizing RORgt. J Immunol 2015; 194(9): 4094–4097
CrossRef Pubmed Google scholar
[65]
He Z, Wang F, Ma J, Sen S, Zhang J, Gwack Y, Zhou Y, Sun Z. Ubiquitination of RORgt at lysine 446 limits Th17 differentiation by controlling coactivator recruitment. J Immunol 2016; 197(4): 1148–1158
CrossRef Pubmed Google scholar
[66]
Zou Q, Jin J, Xiao Y, Zhou X, Hu H, Cheng X, Kazimi N, Ullrich SE, Sun SC. T cell intrinsic USP15 deficiency promotes excessive IFN-g production and an immunosuppressive tumor microenvironment in MCA-induced fibrosarcoma. Cell Reports 2015; 13(11): 2470–2479
CrossRef Pubmed Google scholar
[67]
Jin J, Xie X, Xiao Y, Hu H, Zou Q, Cheng X, Sun SC. Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 2016; 17(3): 259–268
CrossRef Pubmed Google scholar
[68]
Kool M, van Loo G, Waelput W, De Prijck S, Muskens F, Sze M, van Praet J, Branco-Madeira F, Janssens S, Reizis B, Elewaut D, Beyaert R, Hammad H, Lambrecht BN. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 2011; 35(1): 82–96
CrossRef Pubmed Google scholar
[69]
Hammer GE, Turer EE, Taylor KE, Fang CJ, Advincula R, Oshima S, Barrera J, Huang EJ, Hou B, Malynn BA, Reizis B, DeFranco A, Criswell LA, Nakamura MC, Ma A. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat Immunol 2011; 12(12): 1184–1193
CrossRef Pubmed Google scholar
[70]
Liang J, Huang HI, Benzatti FP, Karlsson AB, Zhang JJ, Youssef N, Ma A, Hale LP, Hammer GE. Inflammatory Th1 and Th17 in the intestine are each driven by functionally specialized dendritic cells with distinct requirements for MyD88. Cell Reports 2016; 17(5): 1330–1343
CrossRef Pubmed Google scholar
[71]
Wang L, Hong B, Jiang X, Jones L, Chen SY, Huang XF. A20 controls macrophage to elicit potent cytotoxic CD4+ T cell response. PLoS One 2012; 7(11): e48930
CrossRef Pubmed Google scholar
[72]
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 2008; 133(5): 775–787
CrossRef Pubmed Google scholar
[73]
Lee AJ, Wu X, Cheng H, Zhou X, Cheng X, Sun SC. CARMA1 regulation of regulatory T cell development involves modulation of interleukin-2 receptor signaling. J Biol Chem 2010; 285(21): 15696–15703
CrossRef Pubmed Google scholar
[74]
Oh H, Ghosh S. NF-kB: roles and regulation in different CD4+ T-cell subsets. Immunol Rev 2013; 252(1): 41–51
CrossRef Pubmed Google scholar
[75]
Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, Shevach EM, Jain A. The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor b (TGF-b) signaling and the development of regulatory T cells. J Biol Chem 2011; 286(47): 40520–40530
CrossRef Pubmed Google scholar
[76]
Reissig S, Hövelmeyer N, Weigmann B, Nikolaev A, Kalt B, Wunderlich TF, Hahn M, Neurath MF, Waisman A. The tumor suppressor CYLD controls the function of murine regulatory T cells. J Immunol 2012; 189(10): 4770–4776
CrossRef Pubmed Google scholar
[77]
Fischer JC, Otten V, Kober M, Drees C, Rosenbaum M, Schmickl M, Heidegger S, Beyaert R, van Loo G, Li XC, Peschel C, Schmidt-Supprian M, Haas T, Spoerl S, Poeck H. A20 restrains thymic regulatory T cell development. J Immunol 2017; 199(7): 2356–2365
CrossRef Pubmed Google scholar
[78]
Chang JH, Xiao Y, Hu H, Jin J, Yu J, Zhou X, Wu X, Johnson HM, Akira S, Pasparakis M, Cheng X, Sun SC. Ubc13 maintains the suppressive function of regulatory T cells and prevents their conversion into effector-like T cells. Nat Immunol 2012; 13(5): 481–490
CrossRef Pubmed Google scholar
[79]
van Loosdregt J, Coffer PJ. Post-translational modification networks regulating FOXP3 function. Trends Immunol 2014; 35(8): 368–378
CrossRef Pubmed Google scholar
[80]
van Loosdregt J, Fleskens V, Fu J, Brenkman AB, Bekker CP, Pals CE, Meerding J, Berkers CR, Barbi J, Gröne A, Sijts AJ, Maurice MM, Kalkhoven E, Prakken BJ, Ovaa H, Pan F, Zaiss DM, Coffer PJ. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 2013; 39(2): 259–271
CrossRef Pubmed Google scholar
[81]
Wang L, Kumar S, Dahiya S, Wang F, Wu J, Newick K, Han R, Samanta A, Beier UH, Akimova T, Bhatti TR, Nicholson B, Kodrasov MP, Agarwal S, Sterner DE, Gu W, Weinstock J, Butt TR, Albelda SM, Hancock WW. Ubiquitin-specific protease-7 inhibition impairs Tip60-dependent Foxp3+ T-regulatory cell function and promotes antitumor immunity. EBioMedicine 2016; 13: 99–112
CrossRef Pubmed Google scholar
[82]
Xiao Y, Nagai Y, Deng G, Ohtani T, Zhu Z, Zhou Z, Zhang H, Ji MQ, Lough JW, Samanta A, Hancock WW, Greene MI. Dynamic interactions between TIP60 and p300 regulate FOXP3 function through a structural switch defined by a single lysine on TIP60. Cell Reports 2014; 7(5): 1471–1480
CrossRef Pubmed Google scholar
[83]
Turnbull AP, Ioannidis S, Krajewski WW, Pinto-Fernandez A, Heride C, Martin ACL, Tonkin LM, Townsend EC, Buker SM, Lancia DR, Caravella JA, Toms AV, Charlton TM, Lahdenranta J, Wilker E, Follows BC, Evans NJ, Stead L, Alli C, Zarayskiy VV, Talbot AC, Buckmelter AJ, Wang M, McKinnon CL, Saab F, McGouran JF, Century H, Gersch M, Pittman MS, Marshall CG, Raynham TM, Simcox M, Stewart LMD, McLoughlin SB, Escobedo JA, Bair KW, Dinsmore CJ, Hammonds TR, Kim S, Urbé S, Clague MJ, Kessler BM, Komander D. Molecular basis of USP7 inhibition by selective small-molecule inhibitors. Nature 2017; 550(7677): 481–486
CrossRef Pubmed Google scholar
[84]
Kategaya L, Di Lello P, Rougé L, Pastor R, Clark KR, Drummond J, Kleinheinz T, Lin E, Upton JP, Prakash S, Heideker J, McCleland M, Ritorto MS, Alessi DR, Trost M, Bainbridge TW, Kwok MCM, Ma TP, Stiffler Z, Brasher B, Tang Y, Jaishankar P, Hearn BR, Renslo AR, Arkin MR, Cohen F, Yu K, Peale F, Gnad F, Chang MT, Klijn C, Blackwood E, Martin SE, Forrest WF, Ernst JA, Ndubaku C, Wang X, Beresini MH, Tsui V, Schwerdtfeger C, Blake RA, Murray J, Maurer T, Wertz IE. USP7 small-molecule inhibitors interfere with ubiquitin binding. Nature 2017; 550(7677): 534–538
CrossRef Pubmed Google scholar

Acknowledgements

Work performed in the authors’ laboratories is supported by grants from the US National Institutes of Health (Nos. AI057555, AI064639, GM84459, and AI104519; Shao-Cong Sun) and the National Natural Science Foundation of China (Nos.31570770 and 31770818; Xiao-Dong Yang).

Compliance with ethics guidelines

Xiao-Dong Yang and Shao-Cong Sun declare no conflict of interest. This is a review article and does not involve a research protocol.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the appropriate credit is given to the original author(s) and the source, and a link is provided to the Creative Commons license, which indicates if changes are made.

RIGHTS & PERMISSIONS

2018 The Author(s) 2018. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(300 KB)

Accesses

Citations

Detail

Sections
Recommended

/