Bile acids and their effects on diabetes
Cynthia Rajani, Wei Jia
Bile acids and their effects on diabetes
Diabetes is a widespread, rapidly increasing metabolic disease that is driven by hyperglycemia. Early glycemic control is of primary importance to avoid vascular complications including development of retinal disorders leading to blindness, end-stage renal disease, and accelerated atherosclerosis with a higher risk of myocardial infarction, stroke and limb amputations. Even after hyperglycemia has been brought under control, “metabolic memory,” a cluster of irreversible metabolic changes that allow diabetes to progress, may persist depending on the duration of hyperglycemia. Manipulation of bile acid (BA) receptors and the BA pool have been shown to be useful in establishing glycemic control in diabetes due to their ability to regulate energy metabolism by binding and activating nuclear transcription factors such as farnesoid X receptor (FXR) in liver and intestine as well as the G-protein coupled receptor, TGR5, in enteroendocrine cells and pancreatic β-cells. The downstream targets of BA activated FXR, FGF15/21, are also important for glucose/insulin homeostasis. In this review we will discuss the effect of BAs on glucose and lipid metabolism and explore recent research on establishing glycemic control in diabetes through the manipulation of BAs and their receptors in the liver, intestine and pancreas, alteration of the enterohepatic circulation, bariatric surgery and alignment of circadian rhythms.
bile acids / metabolic memory / diabetes / circadian rhythm / bariatric surgery
[1] |
Abramowicz M, Zuccotti G. Drugs for diabetes. Treat Guidel Med Lett 2005; 3(36): 57–62
Pubmed
|
[2] |
Ceriello A. The emerging challenge in diabetes: the “metabolic memory”. Vascul Pharmacol 2012; 57(5-6): 133–138
CrossRef
Pubmed
Google scholar
|
[3] |
Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D. Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 2008; 57(5): 1349–1354
CrossRef
Pubmed
Google scholar
|
[4] |
Ceriello A, Esposito K, Ihnat M, Thorpe J, Giugliano D. Long-term glycemic control influences the long-lasting effect of hyperglycemia on endothelial function in type 1 diabetes. J Clin Endocrinol Metab 2009; 94(8): 2751–2756
CrossRef
Pubmed
Google scholar
|
[5] |
Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B; Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005; 353(25): 2643–2653
CrossRef
Pubmed
Google scholar
|
[6] |
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813–820
CrossRef
Pubmed
Google scholar
|
[7] |
Foufelle F, Ferré P. New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 2002; 366(Pt 2): 377–391
CrossRef
Pubmed
Google scholar
|
[8] |
Banerjee PS, Lagerlöf O, Hart GW. Roles of O-GlcNAc in chronic diseases of aging. Mol Aspects Med 2016; 51: 1–15
CrossRef
Pubmed
Google scholar
|
[9] |
Hanssen NM, Beulens JW, van Dieren S, Scheijen JL, van der A DL, Spijkerman AM, van der Schouw YT, Stehouwer CD, Schalkwijk CG. Plasma advanced glycation end products are associated with incident cardiovascular events in individuals with type 2 diabetes: a case-cohort study with a median follow-up of 10 years (EPIC-NL). Diabetes 2015; 64(1): 257–265
CrossRef
Pubmed
Google scholar
|
[10] |
Guinez C, Filhoulaud G, Rayah-Benhamed F, Marmier S, Dubuquoy C, Dentin R, Moldes M, Burnol AF, Yang X, Lefebvre T, Girard J, Postic C. O-GlcNAcylation increases ChREBP protein content and transcriptional activity in the liver. Diabetes 2011; 60(5): 1399–1413
CrossRef
Pubmed
Google scholar
|
[11] |
Li T, Chiang JY. Bile acid signaling in metabolic disease and drug therapy. Pharmacol Rev 2014; 66(4): 948–983
CrossRef
Pubmed
Google scholar
|
[12] |
Kong B, Wang L, Chiang JY, Zhang Y, Klaassen CD, Guo GL. Mechanism of tissue-specific farnesoid X receptor in suppressing the expression of genes in bile-acid synthesis in mice. Hepatology 2012; 56(3): 1034–1043
CrossRef
Pubmed
Google scholar
|
[13] |
Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 2008; 7(8): 678–693
CrossRef
Pubmed
Google scholar
|
[14] |
Trauner M, Boyer JL. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev 2003; 83(2): 633–671
CrossRef
Pubmed
Google scholar
|
[15] |
Zhang YK, Guo GL, Klaassen CD. Diurnal variations of mouse plasma and hepatic bile acid concentrations as well as expression of biosynthetic enzymes and transporters. PLoS One 2011; 6(2): e16683
CrossRef
Pubmed
Google scholar
|
[16] |
Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 2006; 47(2): 241–259
CrossRef
Pubmed
Google scholar
|
[17] |
Dawson PA, Lan T, Rao A. Bile acid transporters. J Lipid Res 2009; 50(12): 2340–2357
CrossRef
Pubmed
Google scholar
|
[18] |
Meier PJ, Stieger B. Bile salt transporters. Annu Rev Physiol 2002; 64(1): 635–661
CrossRef
Pubmed
Google scholar
|
[19] |
Lan T, Morgan DA, Rahmouni K, Sonoda J, Fu X, Burgess SC, Holland WL, Kliewer SA, Mangelsdorf DJ. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab 2017; 26(5): 709–718.e3
CrossRef
Pubmed
Google scholar
|
[20] |
Rizza RA. Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 2010; 59(11): 2697–2707
CrossRef
Pubmed
Google scholar
|
[21] |
Chung ST, Hsia DS, Chacko SK, Rodriguez LM, Haymond MW. Increased gluconeogenesis in youth with newly diagnosed type 2 diabetes. Diabetologia 2015; 58(3): 596–603
CrossRef
Pubmed
Google scholar
|
[22] |
Yamagata K, Daitoku H, Shimamoto Y, Matsuzaki H, Hirota K, Ishida J, Fukamizu A. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 2004; 279(22): 23158–23165
CrossRef
Pubmed
Google scholar
|
[23] |
Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 2012; 56(4): 952–964
CrossRef
Pubmed
Google scholar
|
[24] |
Dentin R, Girard J, Postic C. Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 2005; 87(1): 81–86
CrossRef
Pubmed
Google scholar
|
[25] |
Ip E, Farrell GC, Robertson G, Hall P, Kirsch R, Leclercq I. Central role of PPARα-dependent hepatic lipid turnover in dietary steatohepatitis in mice. Hepatology 2003; 38(1): 123–132
CrossRef
Pubmed
Google scholar
|
[26] |
Denechaud PD, Dentin R, Girard J, Postic C. Role of ChREBP in hepatic steatosis and insulin resistance. FEBS Lett 2008; 582(1): 68–73
CrossRef
Pubmed
Google scholar
|
[27] |
Zhang Y, Lee FY, Barrera G, Lee H, Vales C, Gonzalez FJ, Willson TM, Edwards PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci USA 2006; 103(4): 1006–1011
CrossRef
Pubmed
Google scholar
|
[28] |
Gonzalez FJ, Jiang C, Patterson AD. An Intestinal microbiota-farnesoid X receptor axis modulates metabolic disease. Gastroenterology 2016; 151(5): 845–859
CrossRef
Pubmed
Google scholar
|
[29] |
Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Brönneke HS, Trifunovic A, LoSasso G, Wunderlich FT, Kornfeld JW, Blüher M, Krönke M, Brüning JC. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 2014; 20(4): 678–686
CrossRef
Pubmed
Google scholar
|
[30] |
Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, Brocker CN, Desai D, Amin SG, Bisson WH, Liu Y, Gavrilova O, Patterson AD, Gonzalez FJ. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun 2015; 6(1): 10166
CrossRef
Pubmed
Google scholar
|
[31] |
Li F, Jiang C, Krausz KW, Li Y, Albert I, Hao H, Fabre KM, Mitchell JB, Patterson AD, Gonzalez FJ. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat Commun 2013; 4(1): 2384
CrossRef
Pubmed
Google scholar
|
[32] |
Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011; 331(6024): 1621–1624
CrossRef
Pubmed
Google scholar
|
[33] |
Stefano GB, Challenger S, Kream RM. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders. Eur J Nutr 2016; 55(8): 2339–2345
CrossRef
Pubmed
Google scholar
|
[34] |
Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS-1)/AKT kinase-mediated insulin signaling by O-linked β-N-acetylglucosamine in 3T3-L1 adipocytes. J Biol Chem 2010; 285(8): 5204–5211
CrossRef
Pubmed
Google scholar
|
[35] |
Housley MP, Rodgers JT, Udeshi ND, Kelly TJ, Shabanowitz J, Hunt DF, Puigserver P, Hart GW. O-GlcNAc regulates FoxO activation in response to glucose. J Biol Chem 2008; 283(24): 16283–16292
CrossRef
Pubmed
Google scholar
|
[36] |
Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng CC, Volk K, Kuo MS, Gordillo R, Kharitonenkov A, Scherer PE. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013; 17(5): 790–797
CrossRef
Pubmed
Google scholar
|
[37] |
Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem 2011; 286(40): 34533–34541
CrossRef
Pubmed
Google scholar
|
[38] |
Copple BL, Li T. Pharmacology of bile acid receptors: evolution of bile acids from simple detergents to complex signaling molecules. Pharmacol Res 2016; 104: 9–21
CrossRef
Pubmed
Google scholar
|
[39] |
Monnier L, Lapinski H, Colette C. Contributions of fasting and postprandial plasma glucose increments to the overall diurnal hyperglycemia of type 2 diabetic patients: variations with increasing levels of HbA(1c). Diabetes Care 2003; 26(3): 881–885
CrossRef
Pubmed
Google scholar
|
[40] |
Sonne DP, van Nierop FS, Kulik W, Soeters MR, Vilsbøll T, Knop FK. Postprandial plasma concentrations of individual bile acids and FGF-19 in patients with type 2 diabetes. J Clin Endocrinol Metab 2016; 101(8): 3002–3009
CrossRef
Pubmed
Google scholar
|
[41] |
Mueller M, Thorell A, Claudel T, Jha P, Koefeler H, Lackner C, Hoesel B, Fauler G, Stojakovic T, Einarsson C, Marschall HU, Trauner M. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol 2015; 62(6): 1398–1404
CrossRef
Pubmed
Google scholar
|
[42] |
Goto T, Hirata M, Aoki Y, Iwase M, Takahashi H, Kim M, Li Y, Jheng HF, Nomura W, Takahashi N, Kim CS, Yu R, Seno S, Matsuda H, Aizawa-Abe M, Ebihara K, Itoh N, Kawada T. The hepatokine FGF21 is crucial for peroxisome proliferator-activated receptor-α agonist-induced amelioration of metabolic disorders in obese mice. J Biol Chem 2017; 292(22): 9175–9190
CrossRef
Pubmed
Google scholar
|
[43] |
Reitman ML, Gavrilova O. A-ZIP/F-1 mice lacking white fat: a model for understanding lipoatrophic diabetes. Int J Obes Relat Metab Disord 2000; 24 (Suppl 4): S11–14
Pubmed
|
[44] |
Katafuchi T, Esterházy D, Lemoff A, Ding X, Sondhi V, Kliewer SA, Mirzaei H, Mangelsdorf DJ. Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodies and targeted mass spectrometry. Cell Metab 2015; 21(6): 898–904
CrossRef
Pubmed
Google scholar
|
[45] |
Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, Kliewer SA, Mangelsdorf DJ. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab 2014; 20(4): 670–677
CrossRef
Pubmed
Google scholar
|
[46] |
Psichas A, Reimann F, Gribble FM. Gut chemosensing mechanisms. J Clin Invest 2015; 125(3): 908–917
CrossRef
Pubmed
Google scholar
|
[47] |
van Nierop FS, Scheltema MJ, Eggink HM, Pols TW, Sonne DP, Knop FK, Soeters MR. Clinical relevance of the bile acid receptor TGR5 in metabolism. Lancet Diabetes Endocrinol 2017; 5(3): 224–233
CrossRef
Pubmed
Google scholar
|
[48] |
Hauge M, Ekberg JP, Engelstoft MS, Timshel P, Madsen AN, Schwartz TW. Gq and Gs signaling acting in synergy to control GLP-1 secretion. Mol Cell Endocrinol 2017; 449: 64–73
Pubmed
|
[49] |
Vettorazzi JF, Ribeiro RA, Borck PC, Branco RC, Soriano S, Merino B, Boschero AC, Nadal A, Quesada I, Carneiro EM. The bile acid TUDCA increases glucose-induced insulin secretion via the cAMP/PKA pathway in pancreatic β cells. Metabolism 2016; 65(3): 54–63
CrossRef
Pubmed
Google scholar
|
[50] |
Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C, Pruzanski M, Pellicciari R, Auwerx J, Schoonjans K. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10(3): 167–177
CrossRef
Pubmed
Google scholar
|
[51] |
Miyamoto J, Hasegawa S, Kasubuchi M, Ichimura A, Nakajima A, Kimura I. Nutritional signaling via free fatty acid receptors. Int J Mol Sci 2016; 17(4): 450
CrossRef
Pubmed
Google scholar
|
[52] |
Meloni AR, DeYoung MB, Lowe C, Parkes DG. GLP-1 receptor activated insulin secretion from pancreatic β-cells: mechanism and glucose dependence. Diabetes Obes Metab 2013; 15(1): 15–27
CrossRef
Pubmed
Google scholar
|
[53] |
Insull W Jr. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 2006; 99(3): 257–273
CrossRef
Pubmed
Google scholar
|
[54] |
Sonne DP, Hansen M, Knop FK. Bile acid sequestrants in type 2 diabetes: potential effects on GLP1 secretion. Eur J Endocrinol 2014; 171(2): R47–R65
CrossRef
Pubmed
Google scholar
|
[55] |
Potthoff MJ, Potts A, He T, Duarte JA, Taussig R, Mangelsdorf DJ, Kliewer SA, Burgess SC. Colesevelam suppresses hepatic glycogenolysis by TGR5-mediated induction of GLP-1 action in DIO mice. Am J Physiol Gastrointest Liver Physiol 2013; 304(4): G371–G380
CrossRef
Pubmed
Google scholar
|
[56] |
Harach T, Pols TW, Nomura M, Maida A, Watanabe M, Auwerx J, Schoonjans K. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci Rep 2012; 2(1): 430
CrossRef
Pubmed
Google scholar
|
[57] |
Mazidi M, Rezaie P, Karimi E, Kengne AP. The effects of bile acid sequestrants on lipid profile and blood glucose concentrations: a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol 2017; 227: 850–857
CrossRef
Pubmed
Google scholar
|
[58] |
Hansen M, Sonne DP, Mikkelsen KH, Gluud LL, Vilsbøll T, Knop FK. Bile acid sequestrants for glycemic control in patients with type 2 diabetes: a systematic review with meta-analysis of randomized controlled trials. J Diabetes Complications 2017; 31(5): 918–927
CrossRef
Pubmed
Google scholar
|
[59] |
Chen L, Yao X, Young A, McNulty J, Anderson D, Liu Y, Nystrom C, Croom D, Ross S, Collins J, Rajpal D, Hamlet K, Smith C, Gedulin B. Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes. Am J Physiol Endocrinol Metab 2012; 302(1): E68–E76
CrossRef
Pubmed
Google scholar
|
[60] |
Ferrebee CB, Dawson PA. Metabolic effects of intestinal absorption and enterohepatic cycling of bile acids. Acta Pharm Sin B 2015; 5(2): 129–134
CrossRef
Pubmed
Google scholar
|
[61] |
McGavigan AK, Garibay D, Henseler ZM, Chen J, Bettaieb A, Haj FG, Ley RE, Chouinard ML, Cummings BP. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 2017; 66(2): 226–234
CrossRef
Pubmed
Google scholar
|
[62] |
Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 2013; 62(12): 4184–4191
CrossRef
Pubmed
Google scholar
|
[63] |
Manoogian ENC, Panda S. Circadian rhythms, time-restricted feeding, and healthy aging. Ageing Res Rev 2017; 39: 59–67
CrossRef
Pubmed
Google scholar
|
[64] |
Froy O. Circadian aspects of energy metabolism and aging. Ageing Res Rev 2013; 12(4): 931–940
CrossRef
Pubmed
Google scholar
|
[65] |
Adamovich Y, Rousso-Noori L, Zwighaft Z, Neufeld-Cohen A, Golik M, Kraut-Cohen J, Wang M, Han X, Asher G. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab 2014; 19(2): 319–330
CrossRef
Pubmed
Google scholar
|
[66] |
Kalsbeek A, la Fleur S, Fliers E. Circadian control of glucose metabolism. Mol Metab 2014; 3(4): 372–383
CrossRef
Pubmed
Google scholar
|
[67] |
Ribas-Latre A, Eckel-Mahan K. Interdependence of nutrient metabolism and the circadian clock system: importance for metabolic health. Mol Metab 2016; 5(3): 133–152
CrossRef
Pubmed
Google scholar
|
[68] |
Le Martelot G, Claudel T, Gatfield D, Schaad O, Kornmann B, Lo Sasso G, Moschetta A, Schibler U. REV-ERBα participates in circadian SREBP signaling and bile acid homeostasis. PLoS Biol 2009; 7(9): e1000181
CrossRef
Pubmed
Google scholar
|
[69] |
Pathak P, Li T, Chiang JY. Retinoic acid-related orphan receptor α regulates diurnal rhythm and fasting induction of sterol 12α-hydroxylase in bile acid synthesis. J Biol Chem 2013; 288(52): 37154–37165
CrossRef
Pubmed
Google scholar
|
[70] |
Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science 2010; 330(6009): 1349–1354
CrossRef
Pubmed
Google scholar
|
[71] |
Wada E, Koyanagi S, Kusunose N, Akamine T, Masui H, Hashimoto H, Matsunaga N, Ohdo S. Modulation of peroxisome proliferator-activated receptor-α activity by bile acids causes circadian changes in the intestinal expression of Octn1/Slc22a4 in mice. Mol Pharmacol 2015; 87(2): 314–322
CrossRef
Pubmed
Google scholar
|
[72] |
Ferrell JM, Chiang JY. Short-term circadian disruption impairs bile acid and lipid homeostasis in mice. Cell Mol Gastroenterol Hepatol 2015; 1(6):664–677
CrossRef
Pubmed
Google scholar
|
[73] |
Lis CG, Grutsch JF, Wood P, You M, Rich I, Hrushesky WJ. Circadian timing in cancer treatment: the biological foundation for an integrative approach. Integr Cancer Ther 2003; 2(2): 105–111
CrossRef
Pubmed
Google scholar
|
[74] |
Zhang YK, Yeager RL, Klaassen CD. Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos 2009; 37(1): 106–115
CrossRef
Pubmed
Google scholar
|
[75] |
Sinal CJ, Yoon M, Gonzalez FJ. Antagonism of the actions of peroxisome proliferator-activated receptor-α by bile acids. J Biol Chem 2001; 276(50): 47154–47162
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |