Natural killer cells in liver diseases

Meijuan Zheng, Haoyu Sun, Zhigang Tian

PDF(299 KB)
PDF(299 KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (3) : 269-279. DOI: 10.1007/s11684-018-0621-4
REVIEW
REVIEW

Natural killer cells in liver diseases

Author information +
History +

Abstract

The liver has been characterized as a frontline lymphoid organ with complex immunological features such as liver immunity and liver tolerance. Liver tolerance plays an important role in liver diseases including acute inflammation, chronic infection, autoimmune disease, and tumors. The liver contains a large proportion of natural killer (NK) cells, which exhibit heterogeneity in phenotypic and functional characteristics. NK cell activation, well known for its role in the immune surveillance against tumor and pathogen-infected cells, depends on the balance between numerous activating and inhibitory signals. In addition to the innate direct “killer” functions, NK cell activity contributes to regulate innate and adaptive immunity (helper or regulator). Under the setting of liver diseases, NK cells are of great importance for stimulating or inhibiting immune responses, leading to either immune activation or immune tolerance. Here, we focus on the relationship between NK cell biology, such as their phenotypic features and functional diversity, and liver diseases.

Keywords

natural killer cell / phenotype / immune activation / immune tolerance / liver diseases

Cite this article

Download citation ▾
Meijuan Zheng, Haoyu Sun, Zhigang Tian. Natural killer cells in liver diseases. Front. Med., 2018, 12(3): 269‒279 https://doi.org/10.1007/s11684-018-0621-4

References

[1]
Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol 2009; 27(1): 147–163
CrossRef Pubmed Google scholar
[2]
Calne RY, Sells RA, Pena JR, Davis DR, Millard PR, Herbertson BM, Binns RM, Davies DA. Induction of immunological tolerance by porcine liver allografts. Nature 1969; 223(5205): 472–476
CrossRef Pubmed Google scholar
[3]
Qian S, Demetris AJ, Murase N, Rao AS, Fung JJ, Starzl TE. Murine liver allograft transplantation: tolerance and donor cell chimerism. Hepatology 1994; 19(4): 916–924
CrossRef Pubmed Google scholar
[4]
Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol 2012; 12(3): 201–213
CrossRef Pubmed Google scholar
[5]
Bogdanos DP, Gao B, Gershwin ME. Liver immunology. Compr Physiol 2013; 3(2): 567–598
Pubmed
[6]
Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology 2006; 43(2 Suppl 1): S54–S62
CrossRef Pubmed Google scholar
[7]
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat Immunol 2008; 9(5): 503–510
CrossRef Pubmed Google scholar
[8]
Lanier LL. NK cell recognition. Annu Rev Immunol 2005; 23(1): 225–274
CrossRef Pubmed Google scholar
[9]
Yokoyama WM, Kim S, French AR. The dynamic life of natural killer cells. Annu Rev Immunol 2004; 22(1): 405–429
CrossRef Pubmed Google scholar
[10]
Jinushi M, Takehara T, Tatsumi T, Yamaguchi S, Sakamori R, Hiramatsu N, Kanto T, Ohkawa K, Hayashi N. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology 2007; 120(1): 73–82
CrossRef Pubmed Google scholar
[11]
Lassen MG, Lukens JR, Dolina JS, Brown MG, Hahn YS. Intrahepatic IL-10 maintains NKG2A+Ly49 liver NK cells in a functionally hyporesponsive state. J Immunol 2010; 184(5): 2693–2701
CrossRef Pubmed Google scholar
[12]
Shi CC, Tjwa ET, Biesta PJ, Boonstra A, Xie Q, Janssen HL, Woltman AM. Hepatitis B virus suppresses the functional interaction between natural killer cells and plasmacytoid dendritic cells. J Viral Hepat 2012; 19(2): e26–e33
CrossRef Pubmed Google scholar
[13]
Tu Z, Bozorgzadeh A, Pierce RH, Kurtis J, Crispe IN, Orloff MS. TLR-dependent cross talk between human Kupffer cells and NK cells. J Exp Med 2008; 205(1): 233–244
CrossRef Pubmed Google scholar
[14]
Knolle PA, Gerken G. Local control of the immune response in the liver. Immunol Rev 2000; 174(1): 21–34
CrossRef Pubmed Google scholar
[15]
Gao B. Basic liver immunology. Cell Mol Immunol 2016; 13(3): 265–266
CrossRef Pubmed Google scholar
[16]
Bowen DG, McCaughan GW, Bertolino P. Intrahepatic immunity: a tale of two sites? Trends Immunol 2005; 26(10): 512–517
CrossRef Pubmed Google scholar
[17]
Yoneyama H, Ichida T. Recruitment of dendritic cells to pathological niches in inflamed liver. Med Mol Morphol 2005; 38(3): 136–141
CrossRef Pubmed Google scholar
[18]
Grant AJ, Goddard S, Ahmed-Choudhury J, Reynolds G, Jackson DG, Briskin M, Wu L, Hübscher SG, Adams DH. Hepatic expression of secondary lymphoid chemokine (CCL21) promotes the development of portal-associated lymphoid tissue in chronic inflammatory liver disease. Am J Pathol 2002; 160(4): 1445–1455
CrossRef Pubmed Google scholar
[19]
Schildberg FA, Hegenbarth SI, Schumak B, Scholz K, Limmer A, Knolle PA. Liver sinusoidal endothelial cells veto CD8 T cell activation by antigen-presenting dendritic cells. Eur J Immunol 2008; 38(4): 957–967
CrossRef Pubmed Google scholar
[20]
Bertolino P, Bowen DG, McCaughan GW, Fazekas de St Groth B. Antigen-specific primary activation of CD8+ T cells within the liver. J Immunol 2001; 166(9): 5430–5438
CrossRef Pubmed Google scholar
[21]
Bertolino P, Trescol-Biémont MC, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 1998; 28(1): 221–236
CrossRef Pubmed Google scholar
[22]
Zheng M, Yu J, Tian Z. Characterization of the liver-draining lymph nodes in mice and their role in mounting regional immunity to HBV. Cell Mol Immunol 2013; 10(2): 143–150
CrossRef Pubmed Google scholar
[23]
Barbier L, Tay SS, McGuffog C, Triccas JA, McCaughan GW, Bowen DG, Bertolino P. Two lymph nodes draining the mouse liver are the preferential site of DC migration and T cell activation. J Hepatol 2012; 57(2): 352–358
CrossRef Pubmed Google scholar
[24]
Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer-cell subsets. Trends Immunol 2001; 22(11): 633–640
CrossRef Pubmed Google scholar
[25]
Yu J, Mao HC, Wei M, Hughes T, Zhang J, Park IK, Liu S, McClory S, Marcucci G, Trotta R, Caligiuri MA. CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets. Blood 2010; 115(2): 274–281
CrossRef Pubmed Google scholar
[26]
Björkström NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA, Björklund AT, Flodström-Tullberg M, Michaëlsson J, Rottenberg ME, Guzmán CA, Ljunggren HG, Malmberg KJ. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 2010; 116(19): 3853–3864
CrossRef Pubmed Google scholar
[27]
Lopez-Vergès S, Milush JM, Pandey S, York VA, Arakawa-Hoyt J, Pircher H, Norris PJ, Nixon DF, Lanier LL. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 2010; 116(19): 3865–3874
CrossRef Pubmed Google scholar
[28]
Juelke K, Killig M, Luetke-Eversloh M, Parente E, Gruen J, Morandi B, Ferlazzo G, Thiel A, Schmitt-Knosalla I, Romagnani C. CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood 2010; 116(8): 1299–1307
CrossRef Pubmed Google scholar
[29]
Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 1998; 161(11): 5821–5824
Pubmed
[30]
Fu B, Tian Z, Wei H. Subsets of human natural killer cells and their regulatory effects. Immunology 2014; 141(4): 483–489
CrossRef Pubmed Google scholar
[31]
Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T. Maturation of mouse NK cells is a 4-stage developmental program. Blood 2009; 113(22): 5488–5496
CrossRef Pubmed Google scholar
[32]
Fu B, Wang F, Sun R, Ling B, Tian Z, Wei H. CD11b and CD27 reflect distinct population and functional specialization in human natural killer cells. Immunology 2011; 133(3): 350–359
CrossRef Pubmed Google scholar
[33]
Erick TK, Brossay L. Phenotype and functions of conventional and non-conventional NK cells. Curr Opin Immunol 2016; 38: 67–74
CrossRef Pubmed Google scholar
[34]
Sojka DK, Tian Z, Yokoyama WM. Tissue-resident natural killer cells and their potential diversity. Semin Immunol 2014; 26(2): 127–131
CrossRef Pubmed Google scholar
[35]
Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 2014; 3e01659
[36]
Doisne JM, Balmas E, Boulenouar S, Gaynor LM, Kieckbusch J, Gardner L, Hawkes DA, Barbara CF, Sharkey AM, Brady HJ, Brosens JJ, Moffett A, Colucci F. Composition, development, and function of uterine innate lymphoid cells. J Immunol 2015; 195(8): 3937–3945
CrossRef Pubmed Google scholar
[37]
Victorino F, Sojka DK, Brodsky KS, McNamee EN, Masterson JC, Homann D, Yokoyama WM, Eltzschig HK, Clambey ET. Tissue-resident NK cells mediate ischemic kidney injury and are not depleted by anti-Asialo-GM1 antibody. J Immunol 2015; 195(10): 4973–4985
CrossRef Pubmed Google scholar
[38]
Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM, Tian Z. Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Invest 2013; 123(4): 1444–1456
CrossRef Pubmed Google scholar
[39]
Han Q, Zhang C, Zhang J, Tian Z. The role of innate immunity in HBV infection. Semin Immunopathol 2013; 35(1): 23–38
CrossRef Pubmed Google scholar
[40]
Sun H, Sun C, Tian Z, Xiao W. NK cells in immunotolerant organs. Cell Mol Immunol 2013; 10(3): 202–212
CrossRef Pubmed Google scholar
[41]
Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 2016; 13(3): 328–336
CrossRef Pubmed Google scholar
[42]
Walch M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T, Clayberger C, Krensky AM, Martinvalet D, Lieberman J. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell 2014; 157(6): 1309–1323
CrossRef Pubmed Google scholar
[43]
Peppa D, Gill US, Reynolds G, Easom NJ, Pallett LJ, Schurich A, Micco L, Nebbia G, Singh HD, Adams DH, Kennedy PT, Maini MK. Up-regulation of a death receptor renders antiviral T cells susceptible to NK cell-mediated deletion. J Exp Med 2013; 210(1): 99–114
CrossRef Pubmed Google scholar
[44]
Krueger PD, Narayanan S, Surette FA, Brown MG, Sung SJ, Hahn YS. Murine liver-resident group 1 innate lymphoid cells regulate optimal priming of anti-viral CD8+ T cells. J Leukoc Biol 2017; 101(1): 329–338
CrossRef Pubmed Google scholar
[45]
Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ-specific features of natural killer cells. Nat Rev Immunol 2011; 11(10): 658–671
CrossRef Pubmed Google scholar
[46]
Crome SQ, Lang PA, Lang KS, Ohashi PS. Natural killer cells regulate diverse T cell responses. Trends Immunol 2013; 34(7): 342–349
CrossRef Pubmed Google scholar
[47]
Zhang C, Zhang J, Tian Z. The regulatory effect of natural killer cells: do “NK-reg cells” exist? Cell Mol Immunol 2006; 3(4): 241–254
Pubmed
[48]
Schafer JL, Müller-Trutwin MC, Reeves RK. NK cell exhaustion: bad news for chronic disease? Oncotarget 2015; 6(26): 21797–21798
CrossRef Pubmed Google scholar
[49]
Long EO, Kim HS, Liu D, Peterson ME, Rajagopalan S. Controlling natural killer cell responses: integration of signals for activation and inhibition. Annu Rev Immunol 2013; 31(1): 227–258
CrossRef Pubmed Google scholar
[50]
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 2008; 9(5): 495–502
CrossRef Pubmed Google scholar
[51]
Watzl C, Long EO. Signal transduction during activation and inhibition of natural killer cells. Curr Protoc Immunol 2010; Chapter 11 Unit 11 19B
[52]
Tian Z, Chen Y, Gao B. Natural killer cells in liver disease. Hepatology 2013; 57(4): 1654–1662
CrossRef Pubmed Google scholar
[53]
Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13(3): 267–276
CrossRef Pubmed Google scholar
[54]
Bertoletti A, Wang FS. Overview of the special issue on HBV immunity. Cell Mol Immunol 2015; 12(3): 253–254
CrossRef Pubmed Google scholar
[55]
Timm J, Walker CM. Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol (Berl) 2015; 204(1): 29–38
CrossRef Pubmed Google scholar
[56]
Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, Eric Gershwin M. Adaptive immunity in the liver. Cell Mol Immunol 2016; 13(3): 354–368
CrossRef Pubmed Google scholar
[57]
Billerbeck E, Wolfisberg R, Fahnoe U, Xiao JW, Quirk C, Luna JM, Cullen JM, Hartlage AS, Chiriboga L, Ghoshal K, Lipkin WI, Bukh J, Scheel TKH, Kapoor A, Rice CM. Mouse models of acute and chronic hepacivirus infection. Science 2017; 357(6347): 204–208
CrossRef Pubmed Google scholar
[58]
Fu QX, Yan SD, Wang LC, Duan XG, Wang L, Wang Y, Wu T, Wang XH, An J, Zhang YL, Zhou QQ, Zhan LS. Hepatic NK cell-mediated hypersensitivity to ConA-induced liver injury in mouse liver expressing hepatitis C virus polyprotein. Oncotarget 2017; 8(32): 52178–52192
CrossRef Pubmed Google scholar
[59]
Tjwa ETTL, van Oord GW, Hegmans JP, Janssen HLA, Woltman AM. Viral load reduction improves activation and function of natural killer cells in patients with chronic hepatitis B. J Hepatol 2011; 54(2): 209–218
CrossRef Pubmed Google scholar
[60]
Oliviero B, Varchetta S, Paudice E, Michelone G, Zaramella M, Mavilio D, De Filippi F, Bruno S, Mondelli MU. Natural killer cell functional dichotomy in chronic hepatitis B and chronic hepatitis C virus infections. Gastroenterology 2009; 137(3): 1151–1160.e7
CrossRef Pubmed Google scholar
[61]
Shimoda S, Harada K, Niiro H, Shirabe K, Taketomi A, Maehara Y, Tsuneyama K, Nakanuma Y, Leung P, Ansari AA, Gershwin ME, Akashi K. Interaction between Toll-like receptors and natural killer cells in the destruction of bile ducts in primary biliary cirrhosis. Hepatology 2011; 53(4): 1270–1281
CrossRef Pubmed Google scholar
[62]
Hudspeth K, Pontarini E, Tentorio P, Cimino M, Donadon M, Torzilli G, Lugli E, Della Bella S, Gershwin ME, Mavilio D. The role of natural killer cells in autoimmune liver disease: a comprehensive review. J Autoimmun 2013; 46: 55–65
CrossRef Pubmed Google scholar
[63]
Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, Zhang H, Yang Y, Wu H, Tien P, Wang FS. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 2008; 129(3): 428–437
CrossRef Pubmed Google scholar
[64]
Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13(3): 277–292
CrossRef Pubmed Google scholar
[65]
Golden-Mason L, Rosen HR. Natural killer cells: multifaceted players with key roles in hepatitis C immunity. Immunol Rev 2013; 255(1): 68–81
CrossRef Pubmed Google scholar
[66]
Serti E, Chepa-Lotrea X, Kim YJ, Keane M, Fryzek N, Liang TJ, Ghany M, Rehermann B. Successful interferon-free therapy of chronic hepatitis C virus infection normalizes natural killer cell function. Gastroenterology 2015; 149(1):190–200.e2
CrossRef Pubmed Google scholar
[67]
Zhao J, Li Y, Jin L, Zhang S, Fan R, Sun Y, Zhou C, Shang Q, Li W, Zhang Z, Wang FS. Natural killer cells are characterized by the concomitantly increased interferon-g and cytotoxicity in acute resolved hepatitis B patients. PLoS One 2012; 7(11): e49135
CrossRef Pubmed Google scholar
[68]
Golden-Mason L, Cox AL, Randall JA, Cheng L, Rosen HR. Increased natural killer cell cytotoxicity and NKp30 expression protects against hepatitis C virus infection in high-risk individuals and inhibits replication in vitro. Hepatology 2010; 52(5): 1581–1589
CrossRef Pubmed Google scholar
[69]
Knapp S, Warshow U, Hegazy D, Brackenbury L, Guha IN, Fowell A, Little AM, Alexander GJ, Rosenberg WM, Cramp ME, Khakoo SI. Consistent beneficial effects of killer cell immunoglobulin-like receptor 2DL3 and group 1 human leukocyte antigen-C following exposure to hepatitis C virus. Hepatology 2010; 51(4): 1168–1175
CrossRef Pubmed Google scholar
[70]
Abdelrahman MM, Fawzy IO, Bassiouni AA, Gomaa AI, Esmat G, Waked I, Abdelaziz AI. Enhancing NK cell cytotoxicity by miR-182 in hepatocellular carcinoma. Hum Immunol 2016; 77(8): 667–673
CrossRef Pubmed Google scholar
[71]
Lasfar A, de laTorre A, Abushahba W, Cohen-Solal KA, Castaneda I, Yuan Y, Reuhl K, Zloza A, Raveche E, Laskin DL, Kotenko SV. Concerted action of IFN-α and IFN-l induces local NK cell immunity and halts cancer growth. Oncotarget 2016; 7(31): 49259–49267
CrossRef Pubmed Google scholar
[72]
Maini MK, Peppa D. NK cells: a double-edged sword in chronic hepatitis B virus infection. Front Immunol 2013; 4: 57
CrossRef Pubmed Google scholar
[73]
Ghosh S, Nandi M, Pal S, Mukhopadhyay D, Chakraborty BC, Khatun M, Bhowmick D, Mondal RK, Das S, Das K, Ghosh R, Banerjee S, Santra A, Chatterjee M, Chowdhury A, Datta S. Natural killer cells contribute to hepatic injury and help in viral persistence during progression of hepatitis B e-antigen-negative chronic hepatitis B virus infection. Clin Microbiol Infect 2016; 22(8):733.e9–733.e19
CrossRef Pubmed Google scholar
[74]
Zheng Q, Zhu YY, Chen J, Ye YB, Li JY, Liu YR, Hu ML, Zheng YC, Jiang JJ. Activated natural killer cells accelerate liver damage in patients with chronic hepatitis B virus infection. Clin Exp Immunol 2015; 180(3): 499–508
CrossRef Pubmed Google scholar
[75]
Abu-Tair L, Axelrod JH, Doron S, Ovadya Y, Krizhanovsky V, Galun E, Amer J, Safadi R. Natural killer cell-dependent anti-fibrotic pathway in liver injury via Toll-like receptor-9. PLoS One 2013; 8(12): e82571
CrossRef Pubmed Google scholar
[76]
Glässner A, Eisenhardt M, Krämer B, Körner C, Coenen M, Sauerbruch T, Spengler U, Nattermann J. NK cells from HCV-infected patients effectively induce apoptosis of activated primary human hepatic stellate cells in a TRAIL-, FasL- and NKG2D-dependent manner. Lab Invest 2012; 92(7): 967–977
CrossRef Pubmed Google scholar
[77]
Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 2006; 130(2): 435–452
CrossRef Pubmed Google scholar
[78]
Doherty DG. Immunity, tolerance and autoimmunity in the liver: a comprehensive review. J Autoimmun 2016; 66: 60–75
CrossRef Pubmed Google scholar
[79]
Tian Z, Gershwin ME, Zhang C. Regulatory NK cells in autoimmune disease. J Autoimmun 2012; 39(3): 206–215
CrossRef Pubmed Google scholar
[80]
Chuang YH, Lian ZX, Cheng CM, Lan RY, Yang GX, Moritoki Y, Chiang BL, Ansari AA, Tsuneyama K, Coppel RL, Gershwin ME. Increased levels of chemokine receptor CXCR3 and chemokines IP-10 and MIG in patients with primary biliary cirrhosis and their first degree relatives. J Autoimmun 2005; 25(2): 126–132
CrossRef Pubmed Google scholar
[81]
Liang Y, Yang Z, Li C, Zhu Y, Zhang L, Zhong R. Characterisation of TNF-related apoptosis-inducing ligand in peripheral blood in patients with primary biliary cirrhosis. Clin Exp Med 2008; 8(1): 1–7
CrossRef Pubmed Google scholar
[82]
Lanier LL. Evolutionary struggles between NK cells and viruses. Nat Rev Immunol 2008; 8(4): 259–268
CrossRef Pubmed Google scholar
[83]
Martín-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F. Induced recruitment of NK cells to lymph nodes provides IFN-γ for T(H)1 priming. Nat Immunol 2004; 5(12): 1260–1265
CrossRef Pubmed Google scholar
[84]
Zheng M, Sun R, Wei H, Tian Z. NK cells help induce anti-hepatitis B virus CD8+ T cell immunity in mice. J Immunol 2016; 196(10): 4122–4131
CrossRef Pubmed Google scholar
[85]
Combe CL, Curiel TJ, Moretto MM, Khan IA. NK cells help to induce CD8+-T-cell immunity against Toxoplasma gondii in the absence of CD4+ T cells. Infect Immun 2005; 73(8): 4913–4921
CrossRef Pubmed Google scholar
[86]
Geldhof AB, Van Ginderachter JA, Liu Y, Noël W, Raes G, De Baetselier P. Antagonistic effect of NK cells on alternatively activated monocytes: a contribution of NK cells to CTL generation. Blood 2002; 100(12): 4049–4058
CrossRef Pubmed Google scholar
[87]
Allen F, Rauhe P, Askew D, Tong AA, Nthale J, Eid S, Myers JT, Tong C, Huang AY. CCL3 enhances antitumor immune priming in the lymph node via IFN γ with dependency on natural killer cells. Front Immunol 2017; 8 :1390
CrossRef Pubmed Google scholar
[88]
Adam C, King S, Allgeier T, Braumüller H, Lüking C, Mysliwietz J, Kriegeskorte A, Busch DH, Röcken M, Mocikat R. DC-NK cell cross talk as a novel CD4+ T-cell-independent pathway for antitumor CTL induction. Blood 2005; 106(1): 338–344
CrossRef Pubmed Google scholar
[89]
Yuan D. Interactions between NK cells and B lymphocytes. Adv Immunol 2004; 84: 1–42
CrossRef Pubmed Google scholar
[90]
Krebs P, Barnes MJ, Lampe K, Whitley K, Bahjat KS, Beutler B, Janssen E, Hoebe K. NK-cell-mediated killing of target cells triggers robust antigen-specific T-cell-mediated and humoral responses. Blood 2009; 113(26): 6593–6602
CrossRef Pubmed Google scholar
[91]
Li F, Tian Z. The liver works as a school to educate regulatory immune cells. Cell Mol Immunol 2013; 10(4): 292–302
CrossRef Pubmed Google scholar
[92]
Yang Y, Han Q, Hou Z, Zhang C, Tian Z, Zhang J. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction. Cell Mol Immunol 2017; 14(5): 465–475
CrossRef Pubmed Google scholar
[93]
Zhang QF, Yin WW, Xia Y, Yi YY, He QF, Wang X, Ren H, Zhang DZ. Liver-infiltrating CD11b€CD27€ NK subsets account for NK-cell dysfunction in patients with hepatocellular carcinoma and are associated with tumor progression. Cell Mol Immunol 2017; 14(10): 819–829
Pubmed
[94]
Cai L, Zhang Z, Zhou L, Wang H, Fu J, Zhang S, Shi M, Zhang H, Yang Y, Wu H, Tien P, Wang FS. Functional impairment in circulating and intrahepatic NK cells and relative mechanism in hepatocellular carcinoma patients. Clin Immunol 2008; 129(3): 428–437
CrossRef Pubmed Google scholar
[95]
Chen T, Zhu L, Shi AC, Ding L, Zhang XP, Tan ZM, Guo W, Yan WM, Han MF, Jia JD, Luo XP, Schuppan D, Ning Q. Functional restoration of CD56bright NK cells facilitates immune control via IL-15 and NKG2D in patients under antiviral treatment for chronic hepatitis B. Hepatol Int 2017; 11(5): 419–428
CrossRef Pubmed Google scholar
[96]
Podhorzer A, Dirchwolf M, Machicote A, Belen S, Montal S, Paz S, Fainboim H, Podesta L G, Fainboim L. The clinical features of patients with chronic hepatitis C virus infections are associated with killer cell immunoglobulin-like receptor genes and their expression on the surface of natural killer cells. Front Immunol 2018; 8:1912
CrossRef Pubmed Google scholar
[97]
Tatsumi T, Takehara T. Impact of natural killer cells on chronic hepatitis C and hepatocellular carcinoma. Hepatol Res 2016; 46(5): 416–422
CrossRef Pubmed Google scholar
[98]
Cerwenka A, Lanier LL. Natural killer cells, viruses and cancer. Nat Rev Immunol 2001; 1(1): 41–49
CrossRef Pubmed Google scholar
[99]
Sun C, Sun H, Zhang C, Tian Z. NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol 2015; 12(3): 292–302
CrossRef Pubmed Google scholar
[100]
Liu KJ, Wang CJ, Chang CJ, Hu HI, Hsu PJ, Wu YC, Bai CH, Sytwu HK, Yen BL. Surface expression of HLA-G is involved in mediating immunomodulatory effects of placenta-derived multipotent cells (PDMCs) towards natural killer lymphocytes. Cell Transplant 2011; 20(11-12): 1721–1730
CrossRef Pubmed Google scholar
[101]
Ju Y, Hou N, Meng J, Wang X, Zhang X, Zhao D, Liu Y, Zhu F, Zhang L, Sun W, Liang X, Gao L, Ma C. T cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates natural killer cell suppression in chronic hepatitis B. J Hepatol 2010; 52(3): 322–329
CrossRef Pubmed Google scholar
[102]
Sun C, Fu B, Gao Y, Liao X, Sun R, Tian Z, Wei H. TGF-β1 down-regulation of NKG2D/DAP10 and 2B4/SAP expression on human NK cells contributes to HBV persistence. PLoS Pathog 2012; 8(3): e1002594
CrossRef Pubmed Google scholar
[103]
Li F, Wei H, Wei H, Gao Y, Xu L, Yin W, Sun R, Tian Z. Blocking the natural killer cell inhibitory receptor NKG2A increases activity of human natural killer cells and clears hepatitis B virus infection in mice. Gastroenterology 2013; 144(2): 392–401
CrossRef Pubmed Google scholar
[104]
Wang JM, Cheng YQ, Shi L, Ying RS, Wu XY, Li GY, Moorman JP, Yao ZQ. KLRG1 negatively regulates natural killer cell functions through the Akt pathway in individuals with chronic hepatitis C virus infection. J Virol 2013; 87(21): 11626–11636
CrossRef Pubmed Google scholar
[105]
Golden-Mason L, Waasdorp Hurtado CE, Cheng L, Rosen HR. Hepatitis C viral infection is associated with activated cytolytic natural killer cells expressing high levels of T cell immunoglobulin- and mucin-domain-containing molecule-3. Clin Immunol 2015; 158(1): 114–125
CrossRef Pubmed Google scholar
[106]
Peppa D, Micco L, Javaid A, Kennedy PT, Schurich A, Dunn C, Pallant C, Ellis G, Khanna P, Dusheiko G, Gilson RJ, Maini MK. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS Pathog 2010; 6(12): e1001227
CrossRef Pubmed Google scholar
[107]
Sun C, Xu J, Huang Q, Huang M, Wen H, Zhang C, Wang J, Song J, Zheng M, Sun H, Wei H, Xiao W, Sun R, Tian Z. High NKG2A expression contributes to NK cell exhaustion and predicts a poor prognosis of patients with liver cancer. OncoImmunology 2017; 6(1): e1264562
CrossRef Pubmed Google scholar
[108]
Waggoner SN, Taniguchi RT, Mathew PA, Kumar V, Welsh RM. Absence of mouse 2B4 promotes NK cell-mediated killing of activated CD8+ T cells, leading to prolonged viral persistence and altered pathogenesis. J Clin Invest 2010; 120(6): 1925–1938
CrossRef Pubmed Google scholar
[109]
Soderquest K, Walzer T, Zafirova B, Klavinskis LS, Polić B, Vivier E, Lord GM, Martín-Fontecha A. Cutting edge: CD8+ T cell priming in the absence of NK cells leads to enhanced memory responses. J Immunol 2011; 186(6): 3304–3308
CrossRef Pubmed Google scholar
[110]
Lang PA, Lang KS, Xu HC, Grusdat M, Parish IA, Recher M, Elford AR, Dhanji S, Shaabani N, Tran CW, Dissanayake D, Rahbar R, Ghazarian M, Brüstle A, Fine J, Chen P, Weaver CT, Klose C, Diefenbach A, Häussinger D, Carlyle JR, Kaech SM, Mak TW, Ohashi PS. Natural killer cell activation enhances immune pathology and promotes chronic infection by limiting CD8+ T-cell immunity. Proc Natl Acad Sci USA 2012; 109(4): 1210–1215
CrossRef Pubmed Google scholar
[111]
Deniz G, Erten G, Kücüksezer UC, Kocacik D, Karagiannidis C, Aktas E, Akdis CA, Akdis M. Regulatory NK cells suppress antigen-specific T cell responses. J Immunol 2008; 180(2): 850–857
CrossRef Pubmed Google scholar
[112]
Crouse J, Bedenikovic G, Wiesel M, Ibberson M, Xenarios I, Von Laer D, Kalinke U, Vivier E, Jonjic S, Oxenius A. Type I interferons protect T cells against NK cell attack mediated by the activating receptor NCR1. Immunity 2014; 40(6): 961–973
CrossRef Pubmed Google scholar
[113]
Xu HC, Grusdat M, Pandyra AA, Polz R, Huang J, Sharma P, Deenen R, Köhrer K, Rahbar R, Diefenbach A, Gibbert K, Löhning M, Höcker L, Waibler Z, Häussinger D, Mak TW, Ohashi PS, Lang KS, Lang PA. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 2014; 40(6): 949–960
CrossRef Pubmed Google scholar
[114]
De Rose V, Cappello P, Sorbello V, Ceccarini B, Gani F, Bosticardo M, Fassio S, Novelli F. IFN-γ inhibits the proliferation of allergen-activated T lymphocytes from atopic, asthmatic patients by inducing Fas/FasL-mediated apoptosis. J Leukoc Biol 2004; 76(2): 423–432
CrossRef Pubmed Google scholar
[115]
Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood 2008; 112(5): 1557–1569
CrossRef Pubmed Google scholar
[116]
De Pelsmaeker S, Devriendt B, Leclercq G, Favoreel HW. Porcine NK cells display features associated with antigen-presenting cells. J Leukocyte Biol 2018; 103(1):129–140
CrossRef Google scholar
[117]
Iraolagoitia XLR, Spallanzani RG, Torres NI, Araya RE, Ziblat A, Domaica CI, Sierra JM, Nunez SY, Secchiari F, Gajewski TF, Zwirner NW, Fuertes MB. NK cells restrain spontaneous antitumor CD8+ T cell priming through PD-1/PD-L1 interactions with dendritic cells. J Immunol 2016; 197(3):953–961
CrossRef Pubmed Google scholar
[118]
Meazza R, Falco M, Marcenaro S, Loiacono F, Canevali P, Bellora F, Tuberosa C, Locatelli F, Micalizzi C, Moretta A, Mingari MC, Moretta L, Arico M, Bottino C, Pende D. Inhibitory 2B4 contributes to NK cell education and immunological derangements in XLP1 patients. Eur J Immunol 2017; 47(6):1051–1061
CrossRef Pubmed Google scholar
[119]
Cairo C, Surendran N, Harris KM, Mazan-Mamczarz K, Sakoda Y, Diaz-Mendez F, Tamada K, Gartenhaus RB, Mann DL, Pauza CD. Vγ2Vδ2 T-cell co-stimulation increases natural killer cell killing of monocyte-derived dendritic cells. Immunology 2015; 144(3): 422–430
CrossRef Google scholar
[120]
Andrews DM, Estcourt MJ, Andoniou CE, Wikstrom ME, Khong A, Voigt V, Fleming P, Tabarias H, Hill GR, van der Most RG, Scalzo AA, Smyth MJ, Degli-Esposti MA. Innate immunity defines the capacity of antiviral T cells to limit persistent infection. J Exp Med 2010; 207(6): 1333–1343
CrossRef Pubmed Google scholar
[121]
Cook KD, Whitmire JK. The depletion of NK cells prevents T cell exhaustion to efficiently control disseminating virus infection. J Immunol 2013; 190(2): 641–649
CrossRef Pubmed Google scholar
[122]
Schafer JL, Li H, Evans TI, Estes JD, Reeves RK. Accumulation of cytotoxic CD16+ NK cells in simian immunodeficiency virus-infected lymph nodes associated with in situ differentiation and functional anergy. J Virol 2015; 89(13): 6887–6894
CrossRef Pubmed Google scholar
[123]
Gill S, Vasey AE, De Souza A, Baker J, Smith AT, Kohrt HE, Florek M, Gibbs KD Jr, Tate K, Ritchie DS, Negrin RS. Rapid development of exhaustion and down-regulation of eomesodermin limit the antitumor activity of adoptively transferred murine natural killer cells. Blood 2012; 119(24): 5758–5768
CrossRef Pubmed Google scholar
[124]
Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, Gonçalves A, André P, Romagné F, Thibault G, Viens P, Birnbaum D, Bertucci F, Moretta A, Olive D. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 2011; 121(9): 3609–3622
CrossRef Pubmed Google scholar
[125]
da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, Osman I, Bhardwaj N. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res 2014; 2(5): 410–422
CrossRef Pubmed Google scholar
[126]
Odorizzi PM, Pauken KE, Paley MA, Sharpe A, Wherry EJ. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells. J Exp Med 2015; 212(7): 1125–1137
CrossRef Pubmed Google scholar
[127]
Lee SH, Kim KS, Fodil-Cornu N, Vidal SM, Biron CA. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J Exp Med 2009; 206(10): 2235–2251
CrossRef Pubmed Google scholar
[128]
Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MB. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 2006; 12(11): 1301–1309
CrossRef Pubmed Google scholar
[129]
Harmon C, Robinson MW, Fahey R, Whelan S, Houlihan DD, Geoghegan J, O’Farrelly C. Tissue-resident Eomes(hi) T-bet(lo) CD56(bright) NK cells with reduced proinflammatory potential are enriched in the adult human liver. Eur J Immunol 2016; 46(9): 2111–2120
CrossRef Pubmed Google scholar
[130]
Stegmann KA, Robertson F, Hansi N, Gill U, Pallant C, Christophides T, Pallett LJ, Peppa D, Dunn C, Fusai G, Male V, Davidson BR, Kennedy P, Maini MK. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver. Sci Rep-Uk 2016; 6:26157
CrossRef Google scholar
[131]
Hudspeth K, Donadon M, Cimino M, Pontarini E, Tentorio P, Preti M, Hong M, Bertoletti A, Bicciato S, Invernizzi P, Lugli E, Torzilli G, Gershwin ME, Mavilio D. Human liver-resident CD56(bright)/CD16(neg) NK cells are retained within hepatic sinusoids via the engagement of CCR5 and CXCR6 pathways. J Autoimmun 2016; 66: 40–50
CrossRef Pubmed Google scholar
[132]
Cuff AO, Robertson FP, Stegmann KA, Pallett LJ, Maini MK, Davidson BR, Male V. Eomeshi NK cells in human liver are long-lived and do not recirculate but can be replenished from the circulation. J Immunol 2016; 197(11): 4283–4291
CrossRef Pubmed Google scholar
[133]
Lugli E, Hudspeth K, Roberto A, Mavilio D. Tissue-resident and memory properties of human T-cell and NK-cell subsets. Eur J Immunol 2016; 46(8): 1809–1817
CrossRef Pubmed Google scholar
[134]
Paust S, Gill HS, Wang BZ, Flynn MP, Moseman EA, Senman B, Szczepanik M, Telenti A, Askenase PW, Compans RW, von Andrian UH. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nat Immunol 2010; 11(12): 1127–1135
CrossRef Pubmed Google scholar
[135]
Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J, Riley JK, Zhu J, Tian Z, Yokoyama WM. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 2014; 3: e01659
CrossRef Pubmed Google scholar
[136]
Yu M, Li ZH. Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches. Front Med 2017; 11(4): 509–521
CrossRef Pubmed Google scholar
[137]
BoudreauJE, Hsu KC. Natural killer cell education and the response to infection and cancer therapy: stay tuned. Trends Immunol 2018 Jan 31. pii: S1471-4906(17)30230-2. [Epub ahead of print]
CrossRef Pubmed Google scholar
[138]
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol 2013; 10(3): 230–252
CrossRef Pubmed Google scholar
[139]
Serti E, Park H, Keane M, O’Keefe AC, Rivera E, Liang TJ, Ghany M, Rehermann B. Rapid decrease in hepatitis C viremia by direct acting antivirals improves the natural killer cell response to IFNα. Gut 2017; 66(4): 724–735
CrossRef Pubmed Google scholar
[140]
Textor S, Bossler F, Henrich KO, Gartlgruber M, Pollmann J, Fiegler N, Arnold A, Westermann F, Waldburger N, Breuhahn K, Golfier S, Witzens-Harig M, Cerwenka A. The proto-oncogene Myc drives expression of the NK cell-activating NKp30 ligand B7-H6 in tumor cells. OncoImmunology 2016; 5(7): e1116674
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Nos. 81771685, 91429303, 31390433, 81761128013, and 91542000) and Ministry of Science and Technology of China (973 Basic Science Project, No. 2013CB944902).

Compliance with ethics guidelines

Meijuan Zheng, Haoyu Sun, and Zhigang Tian declare no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(299 KB)

Accesses

Citations

Detail

Sections
Recommended

/