Cyclospora cayetanensis infections among diarrheal outpatients in Shanghai: a retrospective case study

Yanyan Jiang , Zhongying Yuan , Guoqing Zang , Dan Li , Ying Wang , Yi Zhang , Hua Liu , Jianping Cao , Yujuan Shen

Front. Med. ›› 2018, Vol. 12 ›› Issue (1) : 98 -103.

PDF (156KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (1) : 98 -103. DOI: 10.1007/s11684-018-0614-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Cyclospora cayetanensis infections among diarrheal outpatients in Shanghai: a retrospective case study

Author information +
History +
PDF (156KB)

Abstract

Cyclospora cayetanensis is a foodborne and waterborne pathogen that causes endemic and epidemic human diarrhea worldwide. A few epidemiological studies regarding C. cayetanensis infections in China have been conducted. During 2013, a total of 291 stool specimens were collected from patients with diarrhea at a hospital in urban Shanghai. C. cayetanensis was not detected in any of the stool specimens by traditional microscopy, whereas five stool specimens (1.72%, 5/291) were positive by PCR. These positive cases confirmed by molecular technology were all in the adult group (mean age 27.8 years; 2.94%, 5/170) with watery diarrhea. Marked infection occurred in the rainy season of May and July. Sequence and phylogenetic analyses of the partial 18S rRNA genes of C. cayetanensis isolated showed intra-species diversity of this parasite. This study showed, for the first time, that C. cayetanensis is a pathogen in outpatients with diarrhea in Shanghai, albeit at a low level. However, the transmission dynamics of this parasite in these patients remain uncertain.

Keywords

Cyclospora cayetanensis / outpatients with diarrhea / stool specimens / 18S rRNA gene

Cite this article

Download citation ▾
Yanyan Jiang, Zhongying Yuan, Guoqing Zang, Dan Li, Ying Wang, Yi Zhang, Hua Liu, Jianping Cao, Yujuan Shen. Cyclospora cayetanensis infections among diarrheal outpatients in Shanghai: a retrospective case study. Front. Med., 2018, 12(1): 98-103 DOI:10.1007/s11684-018-0614-3

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Cyclospora cayetanensis is an apicomplexan parasite that infects the gastrointestinal tract and causes acute diarrheal disease in both immunocompromised and immunocompetent individuals [1,2]. In recent years, this parasite has led to several foodborne outbreaks in the United States [3], Mexico [4,5], Canada [6], and Turkey [7], mostly associated with imported produce and traveling. Besides these risk factors, the infection has been recognized as endemic in several areas of the developing world due to contact with animals and soil [8]. Water sanitary quality has been identified as a risk factor for infection in several areas, such as Spain [9] and Tunisia [10]. Variables associated with poverty have been associated with infection in Venezuela [11]. In China, cyclosporiasis infection rates range from 3.97% to 6.39% in humans with diarrhea [1214]. Therefore, cyclosporiasis infection is receiving increasing attention worldwide.

Previous studies related to Cyclospora parasite detection mainly involved stool smear staining and morphological identification [15,16]. However, PCR-based detection methods allow us to distinguish human pathogenic Cyclospora parasites from those that do not infect humans and improve detection sensitivity and accuracy [9,17]. Current biological and epidemiological understanding indicates that C. cayetanensis is associated with age range [18], gender [19], season, [20] and intraspecies variation of 18S rRNA gene sequences [21]. Although Shanghai is an international city, the extent and epidemiology of C. cayetanensis in Shanghai is unknown. Therefore, a retrospective case study was designed, involving outpatients from the infection department of a hospital over one year, to assess the prevalence and importance of this parasite in diarrheal patients.

Materials and methods

Sample collection

In this study, we defined diarrhea as a 24-h period during which the patient was reported to have≥3 liquid or semi-liquid stools [22]. The frequency of diarrhea was defined as the number of occurrences of diarrhea per day. From January 2013 to December 2013, a total of 291 stool samples were collected from outpatients with diarrhea in the Infectious Diseases Department of the Sixth People’s Hospital of Shanghai affiliated to Shanghai Jiao Tong University, China.

The objectives and procedures were explained orally to all participants. Written informed consent was provided by all participants in this study, including signed consent by parents/guardians on behalf of all child participants. Patient details, including age, gender, occurrence, duration and frequency of diarrhea, and consistency of stools, were recorded.

Stool samples

Stool samples were sent to our laboratory within 24 h for detection of C. cayetanensis by two methods, namely, traditional microscopy and nested PCR. Each sample was divided into two parts, one for Cyclospora spp. detection with the acid-fast staining method described by Madico et al. [23] and the other for molecular confirmation [24].

DNA extraction and PCR amplification

Sufficient samples (200 mg of each stool sample) were used for DNA extraction and purification using a commercially available kit, the QIAamp DNA Mini Stool Kit (Qiagen, Valencia, CA). The extracted DNA samples were stored at –20 °C until PCR. The presence of C. cayetanensis in samples was detected by nested PCR amplification of an approximately 501-bp fragment of the 18S rRNA gene, as described previously [17]. Negative controls using DNase-free water and C. cayetanensis-free stool samples were included in each PCR run. A positive control, which had previously been confirmed by microcopy [25] and molecular methods, was used in each PCR run.

Sequence and phylogenetic analyses

PCR products were sequenced in both directions on an ABI 3130 Genetic Analyzer (Applied Biosystems, Foster City, CA) by Shanghai Sunny Biotechnology Co. (Shanghai, China). The sequences obtained were blasted against the NCBI database and deposited in GenBank (accession numbers KJ569531 to KJ569535). Based on the reference AF111183 sequence (the C. cayetanensis 18S rRNA coding region), these sequences were edited using BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) and aligned using MEGA5 software for construction of a phylogenetic tree [26].

Statistical analysis

Data were analyzed using SPSS version 11.0 (SPSS, Chicago, IL, USA). Chi-square tests were used for comparison of proportions and analysis of variance for comparison of means. The level of significance was P<0.05.

Results

Occurrence of C. cayetanensis infection in patients with diarrhea

Stool samples from 291 patients with diarrhea were detected by microscopic examination in comparison with a confirmed C. cayetanensis-infected stool sample. However, no Cyclospora oocyst was detected in the stool samples of the 291 patients with diarrhea. By molecular detection, C. cayetanensis was identified in five samples (1.72%, 5/291; Table 1) using a modified nested-PCR method [27]. The five patients with C. cayetanensis infection had severe watery diarrhea, and the frequency of diarrhea ranged from 3.5 to 10 times per day (Table 2).

Characteristics of C. cayetanensis infection

The infection rates of C. cayetanensis ranged from 0% to 12.5% in the hospital in 2013 (Table 3). The greatest number of positive cases was observed in July (5.26%, 3/57), followed by May (12.5%, 2/16). C. cayetanensis infection showed greater occurrence in the rainfall season, although this observation was not statistically significant (P = 0.9861). The infection rates of male and female patients were 2.16% (3/139) and 1.32% (2/152); no significant difference was found in terms of gender (c2 = 0.3052, P = 0.5699; Table 1). The outpatients came from the Infectious Diseases Department of the hospital, and therefore excluded children under the age of 14 years. C. cayetanensis was only detected in adults (18–44 years; mean age 27.8 years; Table 1) and there was no significant difference (c2 = 1.53, P = 0.216) compared with other age groups. Infection rates in this age group by gender were 3.23% male (3/93) and 2.60% female (2/77). Four of the patients with C. cayetanensis infection were office workers from different companies (4/181, 2.21%; Table 1) and the other worked in a catering service preparing food (1/10, 10.0%; Table 1). They all had a habit of dining out, but no travel history within three months before the onset of diarrhea.

DNA sequences of C. cayetanensis at the SSU rRNA locus

Our five 18S rRNA gene sequences were blasted against 45 sequences, including a representative reference sequence of C. cayetanensis (AF111183) [28] and 44 other published sequences [17,25]. The five isolates from our hospital showed several intra-species variations at this locus (Table 2), including three polymorphic nucleotide positions (112, 121, and 245). However, these polymorphic sites showed no distinct geographic isolation patterns (Fig. 1).

Discussion

This report is one of the few studies to assess the prevalence of C. cayetanensis in endemic conditions and the first occurrence focused on outpatients with diarrhea from a hospital in Shanghai. Results indicate that C. cayetanensis is a pathogen in outpatients with diarrhea in Shanghai, albeit at a low level. Our study is limited by the relatively small positive sample size, which may have affected the statistical power and thus the ability to identify minor changes in risk factors for C. cayetanensis infection. However, our findings were supported by the results of an investigation from Henan Province, China, conducted with a relatively substantial number of individuals with diarrhea (2.97%; 12/404) [25]. The differences in cyclosporiasis infection rate in different studies may be related to socioeconomic conditions, local climatic factors, and eating habits, as well as immune status of hosts, sample structure or age, and infective doses of the parasite.

In the present study, we observed the same potential seasonal tendency toward Cyclospora infection (i.e., in May and July) as in previous work [29]. Interestingly, our findings were consistent with those observed in Henan Province [25]. Other studies have confirmed the seasonality of Cyclospora spp. infection in clinical samples from areas with humid and rainy seasons, such as Indonesia and Guatemala [30]. Consistent with these findings, we found no samples that were positive for Cyclospora spp. infection between October 2012 and March 2013 in Shanghai [27]. However, data about environmental conditions during the period in which the research was performed were lacking, thereby limiting our interpretation of results; we will further investigate the correlation between the infection pattern of C. cayetanensis and environmental conditions.

In a previous investigation, 63.4% of Cyclospora-infected patients were male and 36.6% were female (of 60 in Morelia, Mexico; P = 0.042) [20]; however, our study was limited by the low number of positive samples. In terms of age of infected patients, our findings correspond with other reports that included adults in Guatemala [31] and Nigeria [32]. Further investigations will increase our data pool and provide a more balanced view of the infection rate by gender and age.

We found four cases of C. cayetanensis infection in patients who worked for companies where eating out during working hours was necessary, and one in a patient who worked in a catering service. Thus, all five cases were possibly associated with eating contaminated food. This intriguing possibility is consistent with a report concerning cyclosporiasis and the eating of uncooked food items in Haiti [33]. Combined with the report of 2013 multistate outbreaks of cyclosporiasis during May to August in the United States, peaking in June and July, we suggest that the most likely vehicle of infection in our positive cases is that they ate onions in restaurants [34]. Nonetheless, studies involving patients with diarrhea should be conducted to obtain definitive answers about the food-borne transmission of this parasite based on traceback investigations.

Gene sequence analysis of the five specimens of C. cayetanensis showed slight intraspecies variation with one or two base variations; however, these single nucleotide polymorphisms did not reflect any clear geographic segregation. Our results were supported by examination of 18S rRNA gene sequences of isolates from China, revealing only minor sequence polymorphisms [25]. Sulaiman et al. [17] also showed only minor genetic diversity within the C. cayetanensis species, but significant, distinct genetic variation among members of C. colobi, C. papionis, and C. cercophiteci. However, a study that amplified 18S rRNA genes and used high-resolution melting curves of PCR-amplified DNAs extracted from the stool samples of 70 cyclosporiasis patients showed four categories of genotypic profile of C. cayetanensis, significantly relating genotypic profiles and gastrointestinal tract symptomatic status [21]. This finding is consistent with the existence of genetic diversity causing specific clinical forms of infection with Leishmania [35] and Cryptosporidium andersoni [36,37]. Therefore, more positive samples are needed to analyze variation of 18S rRNA gene sequences.

The new tool of multilocus sequence typing for C. cayetanensis may provide linkage between case and infection/contamination source tracking [38]. Further exploration of this concept will require detection of more positive samples for analysis. A draft nuclear genome sequence from C. cayetanensis oocysts purified from a human stool sample [20] and the complete mitochondrial genome sequence [39,40] have been published; these data allows the investigation of Cyclospora outbreaks and exploration of clues associated with clinical symptom based on trace-back assays [41] by molecular detection.

Conclusions

We identified, for the first time, C. cayetanensis in patients with diarrhea in Shanghai and extended our knowledge of the prevalence of infection in certain months. Although there was no statistically significant association between gender, age or season and the molecular detection of C. cayetanensis, its detection in patients with diarrhea highlights a potential public health risk in Shanghai.

References

[1]

Thima KMori  HPraevanit R Mongkhonmu S Waikagul J Watthanakulpanich D. Recovery of Cyclospora cayetanensis among asymptomatic rural Thai schoolchildren. Asian Pac J Trop Med 20147(2): 119–123

[2]

Llanes RVelázquez  BReyes Z Somarriba L. Co-infection with Cyclospora cayetanensis and Salmonella typhi in a patient with HIV infection and chronic diarrhoea. Pathog Glob Health 2013107(1): 38–39

[3]

Centers for Disease Control and Prevention (CDC). Outbreaks of cyclosporiasis—United States, June−August 2013. MMWR Morb Mortal Wkly Rep 201362(43): 862

[4]

Sánchez-Vega JT Cabrera-Fuentes HA Romero-Olmedo AJ Ortiz-Frías JL Sokolina F Barreto G. Cyclospora cayetanensis: this emerging protozoan pathogen in Mexico. Am J Trop Med Hyg 201490(2): 351–353

[5]

Chacín-Bonilla L Estévez J Monsalve F Quijada L.Cyclospora cayetanensis infections among diarrheal patients from Venezuela. Am J Trop Med Hyg 200165(4): 351–354

[6]

Milord FLampron-Goulet  ESt-Amour M Levac E Ramsay D. Cyclospora cayetanensis: a description of clinical aspects of an outbreak in Quebec, Canada. Epidemiol Infect 2012140(4): 626–632

[7]

Koru OAraz  EInci A Tanyuksel M. Co-infection of Giardia intestinalis and Cyclospora cayetanensis in an immunocompetent patient with prolonged diarrhea: case report. J Microbiol 200644(3): 360–362

[8]

Chacín-Bonilla L. Transmission of Cyclospora cayetanensis infection: a review focusing on soil-borne cyclosporiasis. Trans R Soc Trop Med Hyg 2008102(3): 215–216

[9]

Galván ALMagnet  AIzquierdo F Fenoy S Rueda C Fernández Vadillo C Henriques-Gil N del Aguila C. Molecular characterization of human-pathogenic microsporidia and Cyclospora cayetanensis isolated from various water sources in Spain: a year-long longitudinal study. Appl Environ Microbiol 201379(2): 449–459

[10]

Ben Ayed LYang  WWidmer G Cama VOrtega  YXiao L. Survey and genetic characterization of wastewater in Tunisia for Cryptosporidium spp., Giardia duodenalisEnterocytozoon bieneusiCyclospora cayetanensis and Eimeria spp. J Water Health 201210(3): 431–444

[11]

Chacín-Bonilla L Barrios F Sanchez Y. Epidemiology of Cyclospora cayetanensis infection in San Carlos Island, Venezuela: strong association between socio-economic status and infection. Trans R Soc Trop Med Hyg 2007101(10): 1018–1024

[12]

Xing WLWu  KWLing XY Huang HC Liu QZZheng  XYJin YG. Prevalence survey on Cyclospora cayetanensis in diarrhea cases in Wenzhou. Chin J Parasit Dis Control (Zhongguo Ji Sheng Chong Bing Fang Zhi Za Zhi) 200215(5): 320–321 (in Chinese)

[13]

Wang KXLi  CPWang J Tian Y. Cyclospore cayetanensis in Anhui, China. World J Gastroenterol 20028(6): 1144–1148

[14]

Zhang BXYu  HZhang LL Tao HLi  YZLi Y Cao ZKBai  ZMHe YQ. Prevalence survey on Cyclospora cayetanensis and Cryptosporidium ssp. in diarrhea cases in Yunnan Province. Chin J Parasitol Parasit Dis (Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi) 200220(2): 106–108 (in Chinese) 

[15]

Berlin OGPeter  JBGagne C Conteas CN Ash LR. Autofluorescence and the detection of Cyclospora oocysts. Emerg Infect Dis 19984(1): 127–128

[16]

Swarna SRMadhavan  RGomathi S Yadav D. Chronic diarrhea due to Cyclospora spp. infection. Trop Parasitol 20133(1): 85–86

[17]

Sulaiman IMOrtega  YSimpson S Kerdahi K. Genetic characterization of human-pathogenic Cyclospora cayetanensis parasites from three endemic regions at the 18S ribosomal RNA locus. Infect Genet Evol 201422: 229–234

[18]

Kimura KRai  SKRai G Insisiengmay S Kawabata M Karanis P Uga S. Study on Cyclospora cayetanensis associated with diarrheal disease in Nepal and Loa PDR. Southeast Asian J Trop Med Public Health 200536(6): 1371–1376

[19]

Gonçalves EM Uemura IH Castilho VL Corbett CE. Retrospective study of the occurrence of Cyclospora cayetanensis at Clinical Hospital of the University of São Paulo Medical School, SP. Rev Soc Bras Med Trop 200538(4): 326–330

[20]

Orozco-Mosqueda GE Martínez-Loya OA Ortega YR. Cyclospora cayetanensis in a pediatric hospital in Morelia, México. Am J Trop Med Hyg 201491(3): 537–540

[21]

Hussein EMEl-Moamly  AAMahmoud MA Ateek NS. Wide genetic variations at 18S ribosomal RNA locus of Cyclospora cayetanensis isolated from Egyptian patients using high resolution melting curve. Parasitol Res 2016115(7): 2797–2806

[22]

Bern CKawai  VVargas D Rabke-Verani J Williamson J Chavez-Valdez R Xiao LSulaiman  IVivar A Ticona E Navincopa M Cama VMoura  HSecor WE Visvesvara G Gilman RH. The epidemiology of intestinal microsporidiosis in patients with HIV/AIDS in Lima, Peru. J Infect Dis 2005191(10): 1658–1664

[23]

Madico GMcDonald  JGilman RH Cabrera L Sterling CR. Epidemiology and treatment of Cyclospora cayetanensis infection in Peruvian children. Clin Infect Dis 199724(5): 977–981

[24]

Pieniazek NJSlemenda  SBda Silva AJ Alfano EM Arrowood MJ. PCR confirmation of infection with Cyclospora cayetanensis. Emerg Infect Dis 19962(4): 357–359

[25]

Zhou YLv  BWang Q Wang RJian  FZhang L Ning CFu  KWang Y Qi MYao  HZhao J Zhang X Sun YShi  KArrowood MJ Xiao L. Prevalence and molecular characterization of Cyclospora cayetanensis, Henan, China. Emerg Infect Dis 201117(10): 1887–1890

[26]

Tamura KPeterson  DPeterson N Stecher G Nei MKumar  S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 201128(10): 2731–2739

[27]

Liu HShen  YYin J Yuan ZJiang  YXu Y Pan WHu  YCao J. Prevalence and genetic characterization of CryptosporidiumEnterocytozoonGiardia and Cyclospora in diarrheal outpatients in China. BMC Infect Dis 201414(1): 25

[28]

Eberhard MLda Silva  AJLilley BG Pieniazek NJ. Morphologic and molecular characterization of new Cyclospora species from Ethiopian monkeys: C. cercopitheci sp.n., C. colobi sp.n., and C. papionis sp.n. Emerg Infect Dis 19995(5): 651–658

[29]

Kaminsky RGLJLagos  JRaudales Santos GUrrutia S. Marked seasonality of Cyclospora cayetanensis infections: ten-year observation of hospital cases, Honduras. BMC Infect Dis 201616(1): 66

[30]

Bern CArrowood  MJEberhard M Maguire JH Pratdesaba R Torres O Gonzalez M. Cyclospora in Guatemala: further considerations. J Clin Microbiol 200240(2): 731–732

[31]

Bern CHernandez  BLopez MB Arrowood MJ de Mejia MA de Merida AM Hightower AW Venczel L Herwaldt BL Klein RE. Epidemiologic studies of Cyclospora cayetanensis in Guatemala. Emerg Infect Dis 19995(6): 766–774

[32]

Alakpa GEClarke  SCFagbenro-Beyioku AF. Cyclospora cayetanensis infection in Lagos, Nigeria. Clin Microbiol Infect 20039(7): 731–733

[33]

Lopez ASBendik  JMAlliance JY Roberts JM da Silva AJ Moura IN Arrowood MJ Eberhard ML Herwaldt BL. Epidemiology of Cyclospora cayetanensis and other intestinal parasites in a community in Haiti. J Clin Microbiol 200341(5): 2047–2054

[34]

Abanyie FHarvey  RRHarris JR Wiegand RE Gaul LDesvignes-Kendrick  MIrvin K Williams I Hall RL Herwaldt B Gray EB Qvarnstrom Y Wise ME Cantu V Cantey PT Bosch S DA Silva AJ Fields A Bishop H Wellman A Beal JWilson  NFiore AE Tauxe R Lance S Slutsker L Parise M; Multistate Cyclosporiasis Outbreak Investigation Team. 2013 multistate outbreaks of Cyclospora cayetanensis infections associated with fresh produce: focus on the Texas investigations. Epidemiol Infect 2015143(16): 3451–3458

[35]

El Baidouri F Diancourt L Berry V Chevenet F Pratlong F Marty P Ravel C. Genetic structure and evolution of the Leishmania genus in Africa and Eurasia: what does MLSA tell us. PLoS Negl Trop Dis 20137(6): e2255

[36]

Li NXiao  LCama VA Ortega Y Gilman RH Guo MFeng  Y. Genetic recombination and Cryptosporidium hominis virulent subtype IbA10G2. Emerg Infect Dis 201319(10): 1573–1582

[37]

Qvarnstrom YWei-Pridgeon  YLi W Nascimento FS Bishop HS Herwaldt BL Moss DM Nayak V Srinivasamoorthy G Sheth M Arrowood MJ. Draft genome sequences from Cyclospora cayetanensis oocysts purified from a human stool sample. Genome Announc 20153(6): e01324–e01315

[38]

Guo YRoellig  DMLi N Tang KFrace  MOrtega Y Arrowood MJ Feng YQvarnstrom  YWang L Moss DM Zhang L Xiao L. Multilocus sequence typing tool for Cyclospora cayetanensis. Emerg Infect Dis 201622(8): 1464–1467

[39]

Cinar HNGopinath  GJarvis K Murphy HR. The complete mitochondrial genome of the foodborne parasitic pathogen Cyclospora cayetanensis. PLoS One 201510(6): e0128645

[40]

Ogedengbe MEQvarnstrom  Yda Silva AJ Arrowood MJ Barta JR. A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia. Int J Parasitol 201545(6): 361–365

[41]

Preston MDCampino  SAssefa SA Echeverry DF Ocholla H Amambua-Ngwa A Stewart LB Conway DJ Borrmann S Michon P Zongo I Ouédraogo JB Djimde AA Doumbo OK Nosten F Pain ABousema  TDrakeley CJ Fairhurst RM Sutherland CJ Roper C Clark TG. A barcode of organellar genome polymorphisms identifies the geographic origin of Plasmodium falciparum strains. Nat Commun 20145: 4052

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (156KB)

2987

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/