Carcinogens that induce the A:T>T:A nucleotide substitutions in the genome

Guangbiao Zhou, Xinchun Zhao

PDF(81 KB)
PDF(81 KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (2) : 236-238. DOI: 10.1007/s11684-017-0611-y
COMMENTARY

Carcinogens that induce the A:T>T:A nucleotide substitutions in the genome

Author information +
History +

Abstract

Recently, Ng et al. reported that the A:T>T:A substitutions, proposed to be a signature of aristolochic acid (AA) exposure, were detected in 76/98 (78%) of patients with hepatocellular carcinoma (HCC) from the Taiwan Province of China, and 47% to 1.7% of HCCs from the Chinese mainland and other countries harbored the nucleotide changes. However, other carcinogens, e.g., tobacco carcinogens 4-aminobiphenyl and 1,3-butadiene, air toxic vinyl chloride and its reactive metabolites chloroethylene oxide, melphalan and chlorambucil, also cause this signature in the genome. Since tobacco smoke is a worldwide public health threat and vinyl chloride distributes globally and is an air pollutant in Taiwan Province, the estimation of the patients’ exposure history is the key to determine the “culprit” of the A:T>T:A mutations. Apparently, without estimation of the patients’ exposure history, the conclusion of Ng et al. is unpersuasive and misleading.

Keywords

genomic signature / carcinogen / aristolochic acid / tobacco smoke / vinyl chloride / hepatocellular carcinoma

Cite this article

Download citation ▾
Guangbiao Zhou, Xinchun Zhao. Carcinogens that induce the A:T>T:A nucleotide substitutions in the genome. Front. Med., 2018, 12(2): 236‒238 https://doi.org/10.1007/s11684-017-0611-y

References

[1]
Ng AWT, Poon SL, Huang MN, Lim JQ, Boot A, Yu W, Suzuki Y, Thangaraju S, Ng CCY, Tan P, Pang ST, Huang HY, Yu MC, Lee PH, Hsieh SY, Chang AY, Teh BT, Rozen SG. Aristolochic acids and their derivatives are widely implicated in liver cancers in Taiwan and throughout Asia. Sci Transl Med 2017; 9(412): eaan6446
CrossRef Pubmed Google scholar
[2]
De Broe ME. On a nephrotoxic and carcinogenic slimming regimen. Am J Kidney Dis 1999; 33(6): 1171–1173
CrossRef Pubmed Google scholar
[3]
Stiborová M, Arlt VM, Schmeiser HH. Balkan endemic nephropathy: an update on its aetiology. Arch Toxicol 2016; 90(11): 2595–2615
CrossRef Pubmed Google scholar
[4]
de Jonge H, Vanrenterghem Y. Aristolochic acid: the common culprit of Chinese herbs nephropathy and Balkan endemic nephropathy. Nephrol Dial Transplant 2008; 23(1): 39–41
CrossRef Pubmed Google scholar
[5]
Schmeiser HH, Janssen JWG, Lyons J, Scherf HR, Pfau W, Buchmann A, Bartram CR, Wiessler M. Aristolochic acid activates ras genes in rat tumors at deoxyadenosine residues. Cancer Res 1990; 50(17): 5464–5469
Pubmed
[6]
Grollman AP, Shibutani S, Moriya M, Miller F, Wu L, Moll U, Suzuki N, Fernandes A, Rosenquist T, Medverec Z, Jakovina K, Brdar B, Slade N, Turesky RJ, Goodenough AK, Rieger R, Vukelić M, Jelaković B. Aristolochic acid and the etiology of endemic (Balkan) nephropathy. Proc Natl Acad Sci USA 2007; 104(29): 12129–12134
CrossRef Pubmed Google scholar
[7]
Yu XJ, Yang MJ, Zhou B, Wang GZ, Huang YC, Wu LC, Cheng X, Wen ZS, Huang JY, Zhang YD, Gao XH, Li GF, He SW, Gu ZH, Ma L, Pan CM, Wang P, Chen HB, Hong ZP, Wang XL, Mao WJ, Jin XL, Kang H, Chen ST, Zhu YQ, Gu WY, Liu Z, Dong H, Tian LW, Chen SJ, Cao Y, Wang SY, Zhou GB. Characterization of somatic mutations in air pollution-related lung cancer. EBioMedicine 2015; 2(6): 583–590
CrossRef Pubmed Google scholar
[8]
Chappell G, Pogribny IP, Guyton KZ, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: a systematic literature review. Mutat Res Rev Mutat Res 2016; 768(Supplement C): 27–45
CrossRef Pubmed Google scholar
[9]
Manjanatha MG, Li EE, Fu PP, Heflich RH. H- and K-ras mutational profiles in chemically induced liver tumors from B6C3F1 and CD-1 mice. J Toxicol Environ Health 1996; 47(2): 195–208
CrossRef Pubmed Google scholar
[10]
Ma H, Wood TG, Ammenheuser MM, Rosenblatt JI, Ward JB Jr. Molecular analysis of hprt mutant lymphocytes from 1, 3-butadiene-exposed workers. Environ Mol Mutagen 2000; 36(1): 59–71
CrossRef Pubmed Google scholar
[11]
Wagoner JK. Toxicity of vinyl chloride and poly(vinyl chloride): a critical review. Environ Health Perspect 1983; 52:61–66
Pubmed
[12]
Hollstein M, Marion MJ, Lehman T, Welsh J, Harris CC, Martel-Planche G, Kusters I, Montesano R. p53 mutations at A:T base pairs in angiosarcomas of vinyl chloride-exposed factory workers. Carcinogenesis 1994; 15(1): 1–3
CrossRef Pubmed Google scholar
[13]
Wang P, Bennett RAO, Povirk LF. Melphalan-induced mutagenesis in an SV40-based shuttle vector: predominance of A·T→T·A transversions. Cancer Res 1990; 50(23): 7527–7531
Pubmed
[14]
Povirk LF, Shuker DE. DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 1994; 318(3): 205–226
CrossRef Pubmed Google scholar
[15]
Hoang ML, Chen CH, Sidorenko VS, He J, Dickman KG, Yun BH, Moriya M, Niknafs N, Douville C, Karchin R, Turesky RJ, Pu YS, Vogelstein B, Papadopoulos N, Grollman AP, Kinzler KW, Rosenquist TA. Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med 2013;5(197):197ra02
CrossRef Pubmed Google scholar
[16]
Poon SL, Pang ST, McPherson JR, Yu W, Huang KK, Guan P, Weng WH, Siew EY, Liu Y, Heng HL, Chong SC, Gan A, Tay ST, Lim WK, Cutcutache I, Huang D, Ler LD, Nairismägi ML, Lee MH, Chang YH,Yu KJ, Chan-On W, Li BK, Yuan YF, Qian CN, Ng KF, Wu CF, Hsu CL, Bunte RM, Stratton MR, Futreal PA, Sung WK, Chuang CK, Ong CK, Rozen SG,Tan P, Teh BT. Genome-wide mutational signatures of aristolochic acid and its application as a screening tool. Sci Transl Med 2013; 5(197):197ra101
CrossRef Pubmed Google scholar
[17]
Houle CD, Ton TVT, Clayton N, Huff J, Hong HHL, Sills RC. Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice. Toxicol Pathol 2006; 34(6): 752–762
CrossRef Pubmed Google scholar
[18]
Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, Zhu ZD, Zhou B, Liu XY, Liu RF, Fei QL, Chen H, Cai B, Zhou B, Xiao HS, Qin LX, Han ZG. Exome sequencing of hepatitis B virus-associated hepatoccelular carcinoma. Nat Genet 2012; 44(10): 1117–1121
[19]
Tsai WT. Current status of air toxics management and its strategies for controlling emissions in Taiwan. Toxics 2016; 4(2):8
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Funds for Distinguished Young Scholar (No. 81425025).

Compliance with ethics guidelines

Guangbiao Zhou and Xinchun Zhao declare no conflicts of interest. This article does not involve a research protocol requiring approval by a relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(81 KB)

Accesses

Citations

Detail

Sections
Recommended

/