Innate and adaptive T cells in influenza disease

Simone Nüssing, Sneha Sant, Marios Koutsakos, Kanta Subbarao, Thi H.O. Nguyen, Katherine Kedzierska

PDF(298 KB)
PDF(298 KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (1) : 34-47. DOI: 10.1007/s11684-017-0606-8
REVIEW
REVIEW

Innate and adaptive T cells in influenza disease

Author information +
History +

Abstract

Influenza is a major global health problem, causing infections of the respiratory tract, often leading to acute pneumonia, life-threatening complications and even deaths. Over the last seven decades, vaccination strategies have been utilized to protect people from complications of influenza, especially groups at high risk of severe disease. While current vaccination regimens elicit strain-specific antibody responses, they fail to generate cross-protection against seasonal, pandemic and avian viruses. Moreover, vaccines designed to generate influenza-specific T-cell responses are yet to be optimized. During natural infection, viral replication is initially controlled by innate immunity before adaptive immune responses (T cells and antibody-producing B cells) achieve viral clearance and host recovery. Adaptive T and B cells maintain immunological memory and provide protection against subsequent infections with related influenza viruses. Recent studies also shed light on the role of innate T-cells (MAIT cells, gd T cells, and NKT cells) in controlling influenza and linking innate and adaptive immune mechanisms, thus making them attractive targets for vaccination strategies. We summarize the current knowledge on influenza-specific innate MAIT and gd T cells as well as adaptive CD8+ and CD4+ T cells, and discuss how these responses can be harnessed by novel vaccine strategies to elicit cross-protective immunity against different influenza strains and subtypes.

Keywords

influenza / innate T cells / CD4+ and CD8+ T cells / vaccination

Cite this article

Download citation ▾
Simone Nüssing, Sneha Sant, Marios Koutsakos, Kanta Subbarao, Thi H.O. Nguyen, Katherine Kedzierska. Innate and adaptive T cells in influenza disease. Front. Med., 2018, 12(1): 34‒47 https://doi.org/10.1007/s11684-017-0606-8

References

[1]
Bouvier NM, Palese  P. The biology of influenza viruses. Vaccine 2008; 26(Suppl 4): D49–D53
CrossRef Pubmed Google scholar
[2]
Paules C, Subbarao  K. Influenza. Lancet 2017; 390(10095): 697–708 
CrossRef Pubmed Google scholar
[3]
Shaw M, Palese  P. Orthomyxoviridae: the viruses and their replication. In: Fields Virology. 6th edition. Edited by Knipe D, Howley P. Lippincott Williams & Wilkins, 2013:1691–1740
[4]
Koutsakos M, Nguyen  TH, Barclay WS,  Kedzierska K. Knowns and unknowns of influenza B viruses. Future Microbiol 2016; 11(1): 119–135
CrossRef Pubmed Google scholar
[5]
van de Sandt CE,  Bodewes R,  Rimmelzwaan GF,  de Vries RD. Influenza B viruses: not to be discounted. Future Microbiol 2015; 10(9): 1447–1465
CrossRef Pubmed Google scholar
[6]
WHO. A manual for estimating disease burden associated with seasonal influenza. 2015
[7]
WHO. Fact sheet, No. 211 (2009). www.who.int/mediacentre/factsheets/fs211/en/index.html. 2010
[8]
La Gruta NL, Kedzierska  K, Stambas J,  Doherty PC. A question of self-preservation: immunopathology in influenza virus infection. Immunol Cell Biol 2007; 85(2): 85–92
CrossRef Pubmed Google scholar
[9]
McMichael AJ, Gotch  FM, Noble GR,  Beare PA. Cytotoxic T-cell immunity to influenza. N Engl J Med 1983; 309(1): 13–17
CrossRef Pubmed Google scholar
[10]
Epstein SL. Prior H1N1 influenza infection and susceptibility of Cleveland Family Study participants during the H2N2 pandemic of 1957: an experiment of nature. J Infect Dis 2006; 193(1): 49–53
CrossRef Pubmed Google scholar
[11]
Wilkinson TM, Li  CK, Chui CS,  Huang AK,  Perkins M,  Liebner JC,  Lambkin-Williams R,  Gilbert A,  Oxford J,  Nicholas B,  Staples KJ,  Dong T, Douek  DC, McMichael AJ,  Xu XN. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat Med 2012; 18(2): 274–280
CrossRef Pubmed Google scholar
[12]
Sridhar S, Begom  S, Bermingham A,  Hoschler K,  Adamson W,  Carman W,  Bean T, Barclay  W, Deeks JJ,  Lalvani A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 2013; 19(10): 1305–1312
CrossRef Pubmed Google scholar
[13]
Wang Z, Wan  Y, Qiu C,  Quiñones-Parra S,  Zhu Z, Loh  L, Tian D,  Ren Y, Hu  Y, Zhang X,  Thomas PG,  Inouye M,  Doherty PC,  Kedzierska K,  Xu J. Recovery from severe H7N9 disease is associated with diverse response mechanisms dominated by CD8+ T cells. Nat Commun 2015; 6: 6833
CrossRef Pubmed Google scholar
[14]
Baumgarth N, Herman  OC, Jager GC,  Brown LE,  Herzenberg LA,  Chen J. B-1 and B-2 cell-derived immunoglobulin M antibodies are nonredundant components of the protective response to influenza virus infection. J Exp Med 2000; 192(2): 271–280
CrossRef Pubmed Google scholar
[15]
Assarsson E, Bui  HH, Sidney J,  Zhang Q,  Glenn J,  Oseroff C,  Mbawuike IN,  Alexander J,  Newman MJ,  Grey H, Sette  A. Immunomic analysis of the repertoire of T-cell specificities for influenza A virus in humans. J Virol 2008; 82(24): 12241–12251
CrossRef Pubmed Google scholar
[16]
Randall RE, Goodbourn  S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 2008; 89(1): 1–47
CrossRef Pubmed Google scholar
[17]
Treiner E, Lantz  O. CD1d- and MR1-restricted invariant T cells: of mice and men. Curr Opin Immunol 2006; 18(5): 519–526
CrossRef Pubmed Google scholar
[18]
Howson LJ, Salio  M, Cerundolo V. MR1-restricted mucosal-associated invariant T cells and their activation during infectious diseases. Front Immunol 2015; 6: 303
CrossRef Pubmed Google scholar
[19]
Kawachi I, Maldonado  J, Strader C,  Gilfillan S. MR1-restricted V alpha 19i mucosal-associated invariant T cells are innate T cells in the gut lamina propria that provide a rapid and diverse cytokine response. J Immunol 2006; 176(3): 1618–1627
CrossRef Pubmed Google scholar
[20]
Napier RJ, Adams  EJ, Gold MC,  Lewinsohn DM. The role of mucosal associated invariant T cells in antimicrobial immunity. Front Immunol 2015; 6: 344
CrossRef Pubmed Google scholar
[21]
Sakala IG, Kjer-Nielsen  L, Eickhoff CS,  Wang X, Blazevic  A, Liu L,  Fairlie DP,  Rossjohn J,  McCluskey J,  Fremont DH,  Hansen TH,  Hoft DF. Functional heterogeneity and antimycobacterial effects of mouse mucosal-associated invariant T Cells specific for riboflavin metabolites. J Immunol 2015; 195(2): 587–601
CrossRef Pubmed Google scholar
[22]
Bianchini E, De Biasi  S, Simone AM,  Ferraro D,  Sola P, Cossarizza  A, Pinti M. Invariant natural killer T cells and mucosal-associated invariant T cells in multiple sclerosis. Immunol Lett 2017; 183: 1–7
CrossRef Pubmed Google scholar
[23]
Gracey E, Qaiyum  Z, Almaghlouth I,  Lawson D,  Karki S,  Avvaru N,  Zhang Z,  Yao Y, Ranganathan  V, Baglaenko Y,  Inman RD. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann Rheum Dis 2016; 75(12): 2124–2132
CrossRef Pubmed Google scholar
[24]
Wang JJ, Macardle  C, Weedon H,  Beroukas D,  Banovic T. Mucosal-associated invariant T cells are reduced and functionally immature in the peripheral blood of primary Sjögren’s syndrome patients. Eur J Immunol 2016; 46(10): 2444–2453
CrossRef Pubmed Google scholar
[25]
Loh L, Wang  Z, Sant S,  Koutsakos M,  Jegaskanda S,  Corbett AJ,  Liu L, Fairlie  DP, Crowe J,  Rossjohn J,  Xu J, Doherty  PC, McCluskey J,  Kedzierska K. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc Natl Acad Sci USA 2016; 113(36): 10133–10138
CrossRef Pubmed Google scholar
[26]
van Wilgenburg B,  Scherwitzl I,  Hutchinson EC,  Leng T, Kurioka  A, Kulicke C,  de Lara C,  Cole S, Vasanawathana  S, Limpitikul W,  Malasit P,  Young D,  Denney L,  Moore MD,  Fabris P,  Giordani MT,  Oo YH, Laidlaw  SM, Dustin LB,  Ho LP, Thompson  FM, Ramamurthy N,  Mongkolsapaya J,  Willberg CB,  Screaton GR,  Klenerman P. MAIT cells are activated during human viral infections. Nat Commun 2016; 7: 11653
CrossRef Pubmed Google scholar
[27]
McCullers JA. The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 2014; 12(4): 252–262
CrossRef Pubmed Google scholar
[28]
Godfrey DI, Uldrich  AP, McCluskey J,  Rossjohn J,  Moody DB. The burgeoning family of unconventional T cells. Nat Immunol 2015; 16(11): 1114–1123
CrossRef Pubmed Google scholar
[29]
Rossjohn J, Pellicci  DG, Patel O,  Gapin L,  Godfrey DI. Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 2012; 12(12): 845–857
CrossRef Pubmed Google scholar
[30]
Tessmer MS, Fatima  A, Paget C,  Trottein F,  Brossay L. NKT cell immune responses to viral infection. Expert Opin Ther Targets 2009; 13(2): 153–162
CrossRef Pubmed Google scholar
[31]
Crowe NY, Uldrich  AP, Kyparissoudis K,  Hammond KJL,  Hayakawa Y,  Sidobre S,  Keating R,  Kronenberg M,  Smyth MJ,  Godfrey DI. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J Immunol 2003; 171(8): 4020–4027
CrossRef Pubmed Google scholar
[32]
Coquet JM, Chakravarti  S, Kyparissoudis K,  McNab FW,  Pitt LA,  McKenzie BS,  Berzins SP,  Smyth MJ,  Godfrey DI. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4-NK1.1-NKT cell population. Proc Natl Acad Sci USA 2008; 105(32): 11287–11292
CrossRef Pubmed Google scholar
[33]
Vincent MS, Leslie  DS, Gumperz JE,  Xiong X,  Grant EP,  Brenner MB. CD1-dependent dendritic cell instruction. Nat Immunol 2002; 3(12): 1163–1168
CrossRef Pubmed Google scholar
[34]
Ho LP, Denney  L, Luhn K,  Teoh D, Clelland  C, McMichael AJ. Activation of invariant NKT cells enhances the innate immune response and improves the disease course in influenza A virus infection. Eur J Immunol 2008; 38(7):1913–1922. 
CrossRef Pubmed Google scholar
[35]
Ishikawa H, Tanaka  K, Kutsukake E,  Fukui T,  Sasaki H,  Hata A, Noda  S, Matsumoto T. IFN-g production downstream of NKT cell activation in mice infected with influenza virus enhances the cytolytic activities of both NK cells and viral antigen-specific CD8+ T cells. Virology 2010; 407(2): 325–332
CrossRef Pubmed Google scholar
[36]
Kok WL, Denney  L, Benam K,  Cole S, Clelland  C, McMichael AJ,  Ho LP. Pivotal advance: invariant NKT cells reduce accumulation of inflammatory monocytes in the lungs and decrease immune-pathology during severe influenza A virus infection. J Leukoc Biol 2012; 91(3): 357–368
CrossRef Pubmed Google scholar
[37]
Paget C, Ivanov  S, Fontaine J,  Blanc F,  Pichavant M,  Renneson J,  Bialecki E,  Pothlichet J,  Vendeville C,  Barba-Spaeth G,  Huerre MR,  Faveeuw C,  Si-Tahar M,  Trottein F. Potential role of invariant NKT cells in the control of pulmonary inflammation and CD8+ T cell response during acute influenza A virus H3N2 pneumonia. J Immunol 2011; 186(10): 5590–5602
CrossRef Pubmed Google scholar
[38]
De Santo C, Salio  M, Masri SH,  Lee LYH,  Dong T, Speak  AO, Porubsky S,  Booth S,  Veerapen N,  Besra GS,  Gröne HJ,  Platt FM,  Zambon M,  Cerundolo V. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J Clin Invest 2008; 118(12): 4036–4048
CrossRef Pubmed Google scholar
[39]
Guillonneau C, Mintern  JD, Hubert FX,  Hurt AC,  Besra GS,  Porcelli S,  Barr IG,  Doherty PC,  Godfrey DI,  Turner SJ. Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proc Natl Acad Sci USA 2009; 106(9): 3330–3335
CrossRef Pubmed Google scholar
[40]
Lee YS, Lee  KA, Lee JY,  Kang MH,  Song YC,  Baek DJ,  Kim S, Kang  CY. An α-GalCer analogue with branched acyl chain enhances protective immune responses in a nasal influenza vaccine. Vaccine 2011; 29(3): 417–425
CrossRef Pubmed Google scholar
[41]
Artiaga BL, Yang  G, Hackmann TJ,  Liu Q, Richt  JA, Salek-Ardakani S,  Castleman WL,  Lednicky JA,  Driver JP. α-Galactosylceramide protects swine against influenza infection when administered as a vaccine adjuvant. Sci Rep 2016; 6(1): 23593
CrossRef Pubmed Google scholar
[42]
Youn HJ, Ko  SY, Lee KA,  Ko HJ, Lee  YS, Fujihashi K,  Boyaka PN,  Kim SH, Horimoto  T, Kweon MN,  Kang CY. A single intranasal immunization with inactivated influenza virus and alpha-galactosylceramide induces long-term protective immunity without redirecting antigen to the central nervous system. Vaccine 2007; 25(28): 5189–5198
CrossRef Pubmed Google scholar
[43]
Kabelitz D, Lettau  M, Janssen O. Immunosurveillance by human gammadelta T lymphocytes: the emerging role of butyrophilins. F1000Res 2017; 6. pii: F1000 Faculty Rev-782
CrossRef Pubmed Google scholar
[44]
Bonneville M, Scotet  E. Human Vgamma9Vdelta2 T cells: promising new leads for immunotherapy of infections and tumors. Curr Opin Immunol 2006; 18(5): 539–546
CrossRef Pubmed Google scholar
[45]
Carding SR, Allan  W, Kyes S,  Hayday A,  Bottomly K,  Doherty PC. Late dominance of the inflammatory process in murine influenza by gamma/delta+ T cells. J Exp Med 1990; 172(4): 1225–1231
CrossRef Pubmed Google scholar
[46]
Eichelberger M, Doherty  PC. Gamma delta T cells from influenza-infected mice develop a natural killer cell phenotype following culture. Cell Immunol 1994; 159(1): 94–102
CrossRef Pubmed Google scholar
[47]
Wallace M, Malkovsky  M, Carding SR. Gamma/delta T lymphocytes in viral infections. J Leukoc Biol 1995; 58(3): 277–283
Pubmed
[48]
Jameson JM, Cruz  J, Costanzo A,  Terajima M,  Ennis FA. A role for the mevalonate pathway in the induction of subtype cross-reactive immunity to influenza A virus by human gammadelta T lymphocytes. Cell Immunol 2010; 264(1): 71–77
CrossRef Pubmed Google scholar
[49]
Qin G, Mao  H, Zheng J,  Sia SF, Liu  Y, Chan PL,  Lam KT, Peiris  JS, Lau YL,  Tu W. Phosphoantigen-expanded human gammadelta T cells display potent cytotoxicity against monocyte-derived macrophages infected with human and avian influenza viruses. J Infect Dis 2009; 200(6): 858–865
CrossRef Pubmed Google scholar
[50]
Qin G, Liu  Y, Zheng J,  Ng IH, Xiang  Z, Lam KT,  Mao H, Li  H, Peiris JS,  Lau YL, Tu  W. Type 1 responses of human Vg9Vd2 T cells to influenza A viruses. J Virol 2011; 85(19): 10109–10116 
CrossRef Pubmed Google scholar
[51]
Tu W, Zheng  J, Liu Y,  Sia SF, Liu  M, Qin G,  Ng IH, Xiang  Z, Lam KT,  Peiris JS,  Lau YL. The aminobisphosphonate pamidronate controls influenza pathogenesis by expanding a gammadelta T cell population in humanized mice. J Exp Med 2011; 208(7): 1511–1522
CrossRef Pubmed Google scholar
[52]
Li H, Xiang  Z, Feng T,  Li J, Liu  Y, Fan Y,  Lu Q, Yin  Z, Yu M,  Shen C, Tu  W. Human Vg9Vd2-T cells efficiently kill influenza virus-infected lung alveolar epithelial cells. Cell Mol Immunol 2013; 10(2): 159–164
CrossRef Pubmed Google scholar
[53]
Davey MS, Willcox  CR, Joyce SP,  Ladell K,  Kasatskaya SA,  McLaren JE,  Hunter S,  Salim M,  Mohammed F,  Price DA,  Chudakov DM,  Willcox BE. Clonal selection in the human Vd1 T cell repertoire indicates gd TCR-dependent adaptive immune surveillance. Nat Commun 2017; 8: 14760
CrossRef Pubmed Google scholar
[54]
Dimova T, Brouwer  M, Gosselin F,  Tassignon J,  Leo O, Donner  C, Marchant A,  Vermijlen D. Effector Vgamma9Vdelta2 T cells dominate the human fetal gammadelta T-cell repertoire. Proc Natl Acad Sci USA 2015; 112(6):E556–65
CrossRef Pubmed Google scholar
[55]
Bender BS, Croghan  T, Zhang L,  Small PAJ Jr. Transgenic mice lacking class I major histocompatibility complex-restricted T cells have delayed viral clearance and increased mortality after influenza virus challenge. J Exp Med 1992; 175(4): 1143–1145
CrossRef Pubmed Google scholar
[56]
Doherty PC, Topham  DJ, Tripp RA. Establishment and persistence of virus-specific CD4+ and CD8+ T cell memory. Immunol Rev 1996; 150(1): 23–44
CrossRef Pubmed Google scholar
[57]
Price GE, Ou  R, Jiang H,  Huang L,  Moskophidis D. Viral escape by selection of cytotoxic T cell-resistant variants in influenza A virus pneumonia. J Exp Med 2000; 191(11): 1853–1867
CrossRef Pubmed Google scholar
[58]
Valkenburg SA, Quiñones-Parra  S, Gras S,  Komadina N,  McVernon J,  Wang Z, Halim  H, Iannello P,  Cole C, Laurie  K, Kelso A,  Rossjohn J,  Doherty PC,  Turner SJ,  Kedzierska K. Acute emergence and reversion of influenza A virus quasispecies within CD8+ T cell antigenic peptides. Nat Commun 2013; 4: 2663
CrossRef Pubmed Google scholar
[59]
Duan S, Meliopoulos  VA, McClaren JL,  Guo XZ, Sanders  CJ, Smallwood HS,  Webby RJ,  Schultz-Cherry SL,  Doherty PC,  Thomas PG. Diverse heterologous primary infections radically alter immunodominance hierarchies and clinical outcomes following H7N9 influenza challenge in mice. PLoS Pathog 2015; 11(2): e1004642
CrossRef Pubmed Google scholar
[60]
Valkenburg SA, Gras  S, Guillonneau C,  La Gruta NL,  Thomas PG,  Purcell AW,  Rossjohn J,  Doherty PC,  Turner SJ,  Kedzierska K. Protective efficacy of cross-reactive CD8+ T cells recognising mutant viral epitopes depends on peptide-MHC-I structural interactions and T cell activation threshold. PLoS Pathog 2010; 6(8): e1001039
CrossRef Pubmed Google scholar
[61]
Valkenburg SA, Venturi  V, Dang TH,  Bird NL,  Doherty PC,  Turner SJ,  Davenport MP,  Kedzierska K. Early priming minimizes the age-related immune compromise of CD8+ T cell diversity and function. PLoS Pathog 2012; 8(2): e1002544
CrossRef Pubmed Google scholar
[62]
Wiersma LC, Vogelzang-van Trierum  SE, Kreijtz JH,  van Amerongen G,  van Run P,  Ladwig M,  Banneke S,  Schaefer H,  Fouchier RA,  Kuiken T,  Osterhaus AD,  Rimmelzwaan GF. Heterosubtypic immunity to H7N9 influenza virus in isogenic guinea pigs after infection with pandemic H1N1 virus. Vaccine 2015; 33(49): 6977–6982
CrossRef Pubmed Google scholar
[63]
Pizzolla A, Wang  Z, Groom JR,  Kedzierska K,  Brooks AG,  Reading PC,  Wakim LM. Nasal-associated lymphoid tissues (NALTs) support the recall but not priming of influenza virus-specific cytotoxic T cells. Proc Natl Acad Sci USA 2017; 114(20): 5225–5230
CrossRef Pubmed Google scholar
[64]
Hayward AC, Wang  L, Goonetilleke N,  Fragaszy EB,  Bermingham A,  Copas A,  Dukes O,  Millett ER,  Nazareth I,  Nguyen-Van-Tam JS,  Watson JM,  Zambon M; Flu Watch Group, Johnson AM,  McMichael AJ. Natural T cell-mediated protection against seasonal and pandemic influenza. Results of the Flu Watch Cohort Study. Am J Respir Crit Care Med 2015; 191(12): 1422–1431
CrossRef Pubmed Google scholar
[65]
van de Sandt CE,  Hillaire ML,  Geelhoed-Mieras MM,  Osterhaus AD,  Fouchier RA,  Rimmelzwaan GF. Human influenza A virus-specific CD8+ T-cell response is long-lived. J Infect Dis 2015; 212(1): 81–85
CrossRef Pubmed Google scholar
[66]
Hillaire ML, Vogelzang-van Trierum  SE, Kreijtz JH,  de Mutsert G,  Fouchier RA,  Osterhaus AD,  Rimmelzwaan GF. Human T-cells directed to seasonal influenza A virus cross-react with 2009 pandemic influenza A (H1N1) and swine-origin triple-reassortant H3N2 influenza viruses. J Gen Virol 2013; 94(Pt 3): 583–592
CrossRef Pubmed Google scholar
[67]
Valkenburg SA, Josephs  TM, Clemens EB,  Grant EJ,  Nguyen TH,  Wang GC,  Price DA,  Miller A,  Tong SY,  Thomas PG,  Doherty PC,  Rossjohn J,  Gras S, Kedzierska  K. Molecular basis for universal HLA-A*0201-restricted CD8+ T-cell immunity against influenza viruses. Proc Natl Acad Sci USA 2016; 113(16): 4440–4445
CrossRef Pubmed Google scholar
[68]
Gras S, Kedzierski  L, Valkenburg SA,  Laurie K,  Liu YC, Denholm  JT, Richards MJ,  Rimmelzwaan GF,  Kelso A,  Doherty PC,  Turner SJ,  Rossjohn J,  Kedzierska K. Cross-reactive CD8+ T-cell immunity between the pandemic H1N1-2009 and H1N1-1918 influenza A viruses. Proc Natl Acad Sci USA 2010; 107(28): 12599–12604
CrossRef Pubmed Google scholar
[69]
Quiñones-Parra S,  Grant E,  Loh L, Nguyen  TH, Campbell KA,  Tong SY,  Miller A,  Doherty PC,  Vijaykrishna D,  Rossjohn J,  Gras S, Kedzierska  K. Preexisting CD8+ T-cell immunity to the H7N9 influenza A virus varies across ethnicities. Proc Natl Acad Sci USA 2014; 111(3): 1049–1054
CrossRef Pubmed Google scholar
[70]
van de Sandt CE,  Kreijtz JH,  de Mutsert G,  Geelhoed-Mieras MM,  Hillaire ML,  Vogelzang-van Trierum SE,  Osterhaus AD,  Fouchier RA,  Rimmelzwaan GF. Human cytotoxic T lymphocytes directed to seasonal influenza A viruses cross-react with the newly emerging H7N9 virus. J Virol 2014; 88(3): 1684–1693
CrossRef Pubmed Google scholar
[71]
Kreijtz JH, de Mutsert  G, van Baalen CA,  Fouchier RA,  Osterhaus AD,  Rimmelzwaan GF. Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus. J Virol 2008; 82(11): 5161–5166
CrossRef Pubmed Google scholar
[72]
Lee LY, Ha  LA, Simmons C,  de Jong MD,  Chau NV,  Schumacher R,  Peng YC,  McMichael AJ,  Farrar JJ,  Smith GL,  Townsend AR,  Askonas BA,  Rowland-Jones S,  Dong T. Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest 2008; 118(10): 3478–3490
Pubmed
[73]
van de Sandt CE,  Dou Y, Vogelzang-van Trierum  SE, Westgeest KB,  Pronk MR,  Osterhaus AD,  Fouchier RA,  Rimmelzwaan GF,  Hillaire ML. Influenza B virus-specific CD8+ T-lymphocytes strongly cross-react with viruses of the opposing influenza B lineage. J Gen Virol 2015; 96(8): 2061–2073
CrossRef Pubmed Google scholar
[74]
Marsh SGE, Parham  P, Barber LD. The HLA factsbook. San Diego: Academic Press, 2000
[75]
Berkhoff EGM, Boon  ACM, Nieuwkoop NJ,  Fouchier RAM,  Sintnicolaas K,  Osterhaus ADME,  Rimmelzwaan GF. A mutation in the HLA-B*2705-restricted NP383-391 epitope affects the human influenza A virus-specific cytotoxic T-lymphocyte response in vitro. J Virol 2004; 78(10): 5216–5222
CrossRef Pubmed Google scholar
[76]
Boon ACM, de Mutsert  G, Graus YMF,  Fouchier RAM,  Sintnicolaas K,  Osterhaus ADME,  Rimmelzwaan GF. Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J Virol 2002; 76(5): 2567–2572
CrossRef Pubmed Google scholar
[77]
Duan S, Thomas  PG. Balancing immune protection and immune pathology by CD8(+) T-cell responses to influenza infection. Front Immunol 2016; 7: 25
CrossRef Pubmed Google scholar
[78]
Hillaire MLB, Rimmelzwaan  GF, Kreijtz JH. Clearance of influenza virus infections by T cells: risk of collateral damage? Curr Opin Virol 2013; 3(4): 430–437
CrossRef Pubmed Google scholar
[79]
Román E, Miller  E, Harmsen A,  Wiley J,  Von Andrian UH,  Huston G,  Swain SL. CD4 effector T cell subsets in the response to influenza: heterogeneity, migration, and function. J Exp Med 2002; 196(7): 957–968
CrossRef Pubmed Google scholar
[80]
Goodnow CC, Vinuesa  CG, Randall KL,  Mackay F,  Brink R. Control systems and decision making for antibody production. Nat Immunol 2010; 11(8): 681–688
CrossRef Pubmed Google scholar
[81]
Ma CS, Deenick  EK, Batten M,  Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med 2012; 209(7): 1241–1253
CrossRef Pubmed Google scholar
[82]
Belz GT, Wodarz  D, Diaz G,  Nowak MA,  Doherty PC. Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice. J Virol 2002; 76(23): 12388–12393
CrossRef Pubmed Google scholar
[83]
Shedlock DJ, Shen  H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 2003; 300(5617): 337–339
CrossRef Pubmed Google scholar
[84]
Morita R, Schmitt  N, Bentebibel SE,  Ranganathan R,  Bourdery L,  Zurawski G,  Foucat E,  Dullaers M,  Oh S, Sabzghabaei  N, Lavecchio EM,  Punaro M,  Pascual V,  Banchereau J,  Ueno H. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 2011; 34(1): 108–121
CrossRef Pubmed Google scholar
[85]
Bentebibel SE, Lopez  S, Obermoser G,  Schmitt N,  Mueller C,  Harrod C,  Flano E,  Mejias A,  Albrecht RA,  Blankenship D,  Xu H, Pascual  V, Banchereau J,  Garcia-Sastre A,  Palucka AK,  Ramilo O,  Ueno H. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci Transl Med 2013; 5(176): 176ra32
CrossRef Pubmed Google scholar
[86]
Bentebibel SE, Khurana  S, Schmitt N,  Kurup P,  Mueller C,  Obermoser G,  Palucka AK,  Albrecht RA,  Garcia-Sastre A,  Golding H,  Ueno H. ICOS(+)PD-1(+)CXCR3(+) T follicular helper cells contribute to the generation of high-avidity antibodies following influenza vaccination. Sci Rep 2016; 6(1): 26494
CrossRef Pubmed Google scholar
[87]
Herati RS, Muselman  A, Vella L,  Bengsch B,  Parkhouse K,  Del Alcazar D,  Kotzin J,  Doyle SA,  Tebas P,  Hensley SE,  Su LF, Schmader  KE, Wherry EJ. Successive annual influenza vaccination induces a recurrent oligoclonotypic memory response in circulating T follicular helper cells. Sci Immunol  2017; 2(8). pii: eaag2152 
CrossRef Pubmed Google scholar
[88]
Bennett SRM, Carbone  FR, Karamalis F,  Flavell RA,  Miller JF,  Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393(6684): 478–480
CrossRef Pubmed Google scholar
[89]
Schoenberger SP, Toes  RE, van der Voort EI, Offringa R,  Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393(6684): 480–483
CrossRef Pubmed Google scholar
[90]
Johnson S, Zhan  Y, Sutherland RM,  Mount AM,  Bedoui S,  Brady JL,  Carrington EM,  Brown LE,  Belz GT,  Heath WR,  Lew AM. Selected Toll-like receptor ligands and viruses promote helper-independent cytotoxic T cell priming by upregulating CD40L on dendritic cells. Immunity 2009; 30(2): 218–227
CrossRef Pubmed Google scholar
[91]
Tripp RA, Sarawar  SR, Doherty PC. Characteristics of the influenza virus-specific CD8+ T cell response in mice homozygous for disruption of the H-2lAb gene. J Immunol 1995; 155(6): 2955–2959
Pubmed
[92]
Ahmed R, Butler  LD, Bhatti L. T4+ T helper cell function in vivo: differential requirement for induction of antiviral cytotoxic T-cell and antibody responses. J Virol 1988; 62(6): 2102–2106
Pubmed
[93]
Seah SG, Carrington  EM, Ng WC,  Belz GT,  Brady JL,  Sutherland RM,  Hancock MS,  La Gruta NL,  Brown LE,  Turner SJ,  Zhan Y, Lew  AM. Unlike CD4+ T-cell help, CD28 costimulation is necessary for effective primary CD8+ T-cell influenza-specific immunity. Eur J Immunol 2012; 42(7): 1744–1754
CrossRef Pubmed Google scholar
[94]
Dolfi DV, Duttagupta  PA, Boesteanu AC,  Mueller YM,  Oliai CH,  Borowski AB,  Katsikis PD. Dendritic cells and CD28 costimulation are required to sustain virus-specific CD8+ T cell responses during the effector phase in vivo. J Immunol 2011; 186(8): 4599–4608
CrossRef Pubmed Google scholar
[95]
Olson MR, Seah  SG, Cullen J,  Greyer M,  Edenborough K,  Doherty PC,  Bedoui S,  Lew AM, Turner  SJ. Helping themselves: optimal virus-specific CD4 T cell responses require help via CD4 T cell licensing of dendritic cells. J Immunol 2014; 193(11): 5420–5433
CrossRef Pubmed Google scholar
[96]
Sun JC, Bevan  MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 2003; 300(5617): 339–342
CrossRef Pubmed Google scholar
[97]
Laidlaw BJ, Zhang  N, Marshall HD,  Staron MM,  Guan T, Hu  Y, Cauley LS,  Craft J,  Kaech SM. CD4+ T cell help guides formation of CD103+ lung-resident memory CD8+ T cells during influenza viral infection. Immunity 2014; 41(4): 633–645
CrossRef Pubmed Google scholar
[98]
McKinstry KK, Strutt  TM, Kuang Y,  Brown DM,  Sell S, Dutton  RW, Swain SL. Memory CD4+ T cells protect against influenza through multiple synergizing mechanisms. J Clin Invest 2012; 122(8): 2847–2856
CrossRef Pubmed Google scholar
[99]
Marshall NB, Swain  SL. Cytotoxic CD4 T cells in antiviral immunity. J Biomed Biotechnol 2011; 2011: 954602
CrossRef Pubmed Google scholar
[100]
Juno JA, van Bockel  D, Kent SJ,  Kelleher AD,  Zaunders JJ,  Munier CM. Cytotoxic CD4 T cells-friend or foe during viral infection? Front Immunol 2017; 8: 19
CrossRef Pubmed Google scholar
[101]
Hua L, Yao  S, Pham D,  Jiang L,  Wright J,  Sawant D,  Dent AL,  Braciale TJ,  Kaplan MH,  Sun J. Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection. J Virol 2013; 87(21): 11884–11893
CrossRef Pubmed Google scholar
[102]
Dutta A, Huang  CT, Lin CY,  Chen TC,  Lin YC, Chang  CS, He YC. Sterilizing immunity to influenza virus infection requires local antigen-specific T cell response in the lungs. Sci Rep 2016; 6(1): 32973
CrossRef Pubmed Google scholar
[103]
Richards KA, Topham  D, Chaves FA,  Sant AJ. Cutting edge: CD4 T cells generated from encounter with seasonal influenza viruses and vaccines have broad protein specificity and can directly recognize naturally generated epitopes derived from the live pandemic H1N1 virus. J Immunol 2010; 185(9): 4998–5002
CrossRef Pubmed Google scholar
[104]
Galli G, Medini  D, Borgogni E,  Zedda L,  Bardelli M,  Malzone C,  Nuti S, Tavarini  S, Sammicheli C,  Hilbert AK,  Brauer V,  Banzhoff A,  Rappuoli R,  Del Giudice G,  Castellino F. Adjuvanted H5N1 vaccine induces early CD4+ T cell response that predicts long-term persistence of protective antibody levels. Proc Natl Acad Sci USA 2009; 106(10): 3877–3882
CrossRef Pubmed Google scholar
[105]
Zens KD, Chen  JK, Farber DL. Vaccine-generated lung tissue-resident memory T cells provide heterosubtypic protection to influenza infection. JCI Insight 2016; 1(10): e85832
CrossRef Pubmed Google scholar
[106]
He XS, Holmes  TH, Zhang C,  Mahmood K,  Kemble GW,  Lewis DB,  Dekker CL,  Greenberg HB,  Arvin AM. Cellular immune responses in children and adults receiving inactivated or live attenuated  influenza  vaccines.  J Virol 2006; 80(23): 11756–11766
CrossRef Pubmed Google scholar
[107]
Peng Y, Wang  B, Talaat K,  Karron R,  Powell TJ,  Zeng H, Dong  D, Luke CJ,  McMichael A,  Subbarao K,  Dong T. Boosted influenza-specific T cell responses after H5N1 pandemic live attenuated influenza virus vaccination. Front Immunol 2015; 6: 287
CrossRef Pubmed Google scholar
[108]
Wang Z, Chua  BY, Ramos JV,  Parra SM,  Fairmaid E,  Brown LE,  Jackson DC,  Kedzierska K. Establishment of functional influenza virus-specific CD8(+) T cell memory pools after intramuscular immunization. Vaccine 2015; 33(39): 5148–5154
CrossRef Pubmed Google scholar
[109]
Berthoud TK, Hamill  M, Lillie PJ,  Hwenda L,  Collins KA,  Ewer KJ,  Milicic A,  Poyntz HC,  Lambe T,  Fletcher HA,  Hill AV,  Gilbert SC. Potent CD8+ T-cell immunogenicity in humans of a novel heterosubtypic influenza A vaccine, MVA-NP+M1. Clin Infect Dis 2011; 52(1): 1–7
CrossRef Pubmed Google scholar
[110]
Powell TJ, Peng  Y, Berthoud TK,  Blais ME,  Lillie PJ,  Hill AV,  Rowland-Jones SL,  McMichael AJ,  Gilbert SC,  Dong T. Examination of influenza specific T cell responses after influenza virus challenge in individuals vaccinated with MVA-NP+M1 vaccine. PLoS One 2013; 8(5): e62778
CrossRef Pubmed Google scholar
[111]
Lillie PJ, Berthoud  TK, Powell TJ,  Lambe T,  Mullarkey C,  Spencer AJ,  Hamill M,  Peng Y, Blais  ME, Duncan CJ,  Sheehy SH,  Havelock T,  Faust SN,  Williams RL,  Gilbert A,  Oxford J,  Dong T, Hill  AV, Gilbert SC. Preliminary assessment of the efficacy of a T-cell-based influenza vaccine, MVA-NP+M1, in humans. Clin Infect Dis 2012; 55(1): 19–25
CrossRef Pubmed Google scholar
[112]
Pleguezuelos O, Robinson  S, Stoloff GA,  Caparrós-Wanderley W. Synthetic Influenza vaccine (FLU-v) stimulates cell mediated immunity in a double-blind, randomised, placebo-controlled Phase I trial. Vaccine 2012; 30(31): 4655–4660
CrossRef Pubmed Google scholar
[113]
Francis JN, Bunce  CJ, Horlock C,  Watson JM,  Warrington SJ,  Georges B,  Brown CB. A novel peptide-based pan-influenza A vaccine: a double blind, randomised clinical trial of immunogenicity and safety. Vaccine 2015; 33(2): 396–402
CrossRef Pubmed Google scholar
[114]
Atsmon J, Kate-Ilovitz  E, Shaikevich D,  Singer Y,  Volokhov I,  Haim KY,  Ben-Yedidia T. Safety and immunogenicity of multimeric-001— a novel universal influenza vaccine. J Clin Immunol 2012; 32(3): 595–603
CrossRef Pubmed Google scholar
[115]
Pleguezuelos O, Robinson  S, Fernández A,  Stoloff GA,  Mann A, Gilbert  A, Balaratnam G,  Wilkinson T,  Lambkin-Williams R,  Oxford J,  Caparrós-Wanderley W. A synthetic influenza virus vaccine induces a cellular immune response that correlates with reduction in symptomatology and virus shedding in a randomized phase Ib live-virus challenge in humans. Clin Vaccine Immunol 2015; 22(7): 828–835
CrossRef Pubmed Google scholar
[116]
Kopecky-Bromberg SA,  Fraser KA,  Pica N, Carnero  E, Moran TM,  Franck RW,  Tsuji M,  Palese P. Alpha-C-galactosylceramide as an adjuvant for a live attenuated influenza virus vaccine. Vaccine 2009; 27(28): 3766–3774
CrossRef Pubmed Google scholar

Acknowledgements

SS is a recipient of the Victoria India Doctoral Scholarship and Melbourne International Fee Remission Scholarship (MIFRS), University of Melbourne. MK and SN are supported by Melbourne International Research Scholarships (MIRS) and MIFRS. KK is supported by the NHMRC Program Grant (ID 1071916) and the NHMRC Senior Research Fellowship Level B. The WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health.

Compliance with ethics guidelines

Simone Nüssing, Sneha Sant, Marios Koutsakos, Kanta Subbarao, Thi H.O. Nguyen, and Katherine Kedzierska declare that they have no financial conflicts of interest. This is a review article and no human or animal studies, which would require approvals from ethics committees, were performed in this manuscript.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(298 KB)

Accesses

Citations

Detail

Sections
Recommended

/