Human monoclonal antibodies as candidate therapeutics against emerging viruses
Yujia Jin, Cheng Lei, Dan Hu, Dimiter S. Dimitrov, Tianlei Ying
Human monoclonal antibodies as candidate therapeutics against emerging viruses
The emergence of new pathogens, such as severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and Ebola virus, poses serious challenges to global public health and highlights the urgent need for novel antiviral approaches. Monoclonal antibodies (mAbs) have been successfully used to treat various diseases, particularly cancer and immunological disorders. Antigen-specific mAbs have been isolated using several different approaches, including hybridoma, transgenic mice, phage display, yeast display, and single B-cell isolation. Consequently, an increasing number of mAbs, which exhibit high potency against emerging viruses in vitro and in animal models of infection, have been developed. In this paper, we summarize historical trends and recent developments in mAb discovery, compare the advantages and disadvantages of various approaches to mAb production, and discuss the potential use of such strategies for the development of antivirals against emerging diseases. We also review the application of recently developed human mAbs against SARS-CoV, MERS-CoV, and Ebola virus and discuss prospects for the development of mAbs as therapeutic agents against emerging viral diseases.
human monoclonal antibodies / emerging infectious diseases / SARS-CoV / MERS-CoV / Ebola virus
[1] |
Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguière AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1967–1976
CrossRef
Pubmed
Google scholar
|
[2] |
Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ; SARS Working Group. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348(20): 1953–1966
CrossRef
Pubmed
Google scholar
|
[3] |
Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY; SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361(9366): 1319–1325
CrossRef
Pubmed
Google scholar
|
[4] |
Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, van den Hoogen BG, Peiris M, Lim W, Stöhr K, Osterhaus AD. Aetiology: Koch’s postulates fulfilled for SARS virus. Nature 2003; 423(6937): 240
CrossRef
Pubmed
Google scholar
|
[5] |
Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escriou N, Manuguerra JC, Stöhr K, Peiris JS, Osterhaus AD. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 2003; 362(9380): 263–270
CrossRef
Pubmed
Google scholar
|
[6] |
World Health Organization. WHO SARS Risk Assessment and Preparedness Framework. See www.who.int/entity/csr/resources/publications/CDS_CSR_ARO_2004_2.pdf. 2014
|
[7] |
Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet 2011; 377(9768): 849–862
CrossRef
Pubmed
Google scholar
|
[8] |
World Health Organization
|
[9] |
Lyon GM, Mehta AK, Varkey JB, Brantly K, Plyler L, McElroy AK, Kraft CS, Towner JS, Spiropoulou C, Ströher U, Uyeki TM, Ribner BS; Emory Serious Communicable Diseases Unit. Clinical care of two patients with Ebola virus disease in the United States. N Engl J Med 2014; 371(25): 2402–2409
CrossRef
Pubmed
Google scholar
|
[10] |
Winau F, Winau R. Emil von Behring and serum therapy. Microbes Infect 2002; 4(2): 185–188
CrossRef
Pubmed
Google scholar
|
[11] |
Berry JD, Gaudet RG. Antibodies in infectious diseases: polyclonals, monoclonals and niche biotechnology. N Biotechnol 2011; 28(5): 489–501
CrossRef
Pubmed
Google scholar
|
[12] |
Casadevall A. Passive antibody therapies: progress and continuing challenges. Clin Immunol 1999; 93(1): 5–15
CrossRef
Pubmed
Google scholar
|
[13] |
Dimitrov DS, Marks JD. Therapeutic antibodies: current state and future trends— is a paradigm change coming soon? Methods Mol Biol 2009; 525: 1–27, xiii 160;
CrossRef
Pubmed
Google scholar
|
[14] |
Zhu Z, Dimitrov AS, Chakraborti S, Dimitrova D, Xiao X, Broder CC, Dimitrov DS. Development of human monoclonal antibodies against diseases caused by emerging and biodefense-related viruses. Expert Rev Anti Infect Ther 2006; 4(1): 57–66
CrossRef
Pubmed
Google scholar
|
[15] |
Shulman M, Wilde CD, Köhler G. A better cell line for making hybridomas secreting specific antibodies. Nature 1978; 276(5685): 269–270
CrossRef
Pubmed
Google scholar
|
[16] |
Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 1985; 228(4705): 1315–1317 160;
CrossRef
Pubmed
Google scholar
|
[17] |
Smith GP, Petrenko VA. Phage Display. Chem Rev 1997; 97(2): 391–410
CrossRef
Pubmed
Google scholar
|
[18] |
Gao C, Mao S, Kaufmann G, Wirsching P, Lerner RA, Janda KD. A method for the generation of combinatorial antibody libraries using pIX phage display. Proc Natl Acad Sci USA 2002; 99(20): 12612–12616
CrossRef
Pubmed
Google scholar
|
[19] |
McCafferty J, Fitzgerald KJ, Earnshaw J, Chiswell DJ, Link J, Smith R, Kenten J. Selection and rapid purification of murine antibody fragments that bind a transition-state analog by phage display. Appl Biochem Biotechnol 1994; 47(2-3): 157–173
CrossRef
Pubmed
Google scholar
|
[20] |
Davies EL, Smith JS, Birkett CR, Manser JM, Anderson-Dear DV, Young JR. Selection of specific phage-display antibodies using libraries derived from chicken immunoglobulin genes. J Immunol Methods 1995; 186(1): 125–135
CrossRef
Pubmed
Google scholar
|
[21] |
Sok D, Briney B, Jardine JG, Kulp DW, Menis S, Pauthner M, Wood A, Lee EC, Le KM, Jones M, Ramos A, Kalyuzhniy O, Adachi Y, Kubitz M, MacPherson S, Bradley A, Friedrich GA, Schief WR, Burton DR. Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science 2016; 353(6307): 1557–1560
CrossRef
Pubmed
Google scholar
|
[22] |
Murphy AJ, Macdonald LE, Stevens S, Karow M, Dore AT, Pobursky K, Huang TT, Poueymirou WT, Esau L, Meola M, Mikulka W, Krueger P, Fairhurst J, Valenzuela DM, Papadopoulos N, Yancopoulos GD. Mice with megabase humanization of their immunoglobulin genes generate antibodies as efficiently as normal mice. Proc Natl Acad Sci USA 2014; 111(14): 5153–5158
CrossRef
Pubmed
Google scholar
|
[23] |
Lipke PN, Kurjan J. Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 1992; 56(1): 180–194
Pubmed
|
[24] |
Boder ET, Wittrup KD. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol 2000; 328: 430–444
CrossRef
Pubmed
Google scholar
|
[25] |
Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15(6): 553–557
CrossRef
Pubmed
Google scholar
|
[26] |
Kieke MC, Cho BK, Boder ET, Kranz DM, Wittrup KD. Isolation of anti-T cell receptor scFv mutants by yeast surface display. Protein Eng 1997; 10(11): 1303–1310
CrossRef
Pubmed
Google scholar
|
[27] |
Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science 2003; 301(5638): 1374–1377
CrossRef
Pubmed
Google scholar
|
[28] |
Walker LM, Phogat SK, Chan-Hui PY, Wagner D, Phung P, Goss JL, Wrin T, Simek MD, Fling S, Mitcham JL, Lehrman JK, Priddy FH, Olsen OA, Frey SM, Hammond PW; Protocol G Principal Investigators, Kaminsky S, Zamb T, Moyle M, Koff WC, Poignard P, Burton DR. Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 2009; 326(5950): 285–289
CrossRef
Pubmed
Google scholar
|
[29] |
Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD; Protocol G Principal Investigators, Koff WC, Wilson IA, Burton DR, Poignard P. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 2011; 477(7365): 466–470
CrossRef
Pubmed
Google scholar
|
[30] |
Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo MR, Murphy BR, Rappuoli R, Lanzavecchia A. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 2004; 10(8): 871–875 160;
CrossRef
Pubmed
Google scholar
|
[31] |
Aman P, Ehlin-Henriksson B, Klein G. Epstein-Barr virus susceptibility of normal human B lymphocyte populations. J Exp Med 1984; 159(1): 208–220
CrossRef
Pubmed
Google scholar
|
[32] |
Brès P. The epidemic of Ebola haemorrhagic fever in Sudan and Zaire, 1976: introductory note. Bull World Health Organ 1978; 56(2): 245 307454
|
[33] |
Li H, Ying T, Yu F, Lu L, Jiang S. Development of therapeutics for treatment of Ebola virus infection. Microbes Infect 2015; 17(2): 109–117
CrossRef
Pubmed
Google scholar
|
[34] |
Ka D, Fall G, Diallo VC, Faye O, Fortes LD, Faye O, Bah EI, Diallo KM, Balique F, Ndour CT, Seydi M, Sall AA. Ebola virus imported from Guinea to Senegal, 2014. Emerg Infect Dis 2017; 23(6): 1026–1028
CrossRef
Pubmed
Google scholar
|
[35] |
Li YH, Chen SP. Evolutionary history of Ebola virus. Epidemiol Infect 2014; 142(6): 1138–1145
CrossRef
Pubmed
Google scholar
|
[36] |
Huang Y, Xu L, Sun Y, Nabel GJ. The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. Mol Cell 2002; 10(2): 307–316 160;
CrossRef
Pubmed
Google scholar
|
[37] |
Geisbert TW, Jahrling PB. Differentiation of filoviruses by electron microscopy. Virus Res 1995; 39(2-3): 129–150
CrossRef
Pubmed
Google scholar
|
[38] |
Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 2008; 454(7201): 177–182 160;
CrossRef
Pubmed
Google scholar
|
[39] |
Hood CL, Abraham J, Boyington JC, Leung K, Kwong PD, Nabel GJ. Biochemical and structural characterization of cathepsin L-processed Ebola virus glycoprotein: implications for viral entry and immunogenicity. J Virol 2010; 84(6): 2972–2982
CrossRef
Pubmed
Google scholar
|
[40] |
Richardson JS, Yao MK, Tran KN, Croyle MA, Strong JE, Feldmann H, Kobinger GP. Enhanced protection against Ebola virus mediated by an improved adenovirus-based vaccine. PLoS One 2009; 4(4): e5308
CrossRef
Pubmed
Google scholar
|
[41] |
Jones SM, Feldmann H, Ströher U, Geisbert JB, Fernando L, Grolla A, Klenk HD, Sullivan NJ, Volchkov VE, Fritz EA, Daddario KM, Hensley LE, Jahrling PB, Geisbert TW. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat Med 2005; 11(7): 786–790
CrossRef
Pubmed
Google scholar
|
[42] |
Warfield KL, Swenson DL, Olinger GG, Kalina WV, Aman MJ, Bavari S. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge. J Infect Dis 2007; 196(Supplement_2): S430–S437
|
[43] |
Dowling W, Thompson E, Badger C, Mellquist JL, Garrison AR, Smith JM, Paragas J, Hogan RJ, Schmaljohn C. Influences of glycosylation on antigenicity, immunogenicity, and protective efficacy of Ebola virus GP DNA vaccines. J Virol 2007; 81(4): 1821–1837
CrossRef
Pubmed
Google scholar
|
[44] |
Qiu X, Fernando L, Alimonti JB, Melito PL, Feldmann F, Dick D, Ströher U, Feldmann H, Jones SM. Mucosal immunization of cynomolgus macaques with the VSVDeltaG/ZEBOVGP vaccine stimulates strong ebola GP-specific immune responses. PLoS One 2009; 4(5): e5547
CrossRef
Pubmed
Google scholar
|
[45] |
Qiu X, Audet J, Wong G, Pillet S, Bello A, Cabral T, Strong JE, Plummer F, Corbett CR, Alimonti JB. Successful treatment of Ebola virus–infected cynomolgus macaques with monoclonal antibodies. Sci Transl Med 2012; 4(138): 138ra81
|
[46] |
Olinger GG Jr, Pettitt J, Kim D, Working C, Bohorov O, Bratcher B, Hiatt E, Hume SD, Johnson AK, Morton J, Pauly M, Whaley KJ, Lear CM, Biggins JE, Scully C, Hensley L, Zeitlin L. Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci USA 2012; 109(44): 18030–18035
CrossRef
Pubmed
Google scholar
|
[47] |
Kugelman JR, Kugelman-Tonos J, Ladner JT, Pettit J, Keeton CM, Nagle ER, Garcia KY, Froude JW, Kuehne AI, Kuhn JH, Bavari S, Zeitlin L, Dye JM, Olinger GG, Sanchez-Lockhart M, Palacios GF. Emergence of Ebola virus escape variants in infected nonhuman primates treated with the MB-003 antibody cocktail. Cell Reports 2015; 12(12): 2111–2120
CrossRef
Pubmed
Google scholar
|
[48] |
Qiu X, Wong G, Audet J, Bello A, Fernando L, Alimonti JB, Fausther-Bovendo H, Wei H, Aviles J, Hiatt E, Johnson A, Morton J, Swope K, Bohorov O, Bohorova N, Goodman C, Kim D, Pauly MH, Velasco J, Pettitt J, Olinger GG, Whaley K, Xu B, Strong JE, Zeitlin L, Kobinger GP. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014; 514(7520): 47–53
Pubmed
|
[49] |
Corti D, Misasi J, Mulangu S, Stanley DA, Kanekiyo M, Wollen S, Ploquin A, Doria-Rose NA, Staupe RP, Bailey M, Shi W, Choe M, Marcus H, Thompson EA, Cagigi A, Silacci C, Fernandez-Rodriguez B, Perez L, Sallusto F, Vanzetta F, Agatic G, Cameroni E, Kisalu N, Gordon I, Ledgerwood JE, Mascola JR, Graham BS, Muyembe-Tamfun JJ, Trefry JC, Lanzavecchia A, Sullivan NJ. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 2016; 351(6279): 1339–1342
CrossRef
Pubmed
Google scholar
|
[50] |
Misasi J, Gilman MS, Kanekiyo M, Gui M, Cagigi A, Mulangu S, Corti D, Ledgerwood JE, Lanzavecchia A, Cunningham J, Muyembe-Tamfun JJ, Baxa U, Graham BS, Xiang Y, Sullivan NJ, McLellan JS. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 2016; 351(6279): 1343–1346
CrossRef
Pubmed
Google scholar
|
[51] |
Dowall SD, Callan J, Zeltina A, Al-Abdulla I, Strecker T, Fehling SK, Krähling V, Bosworth A, Rayner E, Taylor I, Charlton S, Landon J, Cameron I, Hewson R, Nasidi A, Bowden TA, Carroll MW. Development of a cost-effective ovine polyclonal antibody-based product, EBOTAb, to treat Ebola virus infection. J Infect Dis 2016; 213(7): 1124–1133
CrossRef
Pubmed
Google scholar
|
[52] |
Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450–454 160;
CrossRef
Pubmed
Google scholar
|
[53] |
Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, Green K, Tellier R, Draker R, Adachi D, Ayers M, Chan AK, Skowronski DM, Salit I, Simor AE, Slutsky AS, Doyle PW, Krajden M, Petric M, Brunham RC, McGeer AJ; National Microbiology Laboratory, Canada; Canadian Severe Acute Respiratory Syndrome Study Team. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 2003; 348(20): 1995–2005
CrossRef
Pubmed
Google scholar
|
[54] |
Qin E, Zhu Q, Yu M, Fan B, Chang G, Si B, Yang B, Peng W, Jiang T, Liu B, Deng Y, Liu H, Zhang Y, Wang C, Li Y, Gan Y, Li X, Lü F, Tan G, Cao W, Yang R, Wang J, Li W, Xu Z, Li Y, Wu Q, Lin W, Chen W, Tang L, Deng Y, Han Y, Li C, Lei M, Li G, Li W, Lü H, Shi J, Tong Z, Zhang F, Li S, Liu B, Liu S, Dong W, Wang J, Wong GKS, Yu J, Yang H. A complete sequence and comparative analysis of a SARS-associated virus (Isolate BJ01). Chin Sci Bull 2003; 48(10): 941–948
CrossRef
Google scholar
|
[55] |
Gallagher TM, Buchmeier MJ. Coronavirus spike proteins in viral entry and pathogenesis. Virology 2001; 279(2): 371–374
CrossRef
Pubmed
Google scholar
|
[56] |
Moore KM, Jackwood MW, Hilt DA. Identification of amino acids involved in a serotype and neutralization specific epitope within the s1 subunit of avian infectious bronchitis virus. Arch Virol 1997; 142(11): 2249–2256
CrossRef
Pubmed
Google scholar
|
[57] |
Sui J, Li W, Murakami A, Tamin A, Matthews LJ, Wong SK, Moore MJ, Tallarico ASC, Olurinde M, Choe H, Anderson LJ, Bellini WJ, Farzan M, Marasco WA. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA 2004; 101(8): 2536–2541
CrossRef
Pubmed
Google scholar
|
[58] |
Sui J, Li W, Roberts A, Matthews LJ, Murakami A, Vogel L, Wong SK, Subbarao K, Farzan M, Marasco WA. Evaluation of human monoclonal antibody 80R for immunoprophylaxis of severe acute respiratory syndrome by an animal study, epitope mapping, and analysis of spike variants. J Virol 2005; 79(10): 5900–5906
CrossRef
Pubmed
Google scholar
|
[59] |
Yang ZY, Werner HC, Kong WP, Leung K, Traggiai E, Lanzavecchia A, Nabel GJ. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci USA 2005; 102(3): 797–801
CrossRef
Pubmed
Google scholar
|
[60] |
Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley LE, Prabakaran P, Rockx B, Sidorov IA, Corti D, Vogel L, Feng Y, Kim JO, Wang LF, Baric R, Lanzavecchia A, Curtis KM, Nabel GJ, Subbarao K, Jiang S, Dimitrov DS. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci USA 2007; 104(29): 12123–12128
CrossRef
Pubmed
Google scholar
|
[61] |
van Boheemen S, de Graaf M, Lauber C, Bestebroer TM, Raj VS, Zaki AM, Osterhaus AD, Haagmans BL, Gorbalenya AE, Snijder EJ, Fouchier RA. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio 2012; 3(6): e00473–e12
CrossRef
Pubmed
Google scholar
|
[62] |
Al-Tawfiq JA, Memish ZA. Middle East respiratory syndrome coronavirus: epidemiology and disease control measures. Infect Drug Resist 2014; 7: 281–287 25395865
|
[63] |
Butler D. Receptor for new coronavirus found. Nature 2013; 495(7440): 149–150
CrossRef
Pubmed
Google scholar
|
[64] |
Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004; 10(12 Suppl): S88–S97
CrossRef
Pubmed
Google scholar
|
[65] |
Al-Tawfiq JA, Memish ZA. An update on Middle East respiratory syndrome: 2 years later. Expert Rev Respir Med 2015; 9(3): 327–335 160;
CrossRef
Pubmed
Google scholar
|
[66] |
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, Zhang Y, Zhang W, Yuan Y, Bao J, Zhang B, Shi Y, Yan J, Gao GF. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013; 500(7461): 227–231
CrossRef
Pubmed
Google scholar
|
[67] |
Gorrell MD, Gysbers V, McCaughan GW. CD26: a multifunctional integral membrane and secreted protein of activated lymphocytes. Scand J Immunol 2001; 54(3): 249–264
CrossRef
Pubmed
Google scholar
|
[68] |
Yang Y, Du L, Liu C, Wang L, Ma C, Tang J, Baric RS, Jiang S, Li F. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc Natl Acad Sci USA 2014; 111(34): 12516–12521
CrossRef
Pubmed
Google scholar
|
[69] |
Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, Liu Q, Wang L, Feng Y, Wang Y, Zheng BJ, Yuen KY, Jiang S, Dimitrov DS. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol 2014; 88(14): 7796–7805
CrossRef
Pubmed
Google scholar
|
[70] |
Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, Gao F, Li D, Wang R, Guo J, Fu L, Yuen KY, Zheng BJ, Wang X, Zhang L. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med 2014; 6(234): 234ra59
CrossRef
Pubmed
Google scholar
|
[71] |
Tang XC, Agnihothram SS, Jiao Y, Stanhope J, Graham RL, Peterson EC, Avnir Y, Tallarico AS, Sheehan J, Zhu Q, Baric RS, Marasco WA. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci USA 2014; 111(19): E2018–E2026
CrossRef
Pubmed
Google scholar
|
[72] |
Ying T, Prabakaran P, Du L, Shi W, Feng Y, Wang Y, Wang L, Li W, Jiang S, Dimitrov DS, Zhou T. Junctional and allele-specific residues are critical for MERS-CoV neutralization by an exceptionally potent germline-like antibody. Nat Commun 2015; 6: 8223
CrossRef
Pubmed
Google scholar
|
[73] |
Corti D, Passini N, Lanzavecchia A, Zambon M. Rapid generation of a human monoclonal antibody to combat Middle East respiratory syndrome. J Infect Public Health 2016; 9(3): 231–235
CrossRef
Pubmed
Google scholar
|
[74] |
Pascal KE, Coleman CM, Mujica AO, Kamat V, Badithe A, Fairhurst J, Hunt C, Strein J, Berrebi A, Sisk JM, Matthews KL, Babb R, Chen G, Lai KM, Huang TT, Olson W, Yancopoulos GD, Stahl N, Frieman MB, Kyratsous CA. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc Natl Acad Sci USA 2015; 112(28): 8738–8743
CrossRef
Pubmed
Google scholar
|
[75] |
Bossart KN, Geisbert TW, Feldmann H, Zhu Z, Feldmann F, Geisbert JB, Yan L, Feng YR, Brining D, Scott D, Wang Y, Dimitrov AS, Callison J, Chan YP, Hickey AC, Dimitrov DS, Broder CC, Rockx B. A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med 2011; 3(105): 105ra103
CrossRef
Pubmed
Google scholar
|
[76] |
Geisbert TW, Mire CE, Geisbert JB, Chan YP, Agans KN, Feldmann F, Fenton KA, Zhu Z, Dimitrov DS, Scott DP, Bossart KN, Feldmann H, Broder CC. Therapeutic treatment of Nipah virus infection in nonhuman primates with a neutralizing human monoclonal antibody. Sci Transl Med 2014; 6(242): 242ra82
CrossRef
Pubmed
Google scholar
|
[77] |
Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol 2007; 7(9): 715–725
CrossRef
Pubmed
Google scholar
|
[78] |
Wang L, Ying T. New directions for half-life extension of protein therapeutics: the rise of antibody Fc domains and fragments. Curr Pharm Biotechnol 2016; 17(15): 1348–1352
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |