γδ T cells in liver diseases

Xuefu Wang, Zhigang Tian

PDF(177 KB)
PDF(177 KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (3) : 262-268. DOI: 10.1007/s11684-017-0584-x
REVIEW
REVIEW

γδ T cells in liver diseases

Author information +
History +

Abstract

γδ T cells display unique developmental, distributional, and functional patterns and can rapidly respond to various insults and contribute to diverse diseases. Different subtypes of γδ T cells are produced in the thymus prior to their migration to peripheral tissues. γδ T cells are enriched in the liver and exhibit liver-specific features. Accumulating evidence reveals that γδ T cells play important roles in liver infection, non-alcoholic fatty liver disease, autoimmune hepatitis, liver fibrosis and cirrhosis, and liver cancer and regeneration. In this study, we review the properties of hepatic γδ T cells and summarize the roles of γδ T cells in liver diseases. We believe that determining the properties and functions of γδ T cells in liver diseases enhances our understanding of the pathogenesis of liver diseases and is useful for the design of novel γδ T cell-based therapeutic regimens for liver diseases.

Keywords

γδT cells / liver infection / non-alcoholic fatty liver disease / autoimmune hepatitis / liver fibrosis and cirrhosis / liver cancer / liver regeneration

Cite this article

Download citation ▾
Xuefu Wang, Zhigang Tian. γδ T cells in liver diseases. Front. Med., 2018, 12(3): 262‒268 https://doi.org/10.1007/s11684-017-0584-x

References

[1]
Godfrey DI, Kennedy J, Suda T, Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 1993; 150(10): 4244–4252
Pubmed
[2]
Germain RN. T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2002; 2(5): 309–322
CrossRef Pubmed Google scholar
[3]
Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zúñiga-Pflücker JC. Stage-specific and differential notch dependency at the alphabeta and γδ T lineage bifurcation. Immunity 2006; 25(1): 105–116
CrossRef Pubmed Google scholar
[4]
Hoh A, Dewerth A, Vogt F, Wenz J, Baeuerle PA, Warmann SW, Fuchs J, Armeanu-Ebinger S. The activity of γδ T cells against paediatric liver tumour cells and spheroids in cell culture. Liver Int 2013; 33(1):127–136
CrossRef Pubmed Google scholar
[5]
Haas JD, González FH, Schmitz S, Chennupati V, Föhse L, Kremmer E, Förster R, Prinz I. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur J Immunol 2009; 39(12): 3488–3497
CrossRef Pubmed Google scholar
[6]
Muñoz-Ruiz M, Sumaria N, Pennington DJ, Silva-Santos B. Thymic determinants of gd T cell differentiation. Trends Immunol 2017; 38(5): 336–344
CrossRef Pubmed Google scholar
[7]
Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 1998; 279(5357): 1737–1740
CrossRef Pubmed Google scholar
[8]
Fay NS, Larson EC, Jameson JM. Chronic inflammation and gd T cells. Front Immunol 2016; 7: 210
CrossRef Pubmed Google scholar
[9]
Vantourout P, Hayday A. Six-of-the-best: unique contributions of gd T cells to immunology. Nat Rev Immunol 2013; 13(2): 88–100
CrossRef Pubmed Google scholar
[10]
Rajoriya N, Fergusson JR, Leithead JA, Klenerman P. γδ T-lymphocytes in hepatitis C and chronic liver disease. Front Immunol 2014; 5: 400
CrossRef Pubmed Google scholar
[11]
Wang X, Sun R, Wei H, Tian Z. High-mobility group box 1 (HMGB1)-Toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: interaction of gd T cells with macrophages. Hepatology 2013; 57(1): 373–384
CrossRef Pubmed Google scholar
[12]
Protzer U, Maini MK, Knolle PA. Living in the liver: hepatic infections. Nat Rev Immunol 2012; 12(3): 201–213
CrossRef Pubmed Google scholar
[13]
Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nat Rev Immunol 2014; 14(3): 181–194
CrossRef Pubmed Google scholar
[14]
Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016; 13(3): 267–276
CrossRef Pubmed Google scholar
[15]
Shuai Z, Leung MW, He X, Zhang W, Yang G, Leung PS, Eric Gershwin M. Adaptive immunity in the liver. Cell Mol Immunol 2016; 13(3): 354–368
CrossRef Pubmed Google scholar
[16]
Horst AK, Neumann K, Diehl L, Tiegs G. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells. Cell Mol Immunol 2016; 13(3): 277–292
CrossRef Pubmed Google scholar
[17]
Crispe IN. Immune tolerance in liver disease. Hepatology 2014; 60(6): 2109–2117
CrossRef Pubmed Google scholar
[18]
Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology 2008; 47(2): 729–736
CrossRef Pubmed Google scholar
[19]
Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 2016; 13(3): 337–346
CrossRef Pubmed Google scholar
[20]
Peng H, Wisse E, Tian Z. Liver natural killer cells: subsets and roles in liver immunity. Cell Mol Immunol 2016; 13(3): 328–336
CrossRef Pubmed Google scholar
[21]
Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cell Mol Immunol 2016; 13(3): 316–327
CrossRef Pubmed Google scholar
[22]
Zhou Z, Xu MJ, Gao B. Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 2016; 13(3): 301–315
CrossRef Pubmed Google scholar
[23]
Bonneville M, O’Brien RL, Born WK. γδ T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10(7): 467–478
CrossRef Pubmed Google scholar
[24]
Rao R, Graffeo CS, Gulati R, Jamal M, Narayan S, Zambirinis CP, Barilla R, Deutsch M, Greco SH, Ochi A, Tomkötter L, Blobstein R, Avanzi A, Tippens DM, Gelbstein Y, Van Heerden E, Miller G. Interleukin 17-producing γδ. T cells promote hepatic regeneration in mice. Gastroenterology 2014; 147(2):473–84.e2
CrossRef Pubmed Google scholar
[25]
Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. The microbiota maintain homeostasis of liver-resident gdT-17 cells in a lipid antigen/CD1d-dependent manner. Nat Commun 2017; 7: 13839
CrossRef Pubmed Google scholar
[26]
Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009; 373(9663): 582–592
CrossRef Pubmed Google scholar
[27]
Chyuan IT, Tsai HF, Tzeng HT, Sung CC, Wu CS, Chen PJ, Hsu PN. Tumor necrosis factor-α blockage therapy impairs hepatitis B viral clearance and enhances T-cell exhaustion in a mouse model. Cell Mol Immunol 2015; 12(3): 317–325
CrossRef Pubmed Google scholar
[28]
Chen M, Zhang D, Zhen W, Shi Q, Liu Y, Ling N, Peng M, Tang K, Hu P, Hu H, Ren H. Characteristics of circulating T cell receptor gd T cells from individuals chronically infected with hepatitis B virus (HBV): an association between V(d)2 subtype and chronic HBV infection. J Infect Dis 2008; 198(11): 1643–1650
CrossRef Pubmed Google scholar
[29]
Chen M, Hu P, Ling N, Peng H, Lei Y, Hu H, Zhang D, Ren H. Enhanced functions of peripheral gd T cells in chronic hepatitis B infection during interferon α treatment in vivo and in vitro. PLoS One 2015; 10(3): e0120086
CrossRef Pubmed Google scholar
[30]
Chen M, Hu P, Peng H, Zeng W, Shi X, Lei Y, Hu H, Zhang D, Ren H. Enhanced peripheral gd T cells cytotoxicity potential in patients with HBV-associated acute-on-chronic liver failure might contribute to the disease progression. J Clin Immunol 2012; 32(4): 877–885
CrossRef Pubmed Google scholar
[31]
Kong X, Sun R, Chen Y, Wei H, Tian Z. γδ T cells drive myeloid-derived suppressor cell-mediated CD8+ T cell exhaustion in hepatitis B virus-induced immunotolerance. J Immunol 2014; 193(4): 1645–1653
CrossRef Pubmed Google scholar
[32]
Rehermann B, Nascimbeni M. Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005; 5(3): 215–229
CrossRef Pubmed Google scholar
[33]
Yin W, Tong S, Zhang Q, Shao J, Liu Q, Peng H, Hu H, Peng M, Hu P, Ren H, Tian Z, Zhang D. Functional dichotomy of Vd2 gd T cells in chronic hepatitis C virus infections: role in cytotoxicity but not for IFN-g production. Sci Rep 2016; 6(1): 26296
CrossRef Pubmed Google scholar
[34]
Tseng CT, Miskovsky E, Houghton M, Klimpel GR. Characterization of liver T-cell receptor gd T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology 2001; 33(5): 1312–1320
CrossRef Pubmed Google scholar
[35]
Agrati C, Alonzi T, De Santis R, Castilletti C, Abbate I, Capobianchi MR, D’Offizi G, Siepi F, Fimia GM, Tripodi M, Poccia F. Activation of Vγ9Vδ2 T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. Int Immunol 2006; 18(1): 11–18
CrossRef Pubmed Google scholar
[36]
Sardinha LR, Elias RM, Mosca T, Bastos KR, Marinho CR, D’Império Lima MR, Alvarez JM. Contribution of NK, NK T, γδ T, and αβ T cells to the γ interferon response required for liver protection against Trypanosoma cruzi. Infect Immun 2006; 74(4): 2031–2042
CrossRef Pubmed Google scholar
[37]
Tramonti D, Rhodes K, Martin N, Dalton JE, Andrew E, Carding SR. γδ T cell-mediated regulation of chemokine producing macrophages during Listeria monocytogenes infection-induced inflammation. J Pathol 2008; 216(2): 262–270
CrossRef Pubmed Google scholar
[38]
Chen D, Luo X, Xie H, Gao Z, Fang H, Huang J. Characteristics of IL-17 induction by Schistosoma japonicum infection in C57BL/6 mouse liver. Immunology 2013; 139(4): 523–532
CrossRef Pubmed Google scholar
[39]
Rinella ME. Nonalcoholic fatty liver disease: a systematic review. JAMA 2015; 313(22): 2263–2273
CrossRef Pubmed Google scholar
[40]
Harley IT, Stankiewicz TE, Giles DA, Softic S, Flick LM, Cappelletti M, Sheridan R, Xanthakos SA, Steinbrecher KA, Sartor RB, Kohli R, Karp CL, Divanovic S. IL-17 signaling accelerates the progression of nonalcoholic fatty liver disease in mice. Hepatology 2014; 59(5): 1830–1839
CrossRef Pubmed Google scholar
[41]
Xu R, Tao A, Zhang S, Zhang M. Neutralization of interleukin-17 attenuates high fat diet-induced non-alcoholic fatty liver disease in mice. Acta Biochim Biophys Sin (Shanghai) 2013; 45(9): 726–733
CrossRef Pubmed Google scholar
[42]
Aizawa Y, Hokari A. Autoimmune hepatitis: current challenges and future prospects. Clin Exp Gastroenterol 2017; 10: 9–18
CrossRef Pubmed Google scholar
[43]
Carey EJ, Ali AH, Lindor KD. Primary biliary cirrhosis. Lancet 2015; 386(10003): 1565–1575
CrossRef Pubmed Google scholar
[44]
Singh S, Talwalkar JA. Primary sclerosing cholangitis: diagnosis, prognosis, and management. Clin Gastroenterol Hepatol 2013;11(8):898–907
CrossRef Pubmed Google scholar
[45]
Martins EB, Graham AK, Chapman RW, Fleming KA. Elevation of gd T lymphocytes in peripheral blood and livers of patients with primary sclerosing cholangitis and other autoimmune liver diseases. Hepatology 1996; 23(5): 988–993
Pubmed
[46]
Hua F, Wang L, Rong X, Hu Y, Zhang JM, He W, Zhang FC. Elevation of Vd1 T cells in peripheral blood and livers of patients with primary biliary cholangitis. Clin Exp Immunol 2016; 186(3): 347–355
CrossRef Pubmed Google scholar
[47]
Wen L, Peakman M, Mieli-Vergani G, Vergani D. Elevation of activated gd T cell receptor bearing T lymphocytes in patients with autoimmune chronic liver disease. Clin Exp Immunol 1992; 89(1): 78–82
CrossRef Pubmed Google scholar
[48]
Ferri S, Longhi MS, De Molo C, Lalanne C, Muratori P, Granito A, Hussain MJ, Ma Y, Lenzi M, Mieli-Vergani G, Bianchi FB, Vergani D, Muratori L. A multifaceted imbalance of T cells with regulatory function characterizes type 1 autoimmune hepatitis. Hepatology 2010; 52(3): 999–1007
CrossRef Pubmed Google scholar
[49]
Nishio K, Miyagi T, Tatsumi T, Mukai K, Yokoyama Y, Yoshioka T, Sakamori R, Hikita H, Kodama T, Shimizu S, Shigekawa M, Nawa T, Yoshihara H, Hiramatsu N, Yamanaka H, Seino K, Takehara T. Invariant natural killer T cell deficiency leads to the development of spontaneous liver inflammation dependent on gd T cells in mice. J Gastroenterol 2015; 50(11): 1124–1133
CrossRef Pubmed Google scholar
[50]
Zhang H, Bernuzzi F, Lleo A, Ma X, Invernizzi P. Therapeutic potential of IL-17-mediated signaling pathway in autoimmune liver diseases. Mediators Inflamm 2015; 2015: 436450
CrossRef Pubmed Google scholar
[51]
Ujiie H, Shevach EM. γδ T cells protect the liver and lungs of mice from autoimmunity induced by scurfy lymphocytes. J Immunol 2016; 196(4): 1517–1528
CrossRef Pubmed Google scholar
[52]
Zhao N, Hao J, Ni Y, Luo W, Liang R, Cao G, Zhao Y, Wang P, Zhao L, Tian Z, Flavell R, Hong Z, Han J, Yao Z, Wu Z, Yin Z. Vg4 gd T cell-derived IL-17A negatively regulates NKT cell function in Con A-induced fulminant hepatitis. J Immunol 2011; 187(10): 5007–5014
CrossRef Pubmed Google scholar
[53]
Hammerich L, Bangen JM, Govaere O, Zimmermann HW, Gassler N, Huss S, Liedtke C, Prinz I, Lira SA, Luedde T, Roskams T, Trautwein C, Heymann F, Tacke F. Chemokine receptor CCR6-dependent accumulation of gd T cells in injured liver restricts hepatic inflammation and fibrosis. Hepatology 2014; 59(2): 630–642
CrossRef Pubmed Google scholar
[54]
Seo W, Eun HS, Kim SY, Yi HS, Lee YS, Park SH, Jang MJ, Jo E, Kim SC, Han YM, Park KG, Jeong WI. Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gd T cells in liver fibrosis. Hepatology 2016; 64(2): 616–631
CrossRef Pubmed Google scholar
[55]
Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, Österreicher CH, Stickel F, Ley K, Brenner DA, Kisseleva T. Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology 2012; 143(3):765–776.e3
CrossRef Pubmed Google scholar
[56]
Tan Z, Qian X, Jiang R, Liu Q, Wang Y, Chen C, Wang X, Ryffel B, Sun B. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation. J Immunol 2013; 191(4): 1835–1844
CrossRef Pubmed Google scholar
[57]
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66(2): 115–132
CrossRef Pubmed Google scholar
[58]
Yi Y, He HW, Wang JX, Cai XY, Li YW, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. The functional impairment of HCC-infiltrating gd T cells, partially mediated by regulatory T cells in a TGFβ- and IL-10-dependent manner. J Hepatol 2013; 58(5): 977–983
CrossRef Pubmed Google scholar
[59]
Cai XY, Wang JX, Yi Y, He HW, Ni XC, Zhou J, Cheng YF, Jin JJ, Fan J, Qiu SJ. Low counts of γδ T cells in peritumoral liver tissue are related to more frequent recurrence in patients with hepatocellular carcinoma after curative resection. Asian Pac J Cancer Prev 2014; 15(2): 775–780
Pubmed
[60]
Ma S, Cheng Q, Cai Y, Gong H, Wu Y, Yu X, Shi L, Wu D, Dong C, Liu H. IL-17A produced by gd T cells promotes tumor growth in hepatocellular carcinoma. Cancer Res 2014; 74(7): 1969–1982
CrossRef Pubmed Google scholar
[61]
Zhang BN, Watanabe S, Kohyama M, Saijo K, Kusakabe M, Ohno T. Tumor formation suppressed in gd T knock-out mice. Cancer Lett 2000; 153(1-2): 63–66
CrossRef Pubmed Google scholar
[62]
Silva-Santos B, Serre K, Norell H. γδ T cells in cancer. Nat Rev Immunol 2015; 15(11): 683–691
CrossRef Pubmed Google scholar
[63]
Wu D, Wu P, Qiu F, Wei Q, Huang J. Human gd T-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 2017; 14(3): 245–253
CrossRef Pubmed Google scholar
[64]
Toutirais O, Cabillic F, Le Friec G, Salot S, Loyer P, Le Gallo M, Desille M, de La Pintière CT, Daniel P, Bouet F, Catros V. DNAX accessory molecule-1 (CD226) promotes human hepatocellular carcinoma cell lysis by Vg9Vd2 T cells. Eur J Immunol 2009; 39(5): 1361–1368
CrossRef Pubmed Google scholar
[65]
Sugai S, Yoshikawa T, Iwama T, Tsuchiya N, Ueda N, Fujinami N, Shimomura M, Zhang R, Kaneko S, Uemura Y, Nakatsura T. Hepatocellular carcinoma cell sensitivity to Vg9Vd2 T lymphocyte-mediated killing is increased by zoledronate. Int J Oncol 2016; 48(5): 1794–1804
CrossRef Pubmed Google scholar
[66]
Forbes SJ, Newsome PN. Liver regeneration — mechanisms and models to clinical application. Nat Rev Gastroenterol Hepatol 2016; 13(8): 473–485
CrossRef Pubmed Google scholar
[67]
Furuya S, Kono H, Hara M, Hirayama K, Tsuchiya M, Fujii H. Interleukin-17A plays a pivotal role after partial hepatectomy in mice. J Surg Res 2013; 184(2): 838–846
CrossRef Pubmed Google scholar
[68]
Wu X, Sun R, Chen Y, Zheng X, Bai L, Lian Z, Wei H, Tian Z. Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology 2015; 62(1): 253–264
CrossRef Pubmed Google scholar
[69]
Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W. γδ T cells and their potential for immunotherapy. Int J Biol Sci 2014; 10(2): 119–135
CrossRef Pubmed Google scholar
[70]
Legut M, Cole DK, Sewell AK. The promise of gd T cells and the gd T cell receptor for cancer immunotherapy. Cell Mol Immunol 2015; 12(6): 656–668
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the Anhui Natural Science Foundation (No. 1708085QH183), Natural Science Foundation of China (Nos. 81302863, 31390433, and 91542000), and the Ministry of Science and Technology of China (973 Program, No. 2013CB944902).

Compliance with ethics guidelines

Xuefu Wang and Zhigang Tian declare no conflicts of in terests. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(177 KB)

Accesses

Citations

Detail

Sections
Recommended

/