Platelet membrane-based and tumor-associated platelet- targeted drug delivery systems for cancer therapy

Yinlong Zhang, Guangna Liu, Jingyan Wei, Guangjun Nie

PDF(778 KB)
PDF(778 KB)
Front. Med. ›› 2018, Vol. 12 ›› Issue (6) : 667-677. DOI: 10.1007/s11684-017-0583-y
REVIEW
REVIEW

Platelet membrane-based and tumor-associated platelet- targeted drug delivery systems for cancer therapy

Author information +
History +

Abstract

Platelets have long been known to play critical roles in hemostasis by clumping and clotting blood vessel injuries. Recent experimental evidence strongly indicates that platelets can also interact with tumor cells by direct binding or secreting cytokines. For example, platelets have been shown to protect circulating cancer cells in blood circulation and to promote tumor metastasis. In-depth understanding of the role of platelets in cancer progression and metastasis provides promising approaches for platelet biomimetic drug delivery systems and functional platelet-targeting strategies for effective cancer treatment. This review highlights recent progresses in platelet membrane-based drug delivery and unique strategies that target tumor-associated platelets for cancer therapy. The paper also discusses future development opportunities and challenges encountered for clinical translation.

Keywords

platelet-mimicking delivery systems / tumor-associated platelets / cancer therapy / EPR effect

Cite this article

Download citation ▾
Yinlong Zhang, Guangna Liu, Jingyan Wei, Guangjun Nie. Platelet membrane-based and tumor-associated platelet- targeted drug delivery systems for cancer therapy. Front. Med., 2018, 12(6): 667‒677 https://doi.org/10.1007/s11684-017-0583-y

References

[1]
Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008; 453(7193): 314–321
CrossRef Pubmed Google scholar
[2]
Furie B, Furie BC. Thrombus formation in vivo. J Clin Invest 2005; 115(12): 3355–3362
CrossRef Pubmed Google scholar
[3]
Ho-Tin-Noé B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res 2008; 68(16): 6851–6858
CrossRef Pubmed Google scholar
[4]
Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11(2): 123–134
CrossRef Pubmed Google scholar
[5]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423–1437
CrossRef Pubmed Google scholar
[6]
Mammadovabach E, Zigrino P, Brucker C, Bourdon C, Freund M, Arcangelis AD, Abrams SI, Orend G, Gachet C, Mangin PH. Platelet integrin a6b1 controls lung metastasis through direct binding to cancer cell–derived ADAM9. JCI Insight 2016; 1(14): e88245
CrossRef Pubmed Google scholar
[7]
Yu LX, Yan L, Yang W, Wu FQ, Ling Y, Chen SZ, Tang L, Tan YX, Cao D, Wu MC, Yan HX, Wang HY. Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein. Nat Commun 2014; 5: 5256
CrossRef Pubmed Google scholar
[8]
Xu P, Zuo H, Chen B, Wang R, Ahmed A, Hu Y, Ouyang J. Doxorubicin-loaded platelets as a smart drug delivery system: an improved therapy for lymphoma. Sci Rep 2017; 7: 42632
CrossRef Pubmed Google scholar
[9]
Nurden AT, Nurden P, Sanchez M, Andia I, Anitua E. Platelets and wound healing. Front Biosci 2008; 13: 3532–3548
Pubmed
[10]
Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999; 59(6): 1295–1300
Pubmed
[11]
Wang C, Sun W, Ye Y, Hu Q, Bomba HN, Gu Z. In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nat Biomed Eng 2017; 1: 0011
[12]
Daly ME. Determinants of platelet count in humans. Haematologica 2011; 96(1): 10–13
CrossRef Pubmed Google scholar
[13]
Li J, Sharkey CC, Wun B, Liesveld JL, King MR. Genetic engineering of platelets to neutralize circulating tumor cells. J Control Release 2016; 228: 38–47
CrossRef Pubmed Google scholar
[14]
Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, Nguyen P, Angsantikul P, Wen CH, Kroll AV, Carpenter C, Ramesh M, Qu V, Patel SH, Zhu J, Shi W, Hofman FM, Chen TC, Gao W, Zhang K, Chien S, Zhang L. Nanoparticle biointerfacing by platelet membrane cloaking. Nature 2015; 526(7571): 118–121
CrossRef Pubmed Google scholar
[15]
Dehaini D, Wei X, Fang RH, Masson S, Angsantikul P, Luk BT, Zhang Y, Ying M, Jiang Y, Kroll AV, Gao W, Zhang L. Erythrocyte-platelet hybrid membrane coating for enhanced nanoparticle functionalization. Adv Mater 2017 29(16):1606209
CrossRef Pubmed Google scholar
[16]
Hu Q, Sun W, Qian C, Wang C, Bomba HN, Gu Z. Anticancer platelet-mimicking nanovehicles. Adv Mater 2015; 27(44): 7043–7050
CrossRef Pubmed Google scholar
[17]
Hu Q, Qian C, Sun W, Wang J, Chen Z, Bomba HN, Xin H, Shen Q, Gu Z. Engineered nanoplatelets for enhanced treatment of multiple myeloma and thrombus. Adv Mater 2016; 28(43): 9573–9580
CrossRef Pubmed Google scholar
[18]
Hu Q, Sun W, Qian C, Bomba HN, Xin H, Gu Z. Relay drug delivery for amplifying targeting signal and enhancing anticancer efficacy. Adv Mater 2017; 29(13): 1605803
CrossRef Pubmed Google scholar
[19]
Li J, Ai Y, Wang L, Bu P, Sharkey CC, Wu Q, Wun B, Roy S, Shen X, King MR. Targeted drug delivery to circulating tumor cells via platelet membrane-functionalized particles. Biomaterials 2016; 76: 52–65
CrossRef Pubmed Google scholar
[20]
Cho MS, Bottsford-Miller J, Vasquez HG, Stone R, Zand B, Kroll MH, Sood AK, Afshar-Kharghan V. Platelets increase the proliferation of ovarian cancer cells. Blood 2012; 120(24): 4869–4872
CrossRef Pubmed Google scholar
[21]
Cooke NM, Spillane CD, Sheils O, O’Leary J, Kenny D. Aspirin and P2Y12 inhibition attenuate platelet-induced ovarian cancer cell invasion. BMC Cancer 2015; 15(1): 627
CrossRef Pubmed Google scholar
[22]
Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, Italiano JE, Wheatley E, Abou-Slaybi A, Bender E, Almog N, Kieran MW, Folkman J. Platelets actively sequester angiogenesis regulators. Blood 2009; 113(12): 2835–2842
CrossRef Pubmed Google scholar
[23]
Rachidi S, Metelli A, Riesenberg B, Wu BX, Nelson MH, Wallace C, Paulos CM, Rubinstein MP, Garrett-Mayer E, Hennig M, Bearden DW, Yang Y, Liu B, Li Z. Platelets subvert T cell immunity against cancer via GARP-TGFb axis. Sci Immunol 2017; 2(11): 7911
CrossRef Pubmed Google scholar
[24]
Zhang Y, Wei J, Liu S, Wang J, Han X, Qin H, Lang J, Cheng K, Li Y, Qi Y, Anderson GJ, Sukumar S, Li S, Nie G. Inhibition of platelet function using liposomal nanoparticles blocks tumor metastasis. Theranostics 2017; 7(5): 1062–1071
CrossRef Pubmed Google scholar
[25]
Ho-Tin-Noé B, Goerge T, Wagner DD. Platelets: guardians of tumor vasculature. Cancer Res 2009; 69(14): 5623–5626
CrossRef Pubmed Google scholar
[26]
Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, Ruggeri ZM, Jain RK, Folkman J, Wagner DD. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci USA 2006; 103(4): 855–860
CrossRef Pubmed Google scholar
[27]
Li S, Zhang Y, Wang J, Zhao Y, Ji T, Zhao X, Ding Y, Zhao X, Zhao R, Li F, Yang X, Liu S, Liu Z, Lai J, Whittaker AK, Anderson GJ, Wei J, Nie G. Nanoparticle-enabled local depletion of tumor-associated platelets disrupts tumor vascular barriers and augments tumor drug accumulation. Nat Biomed Eng 2017;1:667–679
CrossRef Google scholar
[28]
Ishikawa S, Miyashita T, Inokuchi M, Hayashi H, Oyama K, Tajima H, Takamura H, Ninomiya I, Ahmed AK, Harman JW, Fushida S, Ohta T. Platelets surrounding primary tumor cells are related to chemoresistance. Oncol Rep 2016; 36(2): 787–794
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Distinguished Young Scientists Program (No. 31325010), the National Natural Science Foundation of China (No. 31730032), the Innovation Research Group of National Natural Science Foundation of China (No. 11621505), and the Key Research Project of Frontier Science of the Chinese Academy of Sciences (No.QYZDJ-SSW-SLH022).

Compliance with ethics guidelines

Yinlong Zhang, Guangna Liu, Jingyan Wei, and Guangjun Nie declare no conflicts of interests. This manuscript is a review article and does not involve a research protocol requiring approval by any relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(778 KB)

Accesses

Citations

Detail

Sections
Recommended

/