Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis
Zhen Zhang, Na Jiang, Zhaohui Ni
Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis
Peritoneal dialysis (PD) is an established form of renal replacement therapy. Long-term PD leads to morphologic and functional changes to the peritoneal membrane (PM), which is defined as peritoneal fibrosis, a known cause of loss of peritoneal ultrafiltration capacity. Inflammation and angiogenesis are key events during the pathogenesis of peritoneal fibrosis. This review discusses the pathophysiology of peritoneal fibrosis and recent research progress on key fibrogenic molecular mechanisms in peritoneal inflammation and angiogenesis, including Toll-like receptor ligand-mediated, NOD-like receptor protein 3/interleukin-1β, vascular endothelial growth factor, and angiopoietin-2/Tie2 signaling pathways. Furthermore, novel strategies targeting peritoneal inflammation and angiogenesis to preserve the PM are discussed in depth.
peritoneal dialysis / peritoneal fibrosis / inflammation / angiogenesis
[1] |
Nagy JA. Peritoneal membrane morphology and function. Kidney Int Suppl 1996; 56: S2–S11
Pubmed
|
[2] |
Li PK, Chow KM, Van de Luijtgaarden MW, Johnson DW , Jager KJ , Mehrotra R , Naicker S , Pecoits-Filho R , Yu XQ, Lameire N. Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 2017; 13(2): 90–103
CrossRef
Pubmed
Google scholar
|
[3] |
Loureiro J, Gónzalez-Mateo G, Jimenez-Heffernan J, Selgas R , López-Cabrera M , Aguilera Peralta A. Are the mesothelial-to-mesenchymal transition, sclerotic peritonitis syndromes, and encapsulating peritoneal sclerosis part of the same process? Int J Nephrol 2013; 2013: 263285160;PMID: 23476771
CrossRef
Google scholar
|
[4] |
Garosi G, Cappelletti F, Di Paolo N . Fibrosis and sclerosis: different disorders or different stages? Contrib Nephrol 2006; 150: 62–69
CrossRef
Pubmed
Google scholar
|
[5] |
Williams JD, Craig KJ, Topley N , Von Ruhland C , Fallon M , Newman GR , Mackenzie RK , Williams GT ; Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 2002; 13(2): 470–479
Pubmed
|
[6] |
Kaneko K, Hamada C, Tomino Y . Peritoneal fibrosis intervention. Perit Dial Int 2007; 27(Suppl 2): S82–S86
Pubmed
|
[7] |
Schilte MN, Celie JW, Wee PM , Beelen RH , van den Born J . Factors contributing to peritoneal tissue remodeling in peritoneal dialysis. Perit Dial Int 2009; 29(6): 605–617
Pubmed
|
[8] |
Baroni G, Schuinski A, de Moraes TP , Meyer F , Pecoits-Filho R . Inflammation and the peritoneal membrane: causes and impact on structure and function during peritoneal dialysis. Mediators Inflamm 2012; 2012: 912595160;PMID: 22547910
CrossRef
Google scholar
|
[9] |
Aroeira LS, Aguilera A, Sánchez-Tomero JA, Bajo MA , del Peso G , Jiménez-Heffernan JA , Selgas R , López-Cabrera M . Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 2007; 18(7): 2004–2013
CrossRef
Pubmed
Google scholar
|
[10] |
Bertoli SV, Barone MT, Vago L , Bonetto S , De Vecchi A , Scalamogna A , Barbiano di Belgiojoso G. Changes in peritoneal membrane after continuous ambulatory peritoneal dialysis—a histopathological study. Adv Perit Dial 1999; 15: 28–31
Pubmed
|
[11] |
Devuyst O, Margetts PJ, Topley N . The pathophysiology of the peritoneal membrane. J Am Soc Nephrol 2010; 21(7): 1077–1085
CrossRef
Pubmed
Google scholar
|
[12] |
Yung S, Chan TM. Intrinsic cells: mesothelial cells—central players in regulating inflammation and resolution. Perit Dial Int 2009; 29(Suppl 2): S21–S27
Pubmed
|
[13] |
Topley N, Jörres A, Luttmann W , Petersen MM , Lang MJ , Thierauch KH , Müller C , Coles GA , Davies M , Williams JD . Human peritoneal mesothelial cells synthesize interleukin-6: induction by IL-1β and TNFα. Kidney Int 1993; 43(1): 226–233
CrossRef
Pubmed
Google scholar
|
[14] |
Kato S, Yuzawa Y, Tsuboi N , Maruyama S , Morita Y , Matsuguchi T , Matsuo S . Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4. J Am Soc Nephrol 2004; 15(5): 1289–1299
Pubmed
|
[15] |
López-Cabrera M. Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis. Adv Med 2014; 2014: 473134 doi: 10.1155/2014/473134
|
[16] |
Di Paolo N, Sacchi G. Atlas of peritoneal histology. Perit Dial Int 2000; 20(Suppl 3): S5–S96
Pubmed
|
[17] |
Boulanger E, Wautier MP, Wautier JL , Boval B , Panis Y , Wernert N , Danze PM , Dequiedt P . AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression. Kidney Int 2002; 61(1): 148–156
CrossRef
Pubmed
Google scholar
|
[18] |
De Vriese AS. The John F. Maher Recipient Lecture 2004: rage in the peritoneum. Perit Dial Int 2005; 25(1): 8–11
Pubmed
|
[19] |
Jiang N, Zhang Z, Fang W , Qian J, Mou S, Ni Z . High peritoneal glucose exposure is associated with increased incidence of relapsing and recurrent bacterial peritonitis in patients undergoing peritoneal dialysis. Blood Purif 2015; 40(1): 72–78
CrossRef
Pubmed
Google scholar
|
[20] |
Yang X, Lin A, Jiang N , Yan H, Ni Z, Qian J , Fang W. Interleukin-6 trans-signalling induces vascular endothelial growth factor synthesis partly via Janus kinases-STAT3 pathway in human mesothelial cells. Nephrology (Carlton) 2017; 22(2): 150–158
CrossRef
Pubmed
Google scholar
|
[21] |
Yang X, Zhang H, Hang Y , Yan H, Lin A, Huang J , Ni Z, Qian J, Fang W . Intraperitoneal interleukin-6 levels predict peritoneal solute transport rate: a prospective cohort study. Am J Nephrol 2014; 39(6): 459–465
CrossRef
Pubmed
Google scholar
|
[22] |
Ding L, Shao X, Cao L , Fang W, Yan H, Huang J , Gu A, Yu Z, Qi C , Chang X , Ni Z. Possible role of IL-6 and TIE2 gene polymorphisms in predicting the initial high transport status in patients with peritoneal dialysis: an observational study. BMJ Open 2016; 6(10): e012967
CrossRef
Pubmed
Google scholar
|
[23] |
Feurino LW, Zhang Y, Bharadwaj U , Zhang R , Li F, Fisher WE, Brunicardi FC , Chen C, Yao Q, Min L . IL-6 stimulates Th2 type cytokine secretion and upregulates VEGF and NRP-1 expression in pancreatic cancer cells. Cancer Biol Ther 2007; 6(7): 1096–1100
CrossRef
Pubmed
Google scholar
|
[24] |
Park JH, Kim YG, Shaw M , Kanneganti TD , Fujimoto Y , Fukase K , Inohara N , Núñez G . Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 2007; 179(1): 514–521
CrossRef
Pubmed
Google scholar
|
[25] |
Lai KN, Tang SC, Leung JC . Mediators of inflammation and fibrosis. Perit Dial Int 2007; 27(Suppl 2): S65–S71
Pubmed
|
[26] |
Colmont CS, Raby AC, Dioszeghy V , Lebouder E , Foster TL , Jones SA , Labéta MO , Fielding CA , Topley N . Human peritoneal mesothelial cells respond to bacterial ligands through a specific subset of Toll-like receptors. Nephrol Dial Transplant 2011; 26(12): 4079–4090
CrossRef
Pubmed
Google scholar
|
[27] |
Leifer CA, Medvedev AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol 2016; 100(5): 927–941
CrossRef
Pubmed
Google scholar
|
[28] |
Achek A, Yesudhas D, Choi S . Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016; 39(8): 1032–1049
CrossRef
Pubmed
Google scholar
|
[29] |
Strippoli R, Benedicto I, Pérez Lozano ML, Cerezo A , López-Cabrera M , del Pozo MA . Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-κB/Snail1 pathway. Dis Model Mech 2008; 1(4-5): 264–274160;doi:10.1242/dmm.001321
Pubmed
|
[30] |
Cuenda A, Rousseau Sp38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 2007; 1773:1358–1375
CrossRef
Google scholar
|
[31] |
Strippoli R, Benedicto I, Foronda M , Perez-Lozano ML , Sánchez-Perales S , López-Cabrera M , Del Pozo MÁ . p38 maintains E-cadherin expression by modulating TAK1-NF-κB during epithelial-to-mesenchymal transition. J Cell Sci 2010; 123(24): 4321–4331
CrossRef
Pubmed
Google scholar
|
[32] |
Zhou Q, Yang M, Lan H , Yu X. miR-30a negatively regulates TGF-b1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol 2013; 183(3): 808–819
CrossRef
Pubmed
Google scholar
|
[33] |
Zhang K, Zhang H, Zhou X , Tang WB , Xiao L, Liu YH, Liu H , Peng YM , Sun L, Liu FY. miRNA 589 regulates epithelial mesenchymal transition in human peritoneal mesothelial cells. J Biomed Biotechnol 2012; 2012: 673096
CrossRef
Google scholar
|
[34] |
Liu Q, Mao H, Nie J , Chen W, Yang Q, Dong X , Yu X. Transforming growth factor β1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells. Perit Dial Int 2008; 28(Suppl 3): S88–S95
Pubmed
|
[35] |
Shen J, Wang L, Jiang N , Mou S, Zhang M, Gu L , Shao X, Wang Q, Qi C , Li S, Wang W, Che X , Ni Z. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci Rep 2016; 6(1): 34682
CrossRef
Pubmed
Google scholar
|
[36] |
Hautem N, Morelle J, Sow A , Corbet C , Feron O , Goffin E , Huaux F , Devuyst O. The NLRP3 inflammasome has a critical role in peritoneal dialysis-related peritonitis. J Am Soc Nephrol 2017; 28(7):2038–2052. 160;PMID: 28193826
CrossRef
Google scholar
|
[37] |
Yáñez-Mó M , Lara-Pezzi E , Selgas R , Ramírez-Huesca M , Domínguez-Jiménez C, Jiménez-Heffernan JA, Aguilera A , Sánchez-Tomero JA , Bajo MA , Alvarez V , Castro MA , del Peso G , Cirujeda A , Gamallo C , Sánchez-Madrid F , López-Cabrera M . Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348(5): 403–413
CrossRef
Pubmed
Google scholar
|
[38] |
Strippoli R, Moreno-Vicente R, Battistelli C , Cicchini C , Noce V, Amicone L, Marchetti A , Del Pozo MA , Tripodi M . Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells Int 2016; 2016: 3543678
CrossRef
Google scholar
|
[39] |
Wu J, Li X, Zhu G , Zhang Y , He M, Zhang J. The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp Cell Res 2016; 341(1): 42–53
CrossRef
Pubmed
Google scholar
|
[40] |
Yuan J, Fang W, Ni Z , Dai H, Lin A, Cao L , Qian J. Peritoneal morphologic changes in a peritoneal dialysis rat model correlate with angiopoietin/Tie-2. Pediatr Nephrol 2009; 24(1): 163–170
CrossRef
Pubmed
Google scholar
|
[41] |
Zweers MM, Struijk DG, Smit W , Krediet RT . Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up. J Lab Clin Med 2001; 137(2): 125–132
CrossRef
Pubmed
Google scholar
|
[42] |
Mortier S, Faict D, Lameire NH , De Vriese AS . Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 2005; 67(4): 1559–1565
CrossRef
Pubmed
Google scholar
|
[43] |
Stavenuiter AW, Schilte MN, Ter Wee PM , Beelen RH . Angiogenesis in peritoneal dialysis. Kidney Blood Press Res 2011; 34(4): 245–252
CrossRef
Pubmed
Google scholar
|
[44] |
Niu J, Azfer A, Zhelyabovska O , Fatma S , Kolattukudy PE . Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 2008; 283(21): 14542–14551
CrossRef
Pubmed
Google scholar
|
[45] |
Margetts PJ, Kolb M, Yu L , Hoff CM , Holmes CJ , Anthony DC , Gauldie J . Inflammatory cytokines, angiogenesis, and fibrosis in the rat peritoneum. Am J Pathol 2002; 160(6): 2285–2294
CrossRef
Pubmed
Google scholar
|
[46] |
Rosell A, Arai K, Lok J , He T, Guo S, Navarro M , Montaner J , Katusic ZS , Lo EH. Interleukin-1β augments angiogenic responses of murine endothelial progenitor cells in vitro. J Cereb Blood Flow Metab 2009; 29(5): 933–943 PMID:19240740
CrossRef
Google scholar
|
[47] |
Catar R, Witowski J, Zhu N , Lücht C , Derrac Soria A , Uceda Fernandez J , Chen L, Jones SA, Fielding CA , Rudolf A , Topley N , Dragun D , Jörres A . IL-6 trans-signaling links inflammation with angiogenesis in the peritoneal membrane. J Am Soc Nephrol 2017; 28(4): 1188–1199
CrossRef
Pubmed
Google scholar
|
[48] |
Fan Y, Ye J, Shen F , Zhu Y, Yeghiazarians Y, Zhu W , Chen Y, Lawton MT, Young WL , Yang GY . Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 2008; 28(1): 90–98
CrossRef
Pubmed
Google scholar
|
[49] |
Li A, Dubey S, Varney ML , Dave BJ , Singh RK . IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003; 170(6): 3369–3376
CrossRef
Pubmed
Google scholar
|
[50] |
Leibovich SJ, Polverini PJ, Shepard HM , Wiseman DM , Shively V , Nuseir N . Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 1987; 329(6140): 630–632
CrossRef
Pubmed
Google scholar
|
[51] |
De Vriese AS, Tilton RG, Stephan CC , Lameire NH . Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 2001; 12(8): 1734–1741
Pubmed
|
[52] |
Neufeld G, Cohen T, Gengrinovitch S , Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999; 13(1): 9–22
Pubmed
|
[53] |
Roskoski R Jr . Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res 2017; 120: 116–132
CrossRef
Pubmed
Google scholar
|
[54] |
González-Mateo GT , Aguirre AR , Loureiro J , Abensur H , Sandoval P , Sánchez-Tomero JA , delPeso G , Jiménez-Heffernan JA , Ruiz-Carpio V , Selgas R , López-Cabrera M , Aguilera A , Liappas G . Rapamycin protects from type I peritoneal membrane failure inhibiting the angiogenesis, lymphangiogenesis, and Endo-MT. Biomed Res Int 2015; 2015: 989560 doi: 10.1155/2015/989560
|
[55] |
Evans I. An overview of VEGF-mediated signal transduction. Methods Mol Biol 2015; 1332: 91–120
CrossRef
Pubmed
Google scholar
|
[56] |
Aroeira LS, Lara-Pezzi E, Loureiro J , Aguilera A , Ramírez-Huesca M , González-Mateo G , Pérez-Lozano ML , Albar-Vizcaíno P , Bajo MA , del Peso G , Sánchez-Tomero JA , Jiménez-Heffernan JA , Selgas R , López-Cabrera M . Cyclooxygenase-2 mediates dialysate-induced alterations of the peritoneal membrane. J Am Soc Nephrol 2009; 20(3): 582–592
CrossRef
Pubmed
Google scholar
|
[57] |
Maisonpierre PC, Suri C, Jones PF , Bartunkova S , Wiegand SJ , Radziejewski C , Compton D , McClain J , Aldrich TH , Papadopoulos N , Daly TJ , Davis S , Sato TN , Yancopoulos GD . Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277(5322): 55–60
CrossRef
Pubmed
Google scholar
|
[58] |
Kim M, Allen B, Korhonen EA , Nitschké M , Yang HW , Baluk P , Saharinen P , Alitalo K , Daly C, Thurston G, McDonald DM . Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest 2016; 126(9): 3511–3525
CrossRef
Pubmed
Google scholar
|
[59] |
Mueller SB, Kontos CD. Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling. J Clin Invest 2016; 126(9): 3188–3191
CrossRef
Pubmed
Google scholar
|
[60] |
Korhonen EA, Lampinen A, Giri H , Anisimov A , Kim M, Allen B, Fang S , D’Amico G , Sipilä TJ , Lohela M , Strandin T , Vaheri A , Ylä-Herttuala S , Koh GY, McDonald DM, Alitalo K , Saharinen P . Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest 2016; 126(9): 3495–3510
CrossRef
Pubmed
Google scholar
|
[61] |
Fagiani E, Christofori G. Angiopoietins in angiogenesis. Cancer Lett 2013; 328(1): 18–26
CrossRef
Pubmed
Google scholar
|
[62] |
Reiss Y. Angiopoietins. Recent Results Cancer Res 2010; 180: 3–13
CrossRef
Pubmed
Google scholar
|
[63] |
Fukuhara S, Sako K, Minami T , Noda K, Kim HZ, Kodama T , Shibuya M , Takakura N , Koh GY, Mochizuki N. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 2008; 10(5): 513–526
CrossRef
Pubmed
Google scholar
|
[64] |
Yuan J, Fang W, Lin A , Ni Z, Qian J. Angiopoietin-2/Tie2 signaling involved in TNF-a induced peritoneal angiogenesis. Int J Artif Organs 2012; 35(9): 655–662
Pubmed
|
[65] |
Zareie M, Hekking LH, Welten AG , Driesprong BA , Schadee-Eestermans IL , Faict D , Leyssens A , Schalkwijk CG , Beelen RH , ter Wee PM , van den Born J . Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant 2003; 18(12): 2629–2637
CrossRef
Pubmed
Google scholar
|
[66] |
Xiao J, Guo J, Liu XX , Zhang XX , Li ZZ, Zhao ZZ, Liu ZS . Soluble Tie2 fusion protein decreases peritoneal angiogenesis in uremic rats. Mol Med Rep 2013; 8(1): 267–271
Pubmed
|
[67] |
David S, John SG, Jefferies HJ , Sigrist MK , Kümpers P , Kielstein JT , Haller H , McIntyre CW . Angiopoietin-2 levels predict mortality in CKD patients. Nephrol Dial Transplant 2012; 27(5): 1867–1872
CrossRef
Pubmed
Google scholar
|
[68] |
Raby AC, Colmont CS, Kift-Morgan A , Köhl J , Eberl M , Fraser D , Topley N , Labéta MO . Toll-like receptors 2 and 4 are potential therapeutic targets in peritoneal dialysis-associated fibrosis. J Am Soc Nephrol 2017; 28(2): 461–478
CrossRef
Pubmed
Google scholar
|
[69] |
Achek A, Yesudhas D, Choi S . Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 2016; 39(8): 1032–1049
CrossRef
Pubmed
Google scholar
|
[70] |
Kushiyama T, Oda T, Yamada M , Higashi K , Yamamoto K , Oshima N , Sakurai Y , Miura S , Kumagai H . Effects of liposome-encapsulated clodronate on chlorhexidine gluconate-induced peritoneal fibrosis in rats. Nephrol Dial Transplant 2011; 26(10): 3143–3154
CrossRef
Pubmed
Google scholar
|
[71] |
Bajo MA, Del Peso G, Teitelbaum I . Peritoneal membrane preservation. Semin Nephrol 2017; 37(1): 77–92
CrossRef
Pubmed
Google scholar
|
[72] |
Qayyum A, Oei EL, Paudel K , Fan SL. Increasing the use of biocompatible, glucose-free peritoneal dialysis solutions. World J Nephrol 2015; 4(1): 92–97
CrossRef
Pubmed
Google scholar
|
[73] |
Pecoits-Filho R, Araújo MR, Lindholm B , Stenvinkel P , Abensur H , Romão JE Jr , Marcondes M , De Oliveira AH , Noronha IL . Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 2002; 17(8): 1480–1486
CrossRef
Pubmed
Google scholar
|
[74] |
Ferrantelli E, Liappas G, Vila Cuenca M , Keuning ED , Foster TL , Vervloet MG , Lopéz-Cabrera M , Beelen RH . The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney Int 2016; 89(3): 625–635
CrossRef
Pubmed
Google scholar
|
[75] |
Bozkurt D, Sipahi S, Cetin P , Hur E, Ozdemir O, Ertilav M , Sen S, Duman S. Does immunosuppressive treatment ameliorate morphology changes in encapsulating peritoneal sclerosis? Perit Dial Int 2009; 29(Suppl 2): S206–S210
Pubmed
|
[76] |
Hur E, Bozkurt D, Timur O , Bicak S , Sarsik B , Akcicek F , Duman S . The effects of mycophenolate mofetil on encapsulated peritoneal sclerosis model in rats. Clin Nephrol 2012; 77(1): 1–7
CrossRef
Pubmed
Google scholar
|
[77] |
Takahashi S, Taniguchi Y, Nakashima A , Arakawa T , Kawai T , Doi S, Ito T, Masaki T , Kohno N , Yorioka N . Mizoribine suppresses the progression of experimental peritoneal fibrosis in a rat model. Nephron, Exp Nephrol 2009; 112(2): e59–e69
CrossRef
Pubmed
Google scholar
|
[78] |
Tapiawala SN, Bargman JM, Oreopoulos DG , Simons M . Prolonged use of the tyrosine kinase inhibitor in a peritoneal dialysis patient with metastatic renal cell carcinoma: possible beneficial effects on peritoneal membrane and peritonitis rates. Int Urol Nephrol 2009; 41(2): 431–434
CrossRef
Pubmed
Google scholar
|
[79] |
Bozkurt D, Sarsik B, Hur E , Ertilav M , Karaca B , Timur O , Bicak S , Akcicek F , Duman S . A novel angiogenesis inhibitor, sunitinib malate, in encapsulating peritoneal sclerosis. J Nephrol 2011; 24(3): 359–365
CrossRef
Pubmed
Google scholar
|
[80] |
Loureiro J, Schilte M, Aguilera A , Albar-Vizcaíno P , Ramírez-Huesca M , Pérez-Lozano ML , González-Mateo G , Aroeira LS , Selgas R , Mendoza L , Ortiz A , Ruíz-Ortega M , van den Born J , Beelen RH , López-Cabrera M . BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol Dial Transplant 2010; 25(4): 1098–1108
CrossRef
Pubmed
Google scholar
|
[81] |
Peng W, Dou X, Hao W , Zhou Q, Tang R, Nie J , Lan HY, Yu X. Smad7 gene transfer attenuates angiogenesis in peritoneal dialysis rats. Nephrology (Carlton) 2013; 18(2): 138–147
CrossRef
Pubmed
Google scholar
|
[82] |
Fabbrini P, Schilte MN, Zareie M , ter Wee PM , Keuning ED , Beelen RH , van den Born J . Celecoxib treatment reduces peritoneal fibrosis and angiogenesis and prevents ultrafiltration failure in experimental peritoneal dialysis. Nephrol Dial Transplant 2009; 24(12): 3669–3676
CrossRef
Pubmed
Google scholar
|
[83] |
Yoshio Y, Miyazaki M, Abe K , Nishino T , Furusu A , Mizuta Y , Harada T , Ozono Y , Koji T, Kohno S. TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model. Kidney Int 2004; 66(4): 1677–1685
CrossRef
Pubmed
Google scholar
|
[84] |
Hekking LH, Zareie M, Driesprong BA , Faict D , Welten AG , de Greeuw I , Schadee-Eestermans IL , Havenith CE , van den Born J , ter Wee PM , Beelen RH . Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 2001; 12(12): 2775–2786
Pubmed
|
[85] |
Johnson DW, Brown FG, Clarke M , Boudville N , Elias TJ , Foo MW, Jones B, Kulkarni H , Langham R , Ranganathan D , Schollum J , Suranyi MG , Tan SH, Voss D; balANZ Trial Investigators. The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial. Nephrol Dial Transplant 2012; 27(12): 4445–4453
CrossRef
Pubmed
Google scholar
|
[86] |
Seo EY, An SH, Cho JH , Suh HS, Park SH, Gwak H , Kim YL, Ha H. Effect of biocompatible peritoneal dialysis solution on residual renal function: a systematic review of randomized controlled trials. Perit Dial Int 2014; 34(7): 724–731
CrossRef
Pubmed
Google scholar
|
[87] |
Lin A, Qian J, Li X , Yu X, Liu W, Sun Y , Chen N, Mei C; Icodextrin National Multi-center Cooperation Group.Randomized controlled trial of icodextrin versus glucose containing peritoneal dialysis fluid. Clin J Am Soc Nephrol 2009; 4(11): 1799–1804
CrossRef
Pubmed
Google scholar
|
[88] |
Takatori Y, Akagi S, Sugiyama H , Inoue J , Kojo S, Morinaga H, Nakao K , Wada J, Makino H. Icodextrin increases technique survival rate in peritoneal dialysis patients with diabetic nephropathy by improving body fluid management: a randomized controlled trial. Clin J Am Soc Nephrol 2011; 6(6): 1337–1344
CrossRef
Pubmed
Google scholar
|
[89] |
le Poole CY, Welten AG, Weijmer MC , Valentijn RM , van Ittersum FJ , ter Wee PM . Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int 2005; 25(Suppl 3): S64–S68
Pubmed
|
[90] |
del Peso G, Jiménez-Heffernan JA, Selgas R , Remón C , Ossorio M , Fernández-Perpén A, Sánchez-Tomero JA, Cirugeda A , de Sousa E , Sandoval P , Díaz R , López-Cabrera M , Bajo MA . Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. a case-control study on human biopsies. Perit Dial Int 2016; 36(2): 129–134
CrossRef
Pubmed
Google scholar
|
[91] |
Washida N, Wakino S, Tonozuka Y , Homma K , Tokuyama H , Hara Y, Hasegawa K, Minakuchi H , Fujimura K , Hosoya K , Hayashi K , Itoh H. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrol Dial Transplant 2011; 26(9): 2770–2779
CrossRef
Pubmed
Google scholar
|
[92] |
Peng W, Zhou Q, Ao X , Tang R, Xiao Z. Inhibition of Rho-kinase alleviates peritoneal fibrosis and angiogenesis in a rat model of peritoneal dialysis. Ren Fail 2013; 35(7): 958–966
CrossRef
Pubmed
Google scholar
|
[93] |
Tanabe K, Maeshima Y, Ichinose K , Kitayama H , Takazawa Y , Hirokoshi K , Kinomura M , Sugiyama H , Makino H . Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 2007; 71(3): 227–238
CrossRef
Pubmed
Google scholar
|
[94] |
Busnadiego O, Loureiro-Álvarez J, Sandoval P , Lagares D , Dotor J , Pérez-Lozano ML , López-Armada MJ , Lamas S , López-Cabrera M , Rodríguez-Pascual F . A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis. J Am Soc Nephrol 2015; 26(1): 173–182
CrossRef
Pubmed
Google scholar
|
[95] |
Pletinck A, Van Landschoot M, Steppan S , Laukens D , Passlick-Deetjen J , Vanholder R , Van Biesen W . Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol Dial Transplant 2012; 27(2): 548–556
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |