Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis

Zhen Zhang , Na Jiang , Zhaohui Ni

Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 349 -358.

PDF (263KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 349 -358. DOI: 10.1007/s11684-017-0571-2
REVIEW
REVIEW

Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis

Author information +
History +
PDF (263KB)

Abstract

Peritoneal dialysis (PD) is an established form of renal replacement therapy. Long-term PD leads to morphologic and functional changes to the peritoneal membrane (PM), which is defined as peritoneal fibrosis, a known cause of loss of peritoneal ultrafiltration capacity. Inflammation and angiogenesis are key events during the pathogenesis of peritoneal fibrosis. This review discusses the pathophysiology of peritoneal fibrosis and recent research progress on key fibrogenic molecular mechanisms in peritoneal inflammation and angiogenesis, including Toll-like receptor ligand-mediated, NOD-like receptor protein 3/interleukin-1β, vascular endothelial growth factor, and angiopoietin-2/Tie2 signaling pathways. Furthermore, novel strategies targeting peritoneal inflammation and angiogenesis to preserve the PM are discussed in depth.

Keywords

peritoneal dialysis / peritoneal fibrosis / inflammation / angiogenesis

Cite this article

Download citation ▾
Zhen Zhang, Na Jiang, Zhaohui Ni. Strategies for preventing peritoneal fibrosis in peritoneal dialysis patients: new insights based on peritoneal inflammation and angiogenesis. Front. Med., 2017, 11(3): 349-358 DOI:10.1007/s11684-017-0571-2

登录浏览全文

4963

注册一个新账户 忘记密码

Introduction

Peritoneal dialysis (PD) is an established form of renal replacement therapy for patients with end stage renal disease (ESRD). PD relies on the peritoneal membrane (PM) as a semipermeable barrier for ultrafiltration and diffusion [1]. PM consists of two layers, namely, mesothelial monolayer and submesothelial compact zone comprising connective tissue, wherein fibroblasts, immune cells such as macrophages and mast cells, peritoneal lymphatic vessels, and capillaries are found (Fig. 1) [1]. Until now, there are more than 272 000 patients receiving PD worldwide, representing approximately 11% of global dialysis patients with ESRD [2].

Long-term PD leads to morphologic and functional changes to the PM, which is defined as peritoneal fibrosis, a leading cause of peritoneal ultrafiltration failure. The most important features of peritoneal fibrosis are the loss of MCs, thickening of the submesothelial layer, and angiogenesis (Fig. 1). As differences between fibrosis, sclerosis, and encapsulation have not been clearly elucidated, defining peritoneal fibrosis is difficult [3]. It could vary from mild submesothelial thickening to the rare and fatal cases of encapsulating peritoneal sclerosis [4]. According to data from peritoneal biopsies in PD patients, the prevalence of peritoneal fibrosis is almost universal at midterm duration of PD with bioincompatible PD solutions [5]. Uremia, bioincompatible PD solutions (high glucose, low pH, glucose degradation products [GDP], and advanced glycation end products [AGEs]), and peritonitis are known contributors to peritoneal fibrosis [68]. Peritoneal inflammation and angiogenesis are key events during the development of peritoneal fibrosis. Inflammation is characterized by the enhanced production of proinflammatory factors, such as C-reactive protein, tumor necrosis factor-a (TNF-a), and various interleukins (ILs). Angiogenesis, on the other hand, results from increased production of vascular endothelial growth factor (VEGF) and other proangiogenic factors that stimulate the formation of new capillaries in the PM [9].

The present review will discuss the recent research progress on the pathophysiology of peritoneal fibrosis. In particular, we will focus on the individual and interactive molecule mechanisms of peritoneal inflammation and angiogenesis in the pathogenesis of peritoneal fibrosis. Meanwhile, selective strategies targeting peritoneal inflammation and angiogenesis for the preservation of the PM are introduced in detail.

Pathophysiology of peritoneal fibrosis

Peritoneal Inflammation

Peritoneal injury causes activation of macrophages, neutrophils, endothelial cells (ECs), and MCs, which are the principle sources of proinflammatory cytokines and fibrotic mediators in response to external signals [10,11]. Once activated, they are able to recognize the bacterial pathogens through Toll-like receptors (TLRs), resulting in the activation of nuclear factor-kB (NF-kB) signaling pathways and subsequent secretion of numerous inflammatory cytokines, including IL-6, IL-1b, IL-8, TNF-a, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein 2 [1214]. Overexpression of these cytokines leads to acute inflammatory response, neutrophil accumulation, mononuclear cell recruitment, and activation of resident fibroblasts, termed “myofibroblast,” which play a vital role in peritoneal fibrosis by secreting extracellular matrix [8]. Apart from resident fibroblasts, myofibroblasts are also derived from MCs and fibrocytes [15]. Peritoneal inflammation is finally followed by EMT of MCs triggered by inflammation and results in peritoneal fibrosis and angiogenesis.

A number of factors potentially trigger the inflammatory response. First of all, peritonitis remains a main complication in PD patients, leading to MC damage and fibrosis. Moreover, uremic toxins, such as asymmetric dimethylarginine, homocysteine, and modified proteins (i.e., AGE); mechanical stress of the vascular wall (as a result of hypertension); comorbidities such as advanced age and diabetes; and extra-osseous calcification all contribute to peritoneal inflammation [16]. AGEs, derived from glucose and GDPs contained in the PD solution, bind to receptors for AGEs (RAGE) and then stimulate the upregulation of NF-kB, MCP-1, and proinflammatory cytokines, such as IL-6 and TNF-a [17]. RAGE activation mediates the activation of TGF-b-Smad signaling, which is an essential signaling pathway involved in peritoneal fibrosis [18]. On the other hand, bioincompatible PD solution is also associated with production of proinflammatory and profibrotic cytokines. In a retrospective study, we showed that high peritoneal glucose exposure is associated with increased incidence of relapsing/recurrent peritonitis in PD patients, and high glucose may conduct proinflammatory and profibrotic reactions in the peritoneal cavity [19]. It can also upregulate IL-6 synthesis in Met-5A cells (immortalized human MCs derived from pleural fluids obtained from non-cancerous individuals) [20].

IL-6 is a key player in modulating peritoneal inflammation. Our previous studies indicate that intraperitoneal IL-6 and IL-6 polymorphisms were associated with increasing peritoneal solute transport rate [21,22]. IL-6 and soluble IL-6 receptor induce the synthesis and secretion of MCP-1, which attracts monocytes and lymphocytes. In addition, IL-6 also induces the formation of MCP-3 and IL-8, which are involved in the pathogenesis of peritoneal inflammation [23]. High dialysate glucose concentration resulted in proportionate increase of intraperitoneal IL-6 production [19]. Chemokines such as MCP-1/CCL2 and IL-8/CXCL8; granulocyte colony-stimulating factor, which mobilizes neutrophils from the bone marrow and promotes their survival; and CCL5, which is a strong chemoattractant for mononuclear leukocytes, can be synthesized by peritoneal fibroblasts [24,25].

Selective molecular mechanisms of peritoneal inflammation

Toll-like receptor ligand-mediated signaling pathways

TLRs can be expressed by non-classical immune cells, such as ECs and MCs. TLRs expressed by MCs play an important role in peritoneal inflammation. Human MCs express Gram-positive and Gram-negative TLRs, including TLR1, TLR2, and TRL5 but not TLR4 [26]. When binding to ligands, TLRs induce MyD88-dependent signaling pathway, which leads to the activation of downstream molecules of ERK1/2, p38 MAPKs, NF-kB, and c-Jun N-terminal kinase (JNK) and induction of proinflammatory cytokines, including TNF-a and IL-6 (Fig. 2) [27].

The activation of NF-kB typically involves phosphorylation of nuclear factor of k light polypeptide gene enhancer in B cell inhibitor (IkB) by the inhibitor of NF-kB kinase complex. The phosphorylation of IkB leads to its ubiquitylation and subsequent degradation, which allows the release of NF-kB and its translocation to the nucleus. Furthermore, MAPKs pass the signals to p38 and JNKs to activate cAMP-responsive element and activator protein-1 transcription factors inducing the transcription of inflammatory cytokines and chemokines [28].

In MCs, inhibition of the ERK1/2 pathway attenuated EMT, which was mediated by TGF-b1 in combination with IL-1b. Moreover, blockade of ERK1/2 promoted mesenchymal-to-epithelial transition in MCs that had undergone EMTin vivo [29]. The p38 MAPK pathway plays a role in the control of cell differentiation and apoptosis [30]. p38 activity maintains E-cadherin expression in MCs, and the p38 MAPK pathway modulates the mesenchymal conversion of MCs by a feedback mechanism based on the downregulation of 25ERK1/2 and TAK-1/NF-kB activities [31]. NF-kB controls Snail expression and cooperates with Snail in inducing fibronectin transcription [32,33]. Inhibition of NF-kB partially reverses EMT in MCs collected from PD patients [29]. Interestingly, NF-kB nuclear translocation and transcriptional activity are enhanced by MEK-ERK1/2 pathways but inhibited by the p38 MAPK pathway [31]. Similar to ERK1/2 inhibition, JNK inhibition is also associated with E-cadherin maintenance and blockade of EMT in MCs [33,34].

NOD-like receptor protein 3/interleukin-1b signaling

Recently, the role of inflammasomes in peritonitis has attracted the attention of researchers. We demonstrated that NOD-like receptor protein 3 (NLRP3) inflammasome mediated contrast-induced acute kidney injury through modulating the apoptotic pathway, which provided a potential therapeutic target for its treatment [35].

Hautem and colleagues demonstrated that the NLRP3 inflammasome is activated during peritonitis in patients on PD and in mouse model of peritonitis [36]. Activated NLRP3 is directly involved in PD-related inflammatory response, which leads to structural and functional impairment in the PM. An early report demonstrated that the IL-1b pathway was involved in enhancing the EMT of MCs because an additive morphologic effect of TGFb1 in combination with IL-1b could be observed in MCs [37]. In co-treatment with TGFb1 and IL-1b, EMT was enhanced in primary MCs [38]. NLRP3 knockout and administration of IL-1b receptor antagonist anakinra could treat peritoneal morphologic alterations and transport defects during acute peritonitis, which revealed novel therapeutic perspectives for peritonitis in PD patients [36]. When exposed to high glucose-based PD solutions, human peritoneal MCs produce increased ROS, which further triggers NLRP3 inflammasome activation and leads to increased IL-1b secretion (Fig. 2) [39]. These data provide a basis for further development of therapeutic strategy for protecting the peritoneum membrane during long-term PD.

Angiogenesis

Angiogenesis and vasculopathy are observed in the peritoneum of patients in long-term PD, and the degree of vascularization correlates with the area of fibrotic tissue, suggesting the involvement of angiogenesis in the progression of peritoneal fibrosis.

Angiogenesis is defined as the formation of new blood vessels. Catheterization, uremia, glucose, GDPs, AGEs, and peritonitis are risk factors that contribute to angiogenesis. In a uremic rat model, we demonstrated peritoneal angiogenesis and fibrosis following PD therapy, which is accompanied with increased expression of angiopoietin (Ang)-2 and reduced expression of Ang receptor Tie2 [40]. The significance of Ang-2/Tie2 signaling in peritoneal angiogenesis will be discussed in depth later. VEGF possesses a dominant role in mediating EC sprouting, migration, and network formation. Effluent VEGF concentration increases along with PD duration [41], and it decreases when patients change to glucose-free PDF, which indicates that high glucose is associated with increased production of VEGF [42]. Moreover, AGEs and IL-6 can promote the production of VEGF by MCs. The molecular mechanisms of VEGF in mediating peritoneal angiogenesis will be discussed in the following text.

Many other factors are involved in the formation of new blood vessels. Prostaglandin E2 is involved in angiogenesis by enhancing EC migration and contributing to cell survival [43]. MCP-1 has been shown to be involved in angiogenesis. Stimulating ECs with MCP-1 enhances cell migration and the induction of angiogenesis-related genes which resulted in capillary-like tube formation [44]. Overexpression of IL-1b leads to sustained angiogenesis and submesothelial thickening and fibrosis in vivo [45]. In addition, IL-1b increases vessel-like structures through enhancing VEGF production and downregulation of Ang-1 and augments EC proliferation [46]. IL-6 stimulates endothelial progenitor cell proliferation and migration, and IL-6 trans-signaling induces VEGF synthesis. However, IL-8 enhances EC survival, proliferation, and capillary tube formation [20,4749]. TNF-a causes capillary-like blood vessel formation induction in vitro and in vivo [50].

Selective molecular mechanisms of angiogenesis

Vascular endothelial growth factor signaling

VEGF belongs to a gene family that includes VEGFA, placental growth factor, VEGFB, VEGFC, and VEGFD. VEGF is a key player in peritoneal angiogenesis. Bioincompatible PD solution, growth factors (epidermal growth factor and TGF-b1), and inflammatory cytokines (IL-1a, IL-6) are major inducers of VEGF production instead of release [51,52].

Even though the molecular mechanism of VEGF-inducing angiogenesis is not fully explained, inhibiting the expression of VEGF could reduce pathological angiogenesis in a wide variety of tumor models [53]. Recently, in a mice PD model, inhibiting the synthesis of VEGF reduced angiogenesis and lymphangiogenesis in the peritoneum [54]. Inhibition of VEGF expression or VEGF signaling can prevent angiogenesis in the omentum and parietal peritoneum in PD patients [43,53].

VEGFA binds two related receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2, which are expressed on the cell surface of vascular ECs. VEGFR-1 signaling is involved in the release of vascular-bed specific growth factors, and VEGFR-2 signaling is a major mediator of EC proliferation, migration, survival, and angiogenesis. When binding to VEGFR-2, VEGFA can induce the phosphorylation of PL C-g, phosphatidylinositol-3-kinase (PI3K), MAPK, and the Src family, which then mediates the proliferation, migration, survival, and angiogenesis in ECs (Fig. 2) [55]. VEGFC and VEGFD bind to VEGFR-3, which is a member of the same family of RTKs, modulating angiogenesis mostly in lymphatic ECs [56].

Angiopoietin-2/Tie2 signaling

Angs belong to a family of growth factors that are critically involved in blood vessel formation during developmental and pathological angiogenesis.

Ang-1 and Ang-2 are best characterized among the Ang family [57]. They bind to Tie receptors with similar affinities and play a vital role in angiogenesis (Fig. 2). Tie receptors, including Tie1 and Tie2, were originally described as members of an orphan RTK subfamily. Tie1, as an orphan receptor, regulates the effects of Ang-1 and Ang-2 on Tie2in vitro and in vivo, which can both negatively and positively regulate Tie2 signaling during angiogenesis, depending on the cellular context [58]. For example, in the presence of Tie1, Ang-2 becomes a Tie2 antagonist under inflammatory conditions, whereas it acts as a Tie2 agonist under pathogen-free conditions, although the precise mechanism by which Tie1 alters Ang/Tie2 signaling is still unclear [58].

Ang-1 is the first identified Tie2 ligand and responsible for baseline Tie2 activation in resting state [59]. Ang-2 was originally described as a competitive antagonist of Ang-1/Tie2 signaling. It acts as a context-dependent agonist/antagonist for Tie2 [60]. For instance, inflammation shifts the effects of Ang-2 from agonist to antagonist [60]. Activated Tie2 receptor stimulates a number of intracellular signaling pathways, including PI3K/Akt, MAPK, and ABIN-2 (A20 binding inhibitor of NF-kB-2) pathways [61]. Engagement of Tie2 by Ang-1 is responsible for receptor phosphorylation and the induction of survival signals in ECs, mediating vessel sprouting and migration. Ang-1 can stabilize the interactions between endothelial and pericytes/smooth muscle cells. In Ang-1 mutant mice, the association of ECs with support cells is evidently decreased [62,63]. Collaborating functions have been described for Ang-2. Ang-2 can be upregulated by VEGF or hypoxia, which results in vessel destabilization. Binding of Tie2 by Ang-2 antagonizes receptor phosphorylation in transgenic animals, thereby disrupting contacts between endothelial and peri-endothelial support and smooth muscle cells. This process is fundamental for the initiation of vessel sprouting or regression [43].

Our previous study investigated the relationship between Ang/Tie2 and peritoneal angiogenesis. We demonstrated increased levels of Ang-2 and Tie2 in conditions of uremia and PD therapy, which were correlated with peritoneal angiogenesis and functional deterioration [64]. Consistent with our findings, Zareieet al. showed an increase in the number of blood vessels in the omentum, mesentery, and parietal peritoneum upon PD treatment [65]. Furthermore, supplementation with sTie2/Fc partially inhibited tube formation and migration in human omental tissue microvascular ECs [60]. The findings were further confirmed in a rat PD model [66,67]. In addition, Ang-2 levels are associated with systemic markers/mediators of micro-inflammation, and elevated Ang-2 levels are strong predictors of long-term mortality in CKD patients, independent of arterial stiffness index or vascular calcification [67].

Preventive strategies for peritoneal fibrosis

Strategies targeting peritoneal inflammation

As peritoneal inflammation is a main mechanism involved in peritoneal fibrosis, its inhibition may be effective for preventing peritoneum damage during long-term PD (Fig. 2).

Blockade of Toll-like receptors

Given the fundamental role of TLRs in peritoneal inflammation, Raby and colleagues assessed the potential effect of blocking TLRs in PD-associated fibrosis. They found that proinflammatory genes were markedly downregulated by soluble TLR2, a negative modulator of TLRs. Meanwhile, Gram-positive and Gram-negative bacteria-induced fibrosisin vivo was reduced, and fibrotic gene expressions were inhibited. These findings revealed the significance of peritoneal TLR2 and TLR4 in PD-associated fibrosis and suggested a novel therapeutic strategy against peritoneal fibrosis [68,69].

Macrophage depletion

As macrophages are major inducers of proinflammatory factors, targeting infiltrating macrophages can be a potential therapeutic intervention. When liposome-encapsulated clodronate was administrated in rat PD model to deplete macrophages, peritoneal fibrosis was attenuated significantly, with decrease in the number of cytokeratin and staineda-smooth muscle actin (a-SMA)-positive MCs, and reduced expressions of TGF-b1 and collagen types I and II [70].

Biocompatible peritoneal dialysis solutions

Biocompatible PD solutions with physiologic pH, bicarbonate–lactate buffers, and lower GDPs using non-glucose osmotic agents such as amino acid and icodextrin have been developed in recent years. Neutral pH and low GDP solution were associated with significant improvement in the effluent biomarkers of PM integrity and peritoneal UF, such as CA125, hepatocyte growth factor, and IL-6, and decreased effluent circulating AGE levels and markers of EMT in MCs from PD patients [71,72]. The plasma and dialysate IL-6 and TGF-b1 levels were decreased in CAPD patients treated with biocompatible PD solutions. Meanwhile, inflammation and high peritoneal small-solute transport rate have also been improved [73].

Others

Alanyl-glutamine (Ala-Gln), a dipeptide with immunomodulatory effects, improved resistance of MCs to PD fluids. Supplementation of PD fluid with Ala-Gln resulted in reduced peritoneal thickness,a-SMA expression, and angiogenesis in rat and mouse PD models. The addition of Ala-Gln also attenuated IL-17 expression induced by PD, reflected by substantial reduction or normalization of peritoneal levels of IL-17, TGF-b1, and IL-6 [74].

Additionally, immunosuppressants (glucocorticoid, azathioprine, and cyclosporine) prevented peritoneal fibrosis through downregulation of cytokine production and infiltration of macrophages in rat encapsulating peritoneal sclerosis models [75]. Mycophenolate mofetil and mizoribine showed similar inhibitory effects on peritoneal fibrosis [76,77].

Strategies targeting angiogenesis

Tyrosine kinase inhibitor

Sunitinib is a tyrosine kinase inhibitor and is involved in the inhibition of VEGF signaling. Tapiawala and colleagues showed that sunitinib prevented new vessel formation in the omentum and mesentery after five weeks of PD treatment in rats [78]. Furthermore, it significantly abrogated peritoneal overexpression of TGF-b1, MCP-1, and VEGF in encapsulated peritoneal sclerosis rats [79]. Similarly, VEGF blockade and EGFR inhibitor inhibited angiogenesis and suppressed the progression of peritoneal fibrosis in rat PD model [80,81].

Celecoxib

Cyclooxygenase (COX) enzymes are involved in prostaglandin synthesis. COX-2 is known to be an angiogenesis stimulator by upregulating VEGF mRNA transcription and protein production [51]. Furthermore, it enhances the production of prostaglandin E2 [52]. Celecoxib, a COX-2 inhibitor, prevented PD-induced angiogenesis in the omentum and parietal peritoneum of PD rats. Although prostaglandin E2 levels were reduced, VEGF levels were not affected by celecoxib. Most importantly, UF was restored upon celecoxib treatment [82]. Therefore, celecoxib may be effective in the prevention of peritoneal angiogenesis in PD patients.

TNP-470

TNP-470 is a known angiogenesis inhibitor by inhibiting EC proliferation [83]. It shows effects in attenuating peritoneal fibrosis, indicated by reduction of blood vessels and VEGF-expressing cells and suppression of myofibroblast proliferation [83].

Biocompatible peritoneal dialysis solutions

Hekking et al.demonstrated reduced neovascularization and fibrosis in PD rats after 9–10 weeks treatment of bicarbonate/lactate-buffered PDF compared with lactate-buffered PDF [84]. Compared with conventional solution, neutral pH and low-GDP-containing PD solution was associated with higher levels of urine output and residual renal function after 12 months [85,86]. However, because it still uses glucose as osmotic agent, the density of blood capillaries was significantly increased compared with biocompatible solution.

Icodextrin improves UF compared with glucose-based solutions, resulting in better control of fluid balance [87]. However, it showed no apparent benefits in preserving residual renal function and peritoneal abilities after two years [88]. Amino acid-based solution showed better effect in the preservation of MCs [82]. However, markers of angiogenesis or predictors of morphological changes of PM were not detected in this study [89]. Peritoneal biopsies from patients receiving biocompatible PD solutions showed less hyalinizing vasculopathy and submesothelial thickness and better MC preservation compared with patients treated with conventional PD solutions [90]. After treatment with biocompatible PD solutions, the plasma and dialysate VEGF and TGF-b1 levels were significantly decreased, and peritoneal angiogenesis and high peritoneal small-solute transport rate were also improved in CAPD patients [73].

Others

Rapamycin shows antifibrotic and antiproliferative effects on blood and lymphatic vessels in the peritoneum [54]. It also inhibits EMT in MCs [91]. Fasudil, a Rho-kinase inhibitor, prevented peritoneal fibrosis and angiogenesis by downregulating the expression of TGF-β1, fibronectin, α-SMA, and VEGF [91,92]. Endostatin also demonstrated antiangiogenic and antifibrotic effects in mouse PD model [93]. Bosentan and macitentan, vasoconstrictor peptide endothelin-1 receptor antagonists, markedly attenuated PD-induced EMT, fibrosis, angiogenesis, and peritoneal functional decline [94]. Sulodexide manifested antiangiogenic effects and attenuated peritoneal fibrosis [95].

Conclusions

Peritoneal fibrosis is a major complication in long-term PD patients, which leads to high cost of health care. Peritoneal inflammation and angiogenesis are the main mechanisms involved in the pathogenesis of peritoneal fibrosis. Many attempts have been made to investigate the molecular mechanisms involved in peritoneal inflammation and angiogenesis, and a number of therapeutic strategies have been suggested to preserve the PM. However, their incidence remains high. Thus, more efforts are needed to better elucidate the molecular mechanisms in the peritoneum in response to inflammatory/proangiogenic signals during PD.

References

[1]

Nagy JA. Peritoneal membrane morphology and function. Kidney Int Suppl 199656: S2–S11

[2]

Li PKChow  KMVan de Luijtgaarden  MWJohnson DW Jager KJ Mehrotra R Naicker S Pecoits-Filho R Yu XQLameire  N. Changes in the worldwide epidemiology of peritoneal dialysis. Nat Rev Nephrol 201713(2): 90–103

[3]

Loureiro JGónzalez-Mateo  GJimenez-Heffernan JSelgas R López-Cabrera M Aguilera Peralta A. Are the mesothelial-to-mesenchymal transition, sclerotic peritonitis syndromes, and encapsulating peritoneal sclerosis part of the same process? Int J Nephrol 20132013: 263285160;PMID: 23476771

[4]

Garosi GCappelletti  FDi Paolo N . Fibrosis and sclerosis: different disorders or different stages? Contrib Nephrol 2006150: 62–69

[5]

Williams JDCraig  KJTopley N Von Ruhland C Fallon M Newman GR Mackenzie RK Williams GT ; Peritoneal Biopsy Study Group. Morphologic changes in the peritoneal membrane of patients with renal disease. J Am Soc Nephrol 200213(2): 470–479

[6]

Kaneko KHamada  CTomino Y . Peritoneal fibrosis intervention. Perit Dial Int 200727(Suppl 2): S82–S86

[7]

Schilte MNCelie  JWWee PM Beelen RH van den Born J . Factors contributing to peritoneal tissue remodeling in peritoneal dialysis. Perit Dial Int 200929(6): 605–617

[8]

Baroni GSchuinski  Ade Moraes TP Meyer F Pecoits-Filho R . Inflammation and the peritoneal membrane: causes and impact on structure and function during peritoneal dialysis. Mediators Inflamm 20122012: 912595160;PMID: 22547910

[9]

Aroeira LSAguilera  ASánchez-Tomero JABajo MA del Peso G Jiménez-Heffernan JA Selgas R López-Cabrera M . Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J Am Soc Nephrol 200718(7): 2004–2013

[10]

Bertoli SVBarone  MTVago L Bonetto S De Vecchi A Scalamogna A Barbiano di Belgiojoso G. Changes in peritoneal membrane after continuous ambulatory peritoneal dialysis—a histopathological study. Adv Perit Dial 199915: 28–31

[11]

Devuyst OMargetts  PJTopley N . The pathophysiology of the peritoneal membrane. J Am Soc Nephrol 201021(7): 1077–1085

[12]

Yung SChan  TM. Intrinsic cells: mesothelial cells—central players in regulating inflammation and resolution. Perit Dial Int 200929(Suppl 2): S21–S27

[13]

Topley NJörres  ALuttmann W Petersen MM Lang MJ Thierauch KH Müller C Coles GA Davies M Williams JD . Human peritoneal mesothelial cells synthesize interleukin-6: induction by IL-1β and TNFα. Kidney Int 199343(1): 226–233

[14]

Kato SYuzawa  YTsuboi N Maruyama S Morita Y Matsuguchi T Matsuo S . Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4. J Am Soc Nephrol 200415(5): 1289–1299

[15]

López-Cabrera M. Mesenchymal conversion of mesothelial cells is a key event in the pathophysiology of the peritoneum during peritoneal dialysis. Adv Med 20142014: 473134 doi: 10.1155/2014/473134

[16]

Di Paolo NSacchi  G. Atlas of peritoneal histology. Perit Dial Int 200020(Suppl 3): S5–S96

[17]

Boulanger EWautier  MPWautier JL Boval B Panis Y Wernert N Danze PM Dequiedt P . AGEs bind to mesothelial cells via RAGE and stimulate VCAM-1 expression. Kidney Int 200261(1): 148–156

[18]

De Vriese AS. The John F. Maher Recipient Lecture 2004: rage in the peritoneum. Perit Dial Int 200525(1): 8–11

[19]

Jiang NZhang  ZFang W Qian JMou  SNi Z . High peritoneal glucose exposure is associated with increased incidence of relapsing and recurrent bacterial peritonitis in patients undergoing peritoneal dialysis. Blood Purif 201540(1): 72–78

[20]

Yang XLin  AJiang N Yan HNi  ZQian J Fang W. Interleukin-6 trans-signalling induces vascular endothelial growth factor synthesis partly via Janus kinases-STAT3 pathway in human mesothelial cells. Nephrology (Carlton) 201722(2): 150–158

[21]

Yang XZhang  HHang Y Yan HLin  AHuang J Ni ZQian  JFang W . Intraperitoneal interleukin-6 levels predict peritoneal solute transport rate: a prospective cohort study. Am J Nephrol 201439(6): 459–465

[22]

Ding LShao  XCao L Fang WYan  HHuang J Gu AYu  ZQi C Chang X Ni Z. Possible role of IL-6 and TIE2 gene polymorphisms in predicting the initial high transport status in patients with peritoneal dialysis: an observational study. BMJ Open 20166(10): e012967

[23]

Feurino LWZhang  YBharadwaj U Zhang R Li FFisher  WEBrunicardi FC Chen CYao  QMin L . IL-6 stimulates Th2 type cytokine secretion and upregulates VEGF and NRP-1 expression in pancreatic cancer cells. Cancer Biol Ther 20076(7): 1096–1100

[24]

Park JHKim  YGShaw M Kanneganti TD Fujimoto Y Fukase K Inohara N Núñez G . Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. J Immunol 2007179(1): 514–521

[25]

Lai KNTang  SCLeung JC . Mediators of inflammation and fibrosis. Perit Dial Int 200727(Suppl 2): S65–S71

[26]

Colmont CSRaby  ACDioszeghy V Lebouder E Foster TL Jones SA Labéta MO Fielding CA Topley N . Human peritoneal mesothelial cells respond to bacterial ligands through a specific subset of Toll-like receptors. Nephrol Dial Transplant 201126(12): 4079–4090

[27]

Leifer CAMedvedev  AE. Molecular mechanisms of regulation of Toll-like receptor signaling. J Leukoc Biol 2016100(5): 927–941

[28]

Achek AYesudhas  DChoi S . Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 201639(8): 1032–1049

[29]

Strippoli RBenedicto  IPérez Lozano  MLCerezo A López-Cabrera M del Pozo MA . Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-κB/Snail1 pathway. Dis Model Mech 20081(4-5): 264–274160;doi:10.1242/dmm.001321

[30]

Cuenda ARousseau  Sp38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 20071773:1358–1375

[31]

Strippoli RBenedicto  IForonda M Perez-Lozano ML Sánchez-Perales S López-Cabrera M Del Pozo MÁ . p38 maintains E-cadherin expression by modulating TAK1-NF-κB during epithelial-to-mesenchymal transition. J Cell Sci 2010123(24): 4321–4331

[32]

Zhou QYang  MLan H Yu X. miR-30a negatively regulates TGF-b1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol 2013183(3): 808–819

[33]

Zhang KZhang  HZhou X Tang WB Xiao LLiu  YHLiu H Peng YM Sun LLiu  FY. miRNA 589 regulates epithelial mesenchymal transition in human peritoneal mesothelial cells. J Biomed Biotechnol 20122012: 673096

[34]

Liu QMao  HNie J Chen WYang  QDong X Yu X. Transforming growth factor β1 induces epithelial-mesenchymal transition by activating the JNK-Smad3 pathway in rat peritoneal mesothelial cells. Perit Dial Int 200828(Suppl 3): S88–S95

[35]

Shen JWang  LJiang N Mou SZhang  MGu L Shao XWang  QQi C Li SWang  WChe X Ni Z. NLRP3 inflammasome mediates contrast media-induced acute kidney injury by regulating cell apoptosis. Sci Rep 20166(1): 34682

[36]

Hautem NMorelle  JSow A Corbet C Feron O Goffin E Huaux F Devuyst O. The NLRP3 inflammasome has a critical role in peritoneal dialysis-related peritonitis. J Am Soc Nephrol 201728(7):2038–2052. 160;PMID: 28193826

[37]

Yáñez-Mó M Lara-Pezzi E Selgas R Ramírez-Huesca M Domínguez-Jiménez CJiménez-Heffernan  JAAguilera A Sánchez-Tomero JA Bajo MA Alvarez V Castro MA del Peso G Cirujeda A Gamallo C Sánchez-Madrid F López-Cabrera M . Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003348(5): 403–413

[38]

Strippoli RMoreno-Vicente  RBattistelli C Cicchini C Noce VAmicone  LMarchetti A Del Pozo MA Tripodi M . Molecular mechanisms underlying peritoneal EMT and fibrosis. Stem Cells Int 20162016: 3543678

[39]

Wu JLi  XZhu G Zhang Y He MZhang  J. The role of Resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp Cell Res 2016341(1): 42–53

[40]

Yuan JFang  WNi Z Dai HLin  ACao L Qian J. Peritoneal morphologic changes in a peritoneal dialysis rat model correlate with angiopoietin/Tie-2. Pediatr Nephrol 200924(1): 163–170

[41]

Zweers MMStruijk  DGSmit W Krediet RT . Vascular endothelial growth factor in peritoneal dialysis: a longitudinal follow-up. J Lab Clin Med 2001137(2): 125–132

[42]

Mortier SFaict  DLameire NH De Vriese AS . Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int 200567(4): 1559–1565

[43]

Stavenuiter AWSchilte  MNTer Wee PM Beelen RH . Angiogenesis in peritoneal dialysis. Kidney Blood Press Res 201134(4): 245–252

[44]

Niu JAzfer  AZhelyabovska O Fatma S Kolattukudy PE . Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem 2008283(21): 14542–14551

[45]

Margetts PJKolb  MYu L Hoff CM Holmes CJ Anthony DC Gauldie J . Inflammatory cytokines, angiogenesis, and fibrosis in the rat peritoneum. Am J Pathol 2002160(6): 2285–2294

[46]

Rosell AArai  KLok J He TGuo  SNavarro M Montaner J Katusic ZS Lo EH. Interleukin-1β augments angiogenic responses of murine endothelial progenitor cells in vitro. J Cereb Blood Flow Metab 200929(5): 933–943 PMID:19240740 

[47]

Catar RWitowski  JZhu N Lücht C Derrac Soria A Uceda Fernandez J Chen LJones  SAFielding CA Rudolf A Topley N Dragun D Jörres A . IL-6 trans-signaling links inflammation with angiogenesis in the peritoneal membrane. J Am Soc Nephrol 201728(4): 1188–1199

[48]

Fan YYe  JShen F Zhu YYeghiazarians  YZhu W Chen YLawton  MTYoung WL Yang GY . Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab 200828(1): 90–98

[49]

Li ADubey  SVarney ML Dave BJ Singh RK . IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003170(6): 3369–3376

[50]

Leibovich SJPolverini  PJShepard HM Wiseman DM Shively V Nuseir N . Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α. Nature 1987329(6140): 630–632

[51]

De Vriese ASTilton  RGStephan CC Lameire NH . Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J Am Soc Nephrol 200112(8): 1734–1741

[52]

Neufeld GCohen  TGengrinovitch S Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 199913(1): 9–22

[53]

Roskoski R Jr . Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res 2017120: 116–132

[54]

González-Mateo GT Aguirre AR Loureiro J Abensur H Sandoval P Sánchez-Tomero JA delPeso G Jiménez-Heffernan JA Ruiz-Carpio V Selgas R López-Cabrera M Aguilera A Liappas G . Rapamycin protects from type I peritoneal membrane failure inhibiting the angiogenesis, lymphangiogenesis, and Endo-MT. Biomed Res Int 20152015: 989560 doi: 10.1155/2015/989560

[55]

Evans I. An overview of VEGF-mediated signal transduction. Methods Mol Biol 20151332: 91–120

[56]

Aroeira LSLara-Pezzi  ELoureiro J Aguilera A Ramírez-Huesca M González-Mateo G Pérez-Lozano ML Albar-Vizcaíno P Bajo MA del Peso G Sánchez-Tomero JA Jiménez-Heffernan JA Selgas R López-Cabrera M . Cyclooxygenase-2 mediates dialysate-induced alterations of the peritoneal membrane. J Am Soc Nephrol 200920(3): 582–592

[57]

Maisonpierre PCSuri  CJones PF Bartunkova S Wiegand SJ Radziejewski C Compton D McClain J Aldrich TH Papadopoulos N Daly TJ Davis S Sato TN Yancopoulos GD . Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997277(5322): 55–60

[58]

Kim MAllen  BKorhonen EA Nitschké M Yang HW Baluk P Saharinen P Alitalo K Daly CThurston  GMcDonald DM . Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest 2016126(9): 3511–3525

[59]

Mueller SBKontos  CD. Tie1: an orphan receptor provides context for angiopoietin-2/Tie2 signaling. J Clin Invest 2016126(9): 3188–3191

[60]

Korhonen EALampinen  AGiri H Anisimov A Kim MAllen  BFang S D’Amico G Sipilä TJ Lohela M Strandin T Vaheri A Ylä-Herttuala S Koh GYMcDonald  DMAlitalo K Saharinen P . Tie1 controls angiopoietin function in vascular remodeling and inflammation. J Clin Invest 2016126(9): 3495–3510

[61]

Fagiani EChristofori  G. Angiopoietins in angiogenesis. Cancer Lett 2013328(1): 18–26

[62]

Reiss Y. Angiopoietins. Recent Results Cancer Res 2010180: 3–13

[63]

Fukuhara SSako  KMinami T Noda KKim  HZKodama T Shibuya M Takakura N Koh GYMochizuki  N. Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1. Nat Cell Biol 200810(5): 513–526

[64]

Yuan JFang  WLin A Ni ZQian  J. Angiopoietin-2/Tie2 signaling involved in TNF-a induced peritoneal angiogenesis. Int J Artif Organs 201235(9): 655–662

[65]

Zareie MHekking  LHWelten AG Driesprong BA Schadee-Eestermans IL Faict D Leyssens A Schalkwijk CG Beelen RH ter Wee PM van den Born J . Contribution of lactate buffer, glucose and glucose degradation products to peritoneal injury in vivo. Nephrol Dial Transplant 200318(12): 2629–2637

[66]

Xiao JGuo  JLiu XX Zhang XX Li ZZZhao  ZZLiu ZS . Soluble Tie2 fusion protein decreases peritoneal angiogenesis in uremic rats. Mol Med Rep 20138(1): 267–271

[67]

David SJohn  SGJefferies HJ Sigrist MK Kümpers P Kielstein JT Haller H McIntyre CW . Angiopoietin-2 levels predict mortality in CKD patients. Nephrol Dial Transplant 201227(5): 1867–1872

[68]

Raby ACColmont  CSKift-Morgan A Köhl J Eberl M Fraser D Topley N Labéta MO . Toll-like receptors 2 and 4 are potential therapeutic targets in peritoneal dialysis-associated fibrosis. J Am Soc Nephrol 201728(2): 461–478

[69]

Achek AYesudhas  DChoi S . Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 201639(8): 1032–1049

[70]

Kushiyama TOda  TYamada M Higashi K Yamamoto K Oshima N Sakurai Y Miura S Kumagai H . Effects of liposome-encapsulated clodronate on chlorhexidine gluconate-induced peritoneal fibrosis in rats. Nephrol Dial Transplant 201126(10): 3143–3154

[71]

Bajo MADel Peso  GTeitelbaum I . Peritoneal membrane preservation. Semin Nephrol 201737(1): 77–92

[72]

Qayyum AOei  ELPaudel K Fan SL. Increasing the use of biocompatible, glucose-free peritoneal dialysis solutions. World J Nephrol 20154(1): 92–97

[73]

Pecoits-Filho RAraújo  MRLindholm B Stenvinkel P Abensur H Romão JE Jr Marcondes M De Oliveira AH Noronha IL . Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol Dial Transplant 200217(8): 1480–1486

[74]

Ferrantelli ELiappas  GVila Cuenca M Keuning ED Foster TL Vervloet MG Lopéz-Cabrera M Beelen RH . The dipeptide alanyl-glutamine ameliorates peritoneal fibrosis and attenuates IL-17 dependent pathways during peritoneal dialysis. Kidney Int 201689(3): 625–635

[75]

Bozkurt DSipahi  SCetin P Hur EOzdemir  OErtilav M Sen SDuman  S. Does immunosuppressive treatment ameliorate morphology changes in encapsulating peritoneal sclerosis? Perit Dial Int 200929(Suppl 2): S206–S210

[76]

Hur EBozkurt  DTimur O Bicak S Sarsik B Akcicek F Duman S . The effects of mycophenolate mofetil on encapsulated peritoneal sclerosis model in rats. Clin Nephrol 201277(1): 1–7

[77]

Takahashi STaniguchi  YNakashima A Arakawa T Kawai T Doi SIto  TMasaki T Kohno N Yorioka N . Mizoribine suppresses the progression of experimental peritoneal fibrosis in a rat model. Nephron, Exp Nephrol 2009112(2): e59–e69

[78]

Tapiawala SNBargman  JMOreopoulos DG Simons M . Prolonged use of the tyrosine kinase inhibitor in a peritoneal dialysis patient with metastatic renal cell carcinoma: possible beneficial effects on peritoneal membrane and peritonitis rates. Int Urol Nephrol 200941(2): 431–434

[79]

Bozkurt DSarsik  BHur E Ertilav M Karaca B Timur O Bicak S Akcicek F Duman S . A novel angiogenesis inhibitor, sunitinib malate, in encapsulating peritoneal sclerosis. J Nephrol 201124(3): 359–365

[80]

Loureiro JSchilte  MAguilera A Albar-Vizcaíno P Ramírez-Huesca M Pérez-Lozano ML González-Mateo G Aroeira LS Selgas R Mendoza L Ortiz A Ruíz-Ortega M van den Born J Beelen RH López-Cabrera M . BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol Dial Transplant 201025(4): 1098–1108

[81]

Peng WDou  XHao W Zhou QTang  RNie J Lan HYYu  X. Smad7 gene transfer attenuates angiogenesis in peritoneal dialysis rats. Nephrology (Carlton) 201318(2): 138–147

[82]

Fabbrini PSchilte  MNZareie M ter Wee PM Keuning ED Beelen RH van den Born J . Celecoxib treatment reduces peritoneal fibrosis and angiogenesis and prevents ultrafiltration failure in experimental peritoneal dialysis. Nephrol Dial Transplant 200924(12): 3669–3676

[83]

Yoshio YMiyazaki  MAbe K Nishino T Furusu A Mizuta Y Harada T Ozono Y Koji TKohno  S. TNP-470, an angiogenesis inhibitor, suppresses the progression of peritoneal fibrosis in mouse experimental model. Kidney Int 200466(4): 1677–1685

[84]

Hekking LHZareie  MDriesprong BA Faict D Welten AG de Greeuw I Schadee-Eestermans IL Havenith CE van den Born J ter Wee PM Beelen RH . Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J Am Soc Nephrol 200112(12): 2775–2786

[85]

Johnson DWBrown  FGClarke M Boudville N Elias TJ Foo MWJones  BKulkarni H Langham R Ranganathan D Schollum J Suranyi MG Tan SHVoss  D; balANZ Trial Investigators. The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial. Nephrol Dial Transplant 201227(12): 4445–4453

[86]

Seo EYAn  SHCho JH Suh HSPark  SHGwak H Kim YLHa  H. Effect of biocompatible peritoneal dialysis solution on residual renal function: a systematic review of randomized controlled trials. Perit Dial Int 201434(7): 724–731

[87]

Lin AQian  JLi X Yu XLiu  WSun Y Chen NMei  C; Icodextrin National Multi-center Cooperation Group.Randomized controlled trial of icodextrin versus glucose containing peritoneal dialysis fluid. Clin J Am Soc Nephrol 20094(11): 1799–1804

[88]

Takatori YAkagi  SSugiyama H Inoue J Kojo SMorinaga  HNakao K Wada JMakino  H. Icodextrin increases technique survival rate in peritoneal dialysis patients with diabetic nephropathy by improving body fluid management: a randomized controlled trial. Clin J Am Soc Nephrol 20116(6): 1337–1344

[89]

le Poole CYWelten  AGWeijmer MC Valentijn RM van Ittersum FJ ter Wee PM . Initiating CAPD with a regimen low in glucose and glucose degradation products, with icodextrin and amino acids (NEPP) is safe and efficacious. Perit Dial Int 200525(Suppl 3): S64–S68

[90]

del Peso GJiménez-Heffernan  JASelgas R Remón C Ossorio M Fernández-Perpén ASánchez-Tomero JACirugeda A de Sousa E Sandoval P Díaz R López-Cabrera M Bajo MA . Biocompatible dialysis solutions preserve peritoneal mesothelial cell and vessel wall integrity. a case-control study on human biopsies. Perit Dial Int 201636(2): 129–134

[91]

Washida NWakino  STonozuka Y Homma K Tokuyama H Hara YHasegawa  KMinakuchi H Fujimura K Hosoya K Hayashi K Itoh H. Rho-kinase inhibition ameliorates peritoneal fibrosis and angiogenesis in a rat model of peritoneal sclerosis. Nephrol Dial Transplant 201126(9): 2770–2779

[92]

Peng WZhou  QAo X Tang RXiao  Z. Inhibition of Rho-kinase alleviates peritoneal fibrosis and angiogenesis in a rat model of peritoneal dialysis. Ren Fail 201335(7): 958–966

[93]

Tanabe KMaeshima  YIchinose K Kitayama H Takazawa Y Hirokoshi K Kinomura M Sugiyama H Makino H . Endostatin peptide, an inhibitor of angiogenesis, prevents the progression of peritoneal sclerosis in a mouse experimental model. Kidney Int 200771(3): 227–238

[94]

Busnadiego OLoureiro-Álvarez  JSandoval P Lagares D Dotor J Pérez-Lozano ML López-Armada MJ Lamas S López-Cabrera M Rodríguez-Pascual F . A pathogenetic role for endothelin-1 in peritoneal dialysis-associated fibrosis. J Am Soc Nephrol 201526(1): 173–182

[95]

Pletinck AVan Landschoot  MSteppan S Laukens D Passlick-Deetjen J Vanholder R Van Biesen W . Oral supplementation with sulodexide inhibits neo-angiogenesis in a rat model of peritoneal perfusion. Nephrol Dial Transplant 201227(2): 548–556

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (263KB)

3039

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/