Non-genetic mechanisms of diabetic nephropathy

Qiuxia Han, Hanyu Zhu, Xiangmei Chen, Zhangsuo Liu

PDF(403 KB)
PDF(403 KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (3) : 319-332. DOI: 10.1007/s11684-017-0569-9
REVIEW
REVIEW

Non-genetic mechanisms of diabetic nephropathy

Author information +
History +

Abstract

Diabetic nephropathy (DN) is one of the most common microvascular complications in diabetes mellitus patients and is characterized by thickened glomerular basement membrane, increased extracellular matrix formation, and podocyte loss. These phenomena lead to proteinuria and altered glomerular filtration rate, that is, the rate initially increases but progressively decreases. DN has become the leading cause of end-stage renal disease. Its prevalence shows a rapid growth trend and causes heavy social and economic burden in many countries. However, this disease is multifactorial, and its mechanism is poorly understood due to the complex pathogenesis of DN. In this review, we highlight the new molecular insights about the pathogenesis of DN from the aspects of immune inflammation response, epithelial–mesenchymal transition, apoptosis and mitochondrial damage, epigenetics, and podocyte–endothelial communication. This work offers groundwork for understanding the initiation and progression of DN, as well as provides ideas for developing new prevention and treatment measures.

Keywords

diabetic nephropathy / immune inflammatory response / epithelial–mesenchymal transition / apoptosis / mitochondrial damage / epigenetics / podocyte–endothelial communication

Cite this article

Download citation ▾
Qiuxia Han, Hanyu Zhu, Xiangmei Chen, Zhangsuo Liu. Non-genetic mechanisms of diabetic nephropathy. Front. Med., 2017, 11(3): 319‒332 https://doi.org/10.1007/s11684-017-0569-9

References

[1]
Kanwar YS, Sun  L, Xie P ,  Liu FY, Chen  S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011; 6(1): 395–423
CrossRef Pubmed Google scholar
[2]
Reddy MA, Tak Park  J, Natarajan R . Epigenetic modifications in the pathogenesis of diabetic nephropathy. Semin Nephrol 2013; 33(4): 341–353
CrossRef Pubmed Google scholar
[3]
Haider DG, Peric  S, Friedl A ,  Fuhrmann V ,  Wolzt M ,  Hörl WH ,  Soleiman A . Kidney biopsy in patients with diabetes mellitus. Clin Nephrol 2011; 76(3): 180–185
CrossRef Pubmed Google scholar
[4]
Tervaert TW, Mooyaart  AL, Amann K ,  Cohen AH ,  Cook HT ,  Drachenberg CB ,  Ferrario F ,  Fogo AB ,  Haas M, de Heer  E, Joh K ,  Noël LH ,  Radhakrishnan J ,  Seshan SV ,  Bajema IM ,  Bruijn JA; Renal Pathology Society. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 2010; 21(4): 556–563
CrossRef Pubmed Google scholar
[5]
Zhang L, Long  J, Jiang W ,  Shi Y, He  X, Zhou Z ,  Li Y, Yeung  RO, Wang J ,  Matsushita K ,  Coresh J ,  Zhao MH ,  Wang H. Trends in chronic kidney disease in China. N Engl J Med 2016; 375(9): 905–906
CrossRef Pubmed Google scholar
[6]
Duran-Salgado MB, Rubio-Guerra  AF. Diabetic nephropathy and inflammation. World J Diabetes 2014; 5(3): 393–398
CrossRef Pubmed Google scholar
[7]
Kanasaki K, Taduri  G, Koya D . Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Front Endocrinol (Lausanne) 2013; 4: 7
CrossRef Pubmed Google scholar
[8]
Liu F, Guo  J, Zhang Q ,  Liu D, Wen  L, Yang Y ,  Yang L, Liu  Z. The expression of tristetraprolin and its relationship with urinary proteins in patients with diabetic nephropathy. PLoS One 2015; 10(10): e0141471
CrossRef Pubmed Google scholar
[9]
Sun L, Kanwar  YS. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int 2015; 88(4): 662–665
CrossRef Pubmed Google scholar
[10]
Wada J, Makino  H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 2013; 124(3): 139–152
CrossRef Pubmed Google scholar
[11]
da Silva Cristino Cordeiro V, de Bem GF ,  da Costa CA ,  Santos IB ,  de Carvalho LC ,  Ognibene DT ,  da Rocha AP ,  de Carvalho JJ ,  de Moura RS ,  Resende AC . Euterpe oleracea Mart. seed extract protects against renal injury in diabetic and spontaneously hypertensive rats: role of inflammation and oxidative stress.  Eur J Nutr. 2017 Jan 20. [Epub ahead of print] 160;doi: 10.1007/s00394-016-1371-1
CrossRef Pubmed Google scholar
[12]
Barutta F, Bruno  G, Grimaldi S ,  Gruden G . Inflammation in diabetic nephropathy: moving toward clinical biomarkers and targets for treatment. Endocrine 2015; 48(3): 730–742
CrossRef Pubmed Google scholar
[13]
Pichler R, Afkarian  M, Dieter BP ,  Tuttle KR . Immunity and inflammation in diabetic kidney disease: translating mechanisms to biomarkers and treatment targets. Am J Physiol Renal Physiol 2017; 312(4): F716–F731
Pubmed
[14]
Mudaliar H, Pollock  C, Panchapakesan U . Role of Toll-like receptors in diabetic nephropathy. Clin Sci (Lond) 2014; 126(10): 685–694
CrossRef Pubmed Google scholar
[15]
Xu XX, Qi  XM, Zhang W ,  Zhang CQ ,  Wu XX, Wu  YG, Wang K ,  Shen JJ . Effects of total glucosides of paeony on immune regulatory toll-like receptors TLR2 and 4 in the kidney from diabetic rats. Phytomedicine 2014; 21(6): 815–823
CrossRef Pubmed Google scholar
[16]
Jheng HF, Tsai  PJ, Chuang YL ,  Shen YT ,  Tai TA, Chen  WC, Chou CK ,  Ho LC, Tang  MJ, Lai KT ,  Sung JM ,  Tsai YS . Albumin stimulates renal tubular inflammation through an HSP70-TLR4 axis in mice with early diabetic nephropathy. Dis Model Mech 2015; 8(10): 1311–1321
CrossRef Pubmed Google scholar
[17]
Lopez-Parra V, Mallavia  B, Lopez-Franco O ,  Ortiz-Muñoz G ,  Oguiza A ,  Recio C ,  Blanco J ,  Nimmerjahn F ,  Egido J ,  Gomez-Guerrero C . Fcg receptor deficiency attenuates diabetic nephropathy. J Am Soc Nephrol 2012; 23(9): 1518–1527
CrossRef Pubmed Google scholar
[18]
Herrera M, Söderberg  M, Sabirsh A ,  Valastro B ,  Mölne J ,  Santamaria B ,  Valverde AM ,  Guionaud S ,  Heasman S ,  Bigley A ,  Jermutus L ,  Rondinone C ,  Coghlan M ,  Baker D ,  Quinn CM . Inhibition of T-cell activation by the CTLA4-Fc Abatacept is sufficient to ameliorate proteinuric kidney disease. Am J Physiol Renal Physiol 2017; 312(4): F748–F759
Pubmed
[19]
Hu Z, Zhou  Q, Zhang C ,  Fan S, Cheng  W, Zhao Y ,  Shao F, Wang  HW, Sui SF ,  Chai J. Structural and biochemical basis for induced self-propagation of NLRC4. Science 2015; 350(6259): 399–404
CrossRef Pubmed Google scholar
[20]
Shi JX, Li  JS, Hu R ,  Shi Y, Su  X, Li Q ,  Zhang F . CNOT7/hCAF1 is involved in ICAM-1 and IL-8 regulation by tristetraprolin. Cell Signal 2014; 26(11): 2390–2396
CrossRef Pubmed Google scholar
[21]
Gaba A, Grivennikov  SI, Do MV ,  Stumpo DJ ,  Blackshear PJ ,  Karin M . Cutting edge: IL-10-mediated tristetraprolin induction is part of a feedback loop that controls macrophage STAT3 activation and cytokine production. J Immunol 2012; 189(5): 2089–2093
CrossRef Pubmed Google scholar
[22]
Lee HH, Yoon  NA, Vo MT ,  Kim CW, Woo  JM, Cha HJ ,  Cho YW, Lee  BJ, Cho WJ ,  Park JW . Tristetraprolin down-regulates IL-17 through mRNA destabilization. FEBS Lett 2012; 586(1): 41–46
CrossRef Pubmed Google scholar
[23]
Molle C, Zhang  T, Ysebrant de Lendonck  L, Gueydan C ,  Andrianne M ,  Sherer F ,  Van Simaeys G ,  Blackshear PJ ,  Leo O, Goriely  S. Tristetraprolin regulation of interleukin 23 mRNA stability prevents a spontaneous inflammatory disease. J Exp Med 2013; 210(9): 1675–1684
CrossRef Pubmed Google scholar
[24]
Shi JX, Su  X, Xu J ,  Zhang WY ,  Shi Y. HuR post-transcriptionally regulates TNF-α-induced IL-6 expression in human pulmonary microvascular endothelial cells mainly via tristetraprolin. Respir Physiol Neurobiol 2012; 181(2): 154–161
CrossRef Pubmed Google scholar
[25]
Chen X, Wei  Z, Wang W ,  Yan R, Xu  X, Cai Q . Role of RNA-binding protein tristetraprolin in tumor necrosis factor-α mediated gene expression. Biochem Biophys Res Commun 2012; 428(3): 327–332
CrossRef Pubmed Google scholar
[26]
Schichl YM, Resch  U, Hofer-Warbinek R ,  de Martin R . Tristetraprolin impairs NF-κB/p65 nuclear translocation. J Biol Chem 2009; 284(43): 29571–29581
CrossRef Pubmed Google scholar
[27]
Liang J, Lei  T, Song Y ,  Yanes N ,  Qi Y, Fu  M. RNA-destabilizing factor tristetraprolin negatively regulates NF-κB signaling. J Biol Chem 2009; 284(43): 29383–29390160;
CrossRef Pubmed Google scholar
[28]
Yang M, Yang  BO, Gan H ,  Li X, Xu  J, Yu J ,  Gao L, Li  F. Anti-inflammatory effect of 1,25-dihydroxyvitamin D3 is associated with crosstalk between signal transducer and activator of transcription 5 and the vitamin D receptor in human monocytes. Exp Ther Med 2015; 9(5): 1739–1744
Pubmed
[29]
Zhang X, Zhou  M, Guo Y ,  Zhou Y. 1,25-Dihydroxyvitamin D(3) promotes high glucose-induced M1 macrophage switching to M2 via the VDR-PPARγ signaling pathway. Biomed Res Int 2015; 2015:157834
[30]
Toffoli B, Gilardi  F, Winkler C ,  Soderberg M ,  Kowalczuk L ,  Arsenijevic Y ,  Bamberg K ,  Bonny O ,  Desvergne B . Nephropathy in Pparg-null mice highlights PPARg systemic activities in metabolism and in the immune system. PLoS One 2017; 12(2): e0171474
CrossRef Pubmed Google scholar
[31]
Wang Y, Borchert  ML, Deluca HF . Identification of the vitamin D receptor in various cells of the mouse kidney. Kidney Int 2012; 81(10): 993–1001
CrossRef Pubmed Google scholar
[32]
Xie X, Li  Z, Pi M ,  Wu J, Zeng  W, Zuo L ,  Zha Y. Down-regulation of p38 MAPK and collagen by 1, 25-(OH)2-VD3 in rat models of diabetic nephropathy. Chin J Cellular Mol Immunol (Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi) 2016; 32(7): 931–935 (in Chinese)160;
Pubmed
[33]
Guan X, Yang  H, Zhang W ,  Wang H, Liao  L. Vitamin D receptor and its protective role in diabetic nephropathy. Chin Med J (Engl) 2014; 127(2): 365–369
Pubmed
[34]
Yang M, Xu  J, Yu J ,  Yang B, Gan  H, Li S ,  Li X. Anti-inflammatory effects of 1,25-dihydroxyvitamin D3 in monocytes cultured in serum from patients with type 2 diabetes mellitus and diabetic nephropathy with uremia via Toll-like receptor 4 and nuclear factor-kB p65. Mol Med Rep 2015; 12(6): 8215–8222 
[35]
Flyvbjerg A. Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol 2010; 6(2): 94–101
CrossRef Pubmed Google scholar
[36]
Niculescu F, Rus  H. The role of complement activation in atherosclerosis. Immunol Res 2004; 30(1): 73–80
CrossRef Pubmed Google scholar
[37]
Østergaard J ,  Thiel S ,  Gadjeva M ,  Hansen TK ,  Rasch R ,  Flyvbjerg A . Mannose-binding lectin deficiency attenuates renal changes in a streptozotocin-induced model of type 1 diabetes in mice. Diabetologia 2007; 50(7): 1541–1549
CrossRef Pubmed Google scholar
[38]
Ostergaard J A ,  Ruseva M M ,  Malik T H . Increased autoreactivity of the complement-activating molecule mannan-binding lectin in a type 1 diabetes model. J Diabetes Res 2016; 2016:1825738
[39]
Østergaard JA ,  Thiel S ,  Hovind P ,  Holt CB ,  Parving HH ,  Flyvbjerg A ,  Rossing P ,  Hansen TK . Association of the pattern recognition molecule H-ficolin with incident microalbuminuria in an inception cohort of newly diagnosed type 1 diabetic patients: an 18 year follow-up study. Diabetologia 2014; 57(10): 2201–2207
CrossRef Pubmed Google scholar
[40]
Jenny L, Ajjan  R, King R ,  Thiel S ,  Schroeder V . Plasma levels of mannan-binding lectin-associated serine proteases MASP-1 and MASP-2 are elevated in type 1 diabetes and correlate with glycaemic control. Clin Exp Immunol 2015; 180(2): 227–232
CrossRef Pubmed Google scholar
[41]
Yang L, Brozovic  S, Xu J ,  Long Y, Kralik  PM, Waigel S ,  Zacharias W ,  Zheng S ,  Epstein PN . Inflammatory gene expression in OVE26 diabetic kidney during the development of nephropathy. Nephron, Exp Nephrol 2011; 119(1): e8–e20
CrossRef Pubmed Google scholar
[42]
Uesugi N, Sakata  N, Nangaku M ,  Abe M, Horiuchi  S, Hisano S ,  Iwasaki H . Possible mechanism for medial smooth muscle cell injury in diabetic nephropathy: glycoxidation-mediated local complement activation. Am J Kidney Dis 2004; 44(2): 224–238
CrossRef Pubmed Google scholar
[43]
Fortpied J, Vertommen  D, Van Schaftingen E. Binding of mannose-binding lectin to fructosamines: a potential link between hyperglycaemia and complement activation in diabetes. Diabetes Metab Res Rev 2010; 26(4): 254–260
CrossRef Pubmed Google scholar
[44]
Qin X, Goldfine  A, Krumrei N ,  Grubissich L ,  Acosta J ,  Chorev M ,  Hays AP ,  Halperin JA . Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 2004; 53(10): 2653–2661
CrossRef Pubmed Google scholar
[45]
Acosta J, Hettinga  J, Flückiger R ,  Krumrei N ,  Goldfine A ,  Angarita L ,  Halperin J . Molecular basis for a link between complement and the vascular complications of diabetes. Proc Natl Acad Sci USA 2000; 97(10): 5450–5455
CrossRef Pubmed Google scholar
[46]
Maki T, Maeda  Y, Sonoda N ,  Makimura H ,  Kimura S ,  Maeno S ,  Takayanagi R ,  Inoguchi T . Renoprotective effect of a novel selective PPARα modulator K-877 in db/db mice: a role of diacylglycerol-protein kinase C-NAD(P)H oxidase pathway. Metabolism 2017; 71: 33–45
CrossRef Pubmed Google scholar
[47]
Quadri SS, Culver  SA, Li C ,  Siragy HM . Interaction of the renin angiotensin and cox systems in the kidney. Front Biosci (Schol Ed) 2016; 8(2): 215–226
CrossRef Pubmed Google scholar
[48]
Kawanami D, Matoba  K, Utsunomiya K . Signaling pathways in diabetic nephropathy. Histol Histopathol 2016; 31(10): 1059– 1067
Pubmed
[49]
Loeffler I, Wolf  G. Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells 2015; 4(4): 631–652
CrossRef Pubmed Google scholar
[50]
Mason RM, Wahab  NA. Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 2003; 14(5): 1358–1373
CrossRef Pubmed Google scholar
[51]
Yamaguchi Y, Iwano  M, Suzuki D ,  Nakatani K ,  Kimura K ,  Harada K ,  Kubo A, Akai  Y, Toyoda M ,  Kanauchi M ,  Neilson EG ,  Saito Y . Epithelial-mesenchymal transition as a potential explanation for podocyte depletion in diabetic nephropathy. Am J Kidney Dis 2009; 54(4): 653–664
CrossRef Pubmed Google scholar
[52]
Anil Kumar P, Welsh  GI, Saleem MA ,  Menon RK . Molecular and cellular events mediating glomerular podocyte dysfunction and depletion in diabetes mellitus. Front Endocrinol (Lausanne) 2014; 5: 151
CrossRef Pubmed Google scholar
[53]
Guo J, Xia  N, Yang L ,  Zhou S, Zhang  Q, Qiao Y ,  Liu Z. GSK-3β and vitamin D receptor are involved in β-catenin and snail signaling in high glucose-induced epithelial-mesenchymal transition of mouse podocytes. Cell Physiol Biochem 2014; 33(4): 1087–1096
CrossRef Pubmed Google scholar
[54]
Wan J, Li  P, Liu DW ,  Chen Y, Mo  HZ, Liu BG ,  Chen WJ ,  Lu XQ, Guo  J, Zhang Q ,  Qiao YJ ,  Liu ZS, Wan  GR. GSK-3β inhibitor attenuates urinary albumin excretion in type 2 diabetic db/db mice, and delays epithelial-to-mesenchymal transition in mouse kidneys and podocytes. Mol Med Rep 2016; 14(2): 1771–1784
Pubmed
[55]
Zhou S, Wang  P, Qiao Y ,  Ge Y, Wang  Y, Quan S ,  Yao R, Zhuang  S, Wang LJ ,  Du Y, Liu  Z, Gong R . Genetic and pharmacologic targeting of glycogen synthase kinase 3β reinforces the Nrf2 antioxidant defense against podocytopathy. J Am Soc Nephrol 2016; 27(8): 2289–2308
CrossRef Pubmed Google scholar
[56]
Dai H, Zhang  Y, Yuan L ,  Wu J, Ma  L, Shi H . CTGF mediates high-glucose induced epithelial-mesenchymal transition through activation of β-catenin in podocytes. Ren Fail 2016; 38(10): 1711–1716160;
CrossRef Pubmed Google scholar
[57]
Lv Z, Hu  M, Zhen J ,  Lin J, Wang  Q, Wang R . Rac1/PAK1 signaling promotes epithelial-mesenchymal transition of podocytes in vitro via triggering β-catenin transcriptional activity under high glucose conditions. Int J Biochem Cell Biol 2013; 45(2): 255–264
CrossRef Pubmed Google scholar
[58]
Li G, Li  CX, Xia M ,  Ritter JK ,  Gehr TW ,  Boini K ,  Li PL. Enhanced epithelial-to-mesenchymal transition associated with lysosome dysfunction in podocytes: role of p62/Sequestosome 1 as a signaling hub. Cell Physiol Biochem 2015; 35(5): 1773–1786
CrossRef Pubmed Google scholar
[59]
Okamura DM, Pennathur  S, Pasichnyk K ,  López-Guisa JM ,  Collins S ,  Febbraio M ,  Heinecke J ,  Eddy AA . CD36 regulates oxidative stress and inflammation in hypercholesterolemic CKD. J Am Soc Nephrol 2009; 20(3): 495–505
CrossRef Pubmed Google scholar
[60]
Hou Y, Wu  M, Wei J ,  Ren Y, Du  C, Wu H ,  Li Y, Shi  Y. CD36 is involved in high glucose-induced epithelial to mesenchymal transition in renal tubular epithelial cells. Biochem Biophys Res Commun 2015; 468(1-2): 281–286
CrossRef Pubmed Google scholar
[61]
Tang WB, Ling  GH, Sun L ,  Zhang K ,  Zhu X, Zhou  X, Liu FY . Smad anchor for receptor activation regulates high glucose-induced EMT via modulation of Smad2 and Smad3 activities in renal tubular epithelial cells. Nephron 2015; 130(3): 213–220
CrossRef Pubmed Google scholar
[62]
Huang H, Zheng  F, Dong X ,  Wu F, Wu  T, Li H . Allicin inhibits tubular epithelial-myofibroblast transdifferentiation under high glucose conditions in vitro. Exp Ther Med 2017; 13(1): 254–262
Pubmed
[63]
Duan SB, Liu  GL, Wang YH ,  Zhang JJ . Epithelial-to-mesenchymal transdifferentiation of renal tubular epithelial cell mediated by oxidative stress and intervention effect of probucol in diabetic nephropathy rats. Ren Fail 2012; 34(10): 1244–1251
CrossRef Pubmed Google scholar
[64]
Pang XX, Bai  Q, Wu F ,  Chen GJ ,  Zhang AH ,  Tang CS . Urotensin II induces ER stress and EMT and increase extracellular matrix production in renal tubular epithelial cell in early diabetic mice. Kidney Blood Press Res 2016; 41(4): 434–449
CrossRef Pubmed Google scholar
[65]
Qi W, Mu  J, Luo ZF ,  Zeng W, Guo  YH, Pang Q ,  Ye ZL, Liu  L, Yuan FH ,  Feng B. Attenuation of diabetic nephropathy in diabetes rats induced by streptozotocin by regulating the endoplasmic reticulum stress inflammatory response. Metabolism 2011; 60(5): 594–603
CrossRef Pubmed Google scholar
[66]
Inagi R, Ishimoto  Y, Nangaku M . Proteostasis in endoplasmic reticulum—new mechanisms in kidney disease. Nat Rev Nephrol 2014; 10(7): 369–378
CrossRef Pubmed Google scholar
[67]
Cao AL, Wang  L, Chen X ,  Wang YM ,  Guo HJ, Chu  S, Liu C ,  Zhang XM ,  Peng W. Ursodeoxycholic acid and 4-phenylbutyrate prevent endoplasmic reticulum stress-induced podocyte apoptosis in diabetic nephropathy. Lab Invest 2016; 96(6): 610–622
CrossRef Pubmed Google scholar
[68]
Fu S, Yang  L, Li P ,  Hofmann O ,  Dicker L ,  Hide W, Lin  X, Watkins SM ,  Ivanov AR ,  Hotamisligil GS . Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011; 473(7348): 528–531
CrossRef Pubmed Google scholar
[69]
Kang S, Dahl  R, Hsieh W ,  Shin A, Zsebo  KM, Buettner C ,  Hajjar RJ ,  Lebeche D . Small molecular allosteric activator of the Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) attenuates diabetes and metabolic disorders. J Biol Chem 2016; 291(10): 5185–5198
CrossRef Pubmed Google scholar
[70]
Guo H, Cao  A, Chu S ,  Wang Y, Zang  Y, Mao X ,  Wang H, Wang  Y, Liu C ,  Zhang X ,  Peng W. Astragaloside IV attenuates podocyte apoptosis mediated by endoplasmic reticulum stress through upregulating Sarco/endoplasmic reticulum Ca(2+)-ATPase 2 expression in diabetic nephropathy. Front Pharmacol 2016; 7: 500
CrossRef Pubmed Google scholar
[71]
Parys JB, De Smedt  H. Inositol 1,4,5-trisphosphate and its receptors. Adv Exp Med Biol 2012; 740: 255–279
CrossRef Pubmed Google scholar
[72]
Foskett JK, White  C, Cheung KH ,  Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 2007; 87(2): 593–658
CrossRef Pubmed Google scholar
[73]
Fedorenko OA, Popugaeva  E, Enomoto M ,  Stathopulos PB ,  Ikura M ,  Bezprozvanny I . Intracellular calcium channels: inositol-1,4,5-trisphosphate receptors. Eur J Pharmacol 2014; 739: 39–48
CrossRef Pubmed Google scholar
[74]
Mikoshiba K. Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 2015; 57: 217–227
CrossRef Pubmed Google scholar
[75]
Amador FJ, Stathopulos  PB, Enomoto M ,  Ikura M . Ryanodine receptor calcium release channels: lessons from structure-function studies. FEBS J 2013; 280(21): 5456–5470
CrossRef Pubmed Google scholar
[76]
Lanner JT. Ryanodine receptor physiology and its role in disease. Adv Exp Med Biol 2012; 740: 217–234
CrossRef Pubmed Google scholar
[77]
Van Petegem F . Ryanodine receptors: allosteric ion channel giants. J Mol Biol 2015; 427(1): 31–53
CrossRef Pubmed Google scholar
[78]
Distelhorst CW, Bootman  MD. Bcl-2 interaction with the inositol 1,4,5-trisphosphate receptor: role in Ca(2+) signaling and disease. Cell Calcium 2011; 50(3): 234–241
CrossRef Pubmed Google scholar
[79]
Kar P, Mirams  GR, Christian HC ,  Parekh AB . Control of NFAT isoform activation and NFAT-dependent gene expression through two coincident and spatially segregated intracellular Ca(2+) signals. Mol Cell 2016; 64(4): 746–759
CrossRef Pubmed Google scholar
[80]
Ivanova H, Vervliet  T, Missiaen L ,  Parys JB ,  De Smedt H ,  Bultynck G . Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival. Biochim Biophys Acta 2014; 1843(10): 2164–2183
CrossRef Pubmed Google scholar
[81]
Yasuda M, Tanaka  Y, Kume S ,  Morita Y ,  Chin-Kanasaki M ,  Araki H ,  Isshiki K ,  Araki S ,  Koya D, Haneda  M, Kashiwagi A ,  Maegawa H ,  Uzu T. Fatty acids are novel nutrient factors to regulate mTORC1 lysosomal localization and apoptosis in podocytes. Biochim Biophys Acta 2014; 1842(7): 1097–1108
CrossRef Pubmed Google scholar
[82]
Xu S, Nam  SM, Kim JH ,  Das R, Choi  SK, Nguyen TT ,  Quan X, Choi  SJ, Chung CH ,  Lee EY, Lee  IK, Wiederkehr A ,  Wollheim CB ,  Cha SK, Park  KS. Palmitate induces ER calcium depletion and apoptosis in mouse podocytes subsequent to mitochondrial oxidative stress. Cell Death Dis 2015; 6(11): e1976
CrossRef Pubmed Google scholar
[83]
Yuan Z, Cao  A, Liu H ,  Guo H, Zang  Y, Wang Y ,  Wang Y, Wang  H, Yin P ,  Peng W. Calcium uptake via mitochondrial uniporter contributes to palmitic acid-induced apoptosis in mouse podocytes. J Cell Biochem 2017 Feb 9. [Epub ahead of print] doi: 10.1002/jcb.25930 
CrossRef Pubmed Google scholar
[84]
Tunçdemir M ,  Öztürk M . Regulation of the Ku70 and apoptosis-related proteins in experimental diabetic nephropathy. Metabolism 2016; 65(10): 1466–1477
CrossRef Pubmed Google scholar
[85]
Noriega-Cisneros R ,  Cortés-Rojo C ,  Manzo-Avalos S ,  Clemente-Guerrero M ,  Calderón-Cortés E ,  Salgado-Garciglia R ,  Montoya-Pérez R ,  Boldogh I ,  Saavedra-Molina A . Mitochondrial response to oxidative and nitrosative stress in early stages of diabetes. Mitochondrion 2013; 13(6): 835–840
CrossRef Pubmed Google scholar
[86]
Pollock JS, Pollock  DM. Endothelin, nitric oxide, and reactive oxygen species in diabetic kidney disease. Contrib Nephrol 2011; 172: 149–159
CrossRef Pubmed Google scholar
[87]
Gill PS, Wilcox  CS. NADPH oxidases in the kidney. Antioxid Redox Signal 2006; 8(9-10): 1597–1607
CrossRef Pubmed Google scholar
[88]
Nistala R, Whaley-Connell  A, Sowers JR . Redox control of renal function and hypertension. Antioxid Redox Signal 2008; 10(12): 2047–2089
CrossRef Pubmed Google scholar
[89]
Sedeek M, Callera  G, Montezano A ,  Gutsol A ,  Heitz F ,  Szyndralewiez C ,  Page P, Kennedy  CR, Burns KD ,  Touyz RM ,  Hébert RL . Critical role of Nox4-based NADPH oxidase in glucose-induced oxidative stress in the kidney: implications in type 2 diabetic nephropathy. Am J Physiol Renal Physiol 2010; 299(6): F1348–F1358
CrossRef Pubmed Google scholar
[90]
Sedeek M, Nasrallah  R, Touyz RM ,  Hébert RL . NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 2013; 24(10): 1512–1518
CrossRef Pubmed Google scholar
[91]
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010; 11(12): 872–884
CrossRef Pubmed Google scholar
[92]
Wang W, Wang  Y, Long J ,  Wang J, Haudek  SB, Overbeek P ,  Chang BH ,  Schumacker PT ,  Danesh FR . Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab 2012; 15(2): 186–200
CrossRef Pubmed Google scholar
[93]
Liu D, Xu  M, Ding LH ,  Lv LL, Liu  H, Ma KL ,  Zhang AH ,  Crowley SD ,  Liu BC. Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. Int J Biochem Cell Biol 2014; 57: 7–19
CrossRef Pubmed Google scholar
[94]
Zhuang Y, Yasinta  M, Hu C ,  Zhao M, Ding  G, Bai M ,  Yang L, Ni  J, Wang R ,  Jia Z, Huang  S, Zhang A . Mitochondrial dysfunction confers albumin-induced NLRP3 inflammasome activation and renal tubular injury. Am J Physiol Renal Physiol 2015; 308(8): F857–F866
CrossRef Pubmed Google scholar
[95]
Zhuang Y, Ding  G, Zhao M ,  Bai M, Yang  L, Ni J ,  Wang R, Jia  Z, Huang S ,  Zhang A . NLRP3 inflammasome mediates albumin-induced renal tubular injury through impaired mitochondrial function. J Biol Chem 2014; 289(36): 25101–25111
CrossRef Pubmed Google scholar
[96]
Xiao L, Zhu  X, Yang S ,  Liu F, Zhou  Z, Zhan M ,  Xie P, Zhang  D, Li J ,  Song P, Kanwar  YS, Sun L . Rap1 ameliorates renal tubular injury in diabetic nephropathy. Diabetes 2014; 63(4): 1366–1380
CrossRef Pubmed Google scholar
[97]
Wu L, Wang  Q, Guo F ,  Ma X, Ji  H, Liu F ,  Zhao Y, Qin  G. MicroRNA-27a induces mesangial cell injury by targeting of PPARg, and its in vivo knockdown prevents progression of diabetic nephropathy. Sci Rep 2016; 6(1): 26072
CrossRef Pubmed Google scholar
[98]
He F, Peng  F, Xia X ,  Zhao C, Luo  Q, Guan W ,  Li Z, Yu  X, Huang F . miR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 2014; 57(8): 1726–1736
CrossRef Pubmed Google scholar
[99]
McClelland AD, Herman-Edelstein  M, Komers R ,  Jha JC, Winbanks  CE, Hagiwara S ,  Gregorevic P ,  Kantharidis P ,  Cooper ME . miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015; 129(12): 1237–1249
CrossRef Pubmed Google scholar
[100]
Huang Y, Liu  Y, Li L ,  Su B, Yang  L, Fan W ,  Yin Q, Chen  L, Cui T ,  Zhang J ,  Lu Y, Cheng  J, Fu P ,  Liu F. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol 2014; 15(1): 142
CrossRef Pubmed Google scholar
[101]
Meng S, Cao  JT, Zhang B ,  Zhou Q, Shen  CX, Wang CQ . Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J Mol Cell Cardiol 2012; 53(1): 64–72
CrossRef Pubmed Google scholar
[102]
Xiao J, Liu  D, Jiao W ,  Guo J, Wang  X, Zhang X ,  Lu S, Zhao  Z. Effects of microRNA-346 on epithelial-mesenchymal transition in mouse podocytes. Gene 2015; 560(2): 195–199
CrossRef Pubmed Google scholar
[103]
Zhang Y, Xiao  HQ, Wang Y ,  Yang ZS ,  Dai LJ, Xu  YC. Differential expression and therapeutic efficacy of microRNA-346 in diabetic nephropathy mice. Exp Ther Med 2015; 10(1): 106–112
Pubmed
[104]
Puthanveetil P, Chen  S, Feng B ,  Gautam A ,  Chakrabarti S . Long non-coding RNA MALAT1 regulates hyperglycaemia induced inflammatory process in the endothelial cells. J Cell Mol Med 2015; 19(6): 1418–1425
CrossRef Pubmed Google scholar
[105]
Alvarez ML, Khosroheidari  M, Eddy E ,  Kiefer J . Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 2013; 8(10): e77468
CrossRef Pubmed Google scholar
[106]
Alvarez ML, DiStefano  JK. Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One 2011; 6(4): e18671
CrossRef Pubmed Google scholar
[107]
Sapienza C, Lee  J, Powell J ,  Erinle O ,  Yafai F ,  Reichert J ,  Siraj ES ,  Madaio M . DNA methylation profiling identifies epigenetic differences between diabetes patients with ESRD and diabetes patients without nephropathy. Epigenetics 2011; 6(1): 20–28
CrossRef Pubmed Google scholar
[108]
Li X, Li  C, Sun G. Histone acetylation and its modifiers in the pathogenesis of diabetic nephropathy. J Diabetes Res 2016; 2016:4065382
[109]
Sun G D, Cui  W P, Guo  Q Y, Mu  X. Histone lysine methylation in diabetic nephropathy. J Diabetes Res 2014; 2014:654148
[110]
Gao C, Chen  G, Liu L ,  Dong RW . Impact of high glucose and proteasome inhibitor MG132 on histone H2A and H2B ubiquitination in rat glomerular mesangial cells. 2013: 2013, 589474
[111]
Badal SS, Wang  Y, Long J ,  Corcoran DL ,  Chang BH ,  Truong LD ,  Kanwar YS ,  Overbeek PA ,  Danesh FR . miR-93 regulates Msk2-mediated chromatin remodelling in diabetic nephropathy. Nat Commun 2016; 7: 12076
CrossRef Pubmed Google scholar
[112]
Hale LJ, Hurcombe  J, Lay A ,  Santamaría B ,  Valverde AM ,  Saleem MA ,  Mathieson PW ,  Welsh GI ,  Coward RJ . Insulin directly stimulates VEGF-A production in the glomerular podocyte. Am J Physiol Renal Physiol 2013; 305(2): F182–F188
CrossRef Pubmed Google scholar
[113]
Gnudi L, Benedetti  S, Woolf AS ,  Long DA . Vascular growth factors play critical roles in kidney glomeruli. Clin Sci (Lond) 2015; 129(12): 1225–1236
CrossRef Pubmed Google scholar
[114]
Singh A, Ramnath  RD, Foster RR ,  Wylie EC ,  Fridén V ,  Dasgupta I ,  Haraldsson B ,  Welsh GI ,  Mathieson PW ,  Satchell SC . Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One 2013; 8(2):  e55852
CrossRef Pubmed Google scholar
[115]
Singh A, Fridén  V, Dasgupta I ,  Foster RR ,  Welsh GI ,  Tooke JE ,  Haraldsson B ,  Mathieson PW ,  Satchell SC . High glucose causes dysfunction of the human glomerular endothelial glycocalyx. Am J Physiol Renal Physiol 2011; 300(1): F40–F48
CrossRef Pubmed Google scholar
[116]
Salmon AH, Ferguson  JK, Burford JL ,  Gevorgyan H ,  Nakano D ,  Harper SJ ,  Bates DO ,  Peti-Peterdi J . Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol 2012; 23(8): 1339–1350
CrossRef Pubmed Google scholar
[117]
Gnudi L, Coward  RJ, Long DA . Diabetic nephropathy: perspective on novel molecular mechanisms. Trends Endocrinol Metab 2016; 27(11): 820–830
CrossRef Pubmed Google scholar
[118]
Oltean S, Qiu  Y, Ferguson JK ,  Stevens M ,  Neal C, Russell  A, Kaura A ,  Arkill KP ,  Harris K ,  Symonds C ,  Lacey K ,  Wijeyaratne L ,  Gammons M ,  Wylie E ,  Hulse RP ,  Alsop C ,  Cope G, Damodaran  G, Betteridge KB ,  Ramnath R ,  Satchell SC ,  Foster RR ,  Ballmer-Hofer K ,  Donaldson LF ,  Barratt J ,  Baelde HJ ,  Harper SJ ,  Bates DO ,  Salmon AH . Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy. J Am Soc Nephrol 2015; 26(8): 1889–1904
CrossRef Pubmed Google scholar
[119]
Garsen M, Lenoir  O, Rops AL ,  Dijkman HB ,  Willemsen B ,  van Kuppevelt TH ,  Rabelink TJ ,  Berden JH ,  Tharaux PL ,  van der Vlag J . Endothelin-1 induces proteinuria by heparanase-mediated disruption of the glomerular glycocalyx. J Am Soc Nephrol 2016; 27(12): 3545–3551
CrossRef Pubmed Google scholar
[120]
de Zeeuw D, Coll  B, Andress D ,  Brennan JJ ,  Tang H, Houser  M, Correa-Rotter R ,  Kohan D ,  Lambers Heerspink HJ ,  Makino H ,  Perkovic V ,  Pritchett Y ,  Remuzzi G ,  Tobe SW ,  Toto R, Viberti  G, Parving HH . The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J Am Soc Nephrol 2014; 25(5): 1083–1093
CrossRef Pubmed Google scholar

Acknowledgements

This study was supported by the National Key R&D Program of China (Nos. 2016YFC1305500 and 2016YFC1305404), the National Natural Science Foundation of China (Nos. 61471399, 61671479, 81670663 and 81400726), Innovation Nursery Fund of PLA General Hospital (No. 15KMZ04), National Clinical Research Center for Kidney Disease (No. 2013BAI09B05), and the key program of Joint Funds of the National Natural Science Foundation of China (No.U1604284).

Compliance with ethics guidelines

Qiuxia Han, Hanyu Zhu, Xiangmei Chen, and Zhangsuo Liu declare no conflict of interest. This manuscript is a review article and does not involve a research protocol that requires the approval by the relevant institutional review board or ethics committee.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(403 KB)

Accesses

Citations

Detail

Sections
Recommended

/