Gut microbial balance and liver transplantation: alteration, management, and prediction
Xinyao Tian, Zhe Yang, Fangzhou Luo, Shusen Zheng
Gut microbial balance and liver transplantation: alteration, management, and prediction
Liver transplantation is a conventional treatment for terminal stage liver diseases. However, several complications still hinder the survival rate. Intestinal barrier destruction is widely observed among patients receiving liver transplant and suffering from ischemia–reperfusion or rejection injuries because of the relationship between the intestine and the liver, both in anatomy and function. Importantly, the resulting alteration of gut microbiota aggravates graft dysfunctions during the process. This article reviews the research progress for gut microbial alterations and liver transplantation. Especially, this work also evaluates research on the management of gut microbial alteration and the prediction of possible injuries utilizing microbial alteration during liver transplantation. In addition, we propose possible directions for research on gut microbial alteration during liver transplantation and offer a hypothesis on the utilization of microbial alteration in liver transplantation. The aim is not only to predict perioperative injuries but also to function as a method of treatment or even inhibit the rejection of liver transplantation.
gut microbial balance / liver transplantation / ischemia–reperfusion / acute rejection
[1] |
Sayegh MH, Carpenter CB. Transplantation 50 years later—progress, challenges, and promises. N Engl J Med 2004; 351(26): 2761–2766
CrossRef
Pubmed
Google scholar
|
[2] |
Hübscher SG. What is the long-term outcome of the liver allograft? J Hepatol 2011; 55(3): 702–717
CrossRef
Pubmed
Google scholar
|
[3] |
Bartosch S, Fite A, Macfarlane GT, McMurdo MET. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 2004; 70(6): 3575–3581
CrossRef
Pubmed
Google scholar
|
[4] |
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005; 308(5728): 1635–1638
CrossRef
Pubmed
Google scholar
|
[5] |
Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S, Huth M, Nikolaev A, Neufert C, Madison B, Gumucio D, Neurath MF, Pasparakis M. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007; 446(7135): 557–561
CrossRef
Pubmed
Google scholar
|
[6] |
Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009; 15(13): 1546–1558
CrossRef
Pubmed
Google scholar
|
[7] |
Hooper LV, Midtvedt T, Gordon JI. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 2002; 22:283–307
CrossRef
Pubmed
Google scholar
|
[8] |
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science 2005; 307(5717): 1915–1920
CrossRef
Pubmed
Google scholar
|
[9] |
Cicalese L, Sileri P, Green M, Abu-Elmagd K, Kocoshis S, Reyes J. Bacterial translocation in clinical intestinal transplantation. Transplantation 2001; 71(10): 1414–1417
CrossRef
Pubmed
Google scholar
|
[10] |
Nishida S, Levi D, Kato T, Nery JR, Mittal N, Hadjis N, Madariaga J, Tzakis AG. Ninety-five cases of intestinal transplantation at the University of Miami. J Gastrointest Surg 2002; 6(2): 233–239
CrossRef
Pubmed
Google scholar
|
[11] |
Guarner F, Malagelada JR. Gut flora in health and disease. Lancet 2003; 361(9356): 512–519
CrossRef
Pubmed
Google scholar
|
[12] |
Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR. Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 2004; 134(2): 465–472
Pubmed
|
[13] |
Sheehy EC, Beighton D, Roberts GJ. The oral microbiota of children undergoing liver transplantation. Oral Microbiol Immunol 2000; 15(3): 203–210
CrossRef
Pubmed
Google scholar
|
[14] |
Kamada N, Calne RY. A surgical experience with five hundred thirty liver transplants in the rat. Surgery 1983; 93(1 Pt 1): 64–69
Pubmed
|
[15] |
Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59(3): 695–700
Pubmed
|
[16] |
Xing HC, Li LJ, Xu KJ, Shen T, Chen YB, Sheng JF, Chen Y, Fu SZ, Chen CL, Wang JG, Yan D, Dai FW, Zheng SS. Protective role of supplement with foreign Bifidobacterium and Lactobacillus in experimental hepatic ischemia-reperfusion injury. J Gastroenterol Hepatol 2006; 21(4): 647–656
CrossRef
Pubmed
Google scholar
|
[17] |
Westad F, Martens H. Variable selection in near infrared spectroscopy based on significance testing in partial least squares regression. J Near Infrared Spectrosc 2000; 8(2): 117–124
CrossRef
Google scholar
|
[18] |
Barkholt L, Ericzon BG, Tollemar J, Malmborg AS, Ehrnst A, Wilczek H, Andersson J. Infections in human liver recipients: different patterns early and late after transplantation. Transpl Int 1993; 6(2): 77–84
CrossRef
Pubmed
Google scholar
|
[19] |
Thompson JR, Marcelino LA, Polz MF. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by ‘reconditioning PCR’. Nucleic Acids Res 2002; 30(9): 2083–2088
CrossRef
Pubmed
Google scholar
|
[20] |
Lipp JS, Morono Y, Inagaki F, Hinrichs KU. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature 2008; 454(7207): 991–994
CrossRef
Pubmed
Google scholar
|
[21] |
Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans ADL, de Vos WM. Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 2002; 68(1): 114–123
CrossRef
Pubmed
Google scholar
|
[22] |
Wise MG, Siragusa GR. Quantitative analysis of the intestinal bacterial community in one- to three-week-old commercially reared broiler chickens fed conventional or antibiotic-free vegetable-based diets. J Appl Microbiol 2007; 102(4): 1138–1149
Pubmed
|
[23] |
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 2015; 37(5): 984–995
|
[24] |
Vanhoutte T, Huys G, Brandt E, Swings J. Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 2004; 48(3): 437–446
CrossRef
Pubmed
Google scholar
|
[25] |
Wu ZW, Ling ZX, Lu HF, Zuo J, Sheng JF, Zheng SS, Li LJ. Changes of gut bacteria and immune parameters in liver transplant recipients. Hepatobiliary Pancreat Dis Int 2012; 11(1): 40–50
CrossRef
Pubmed
Google scholar
|
[26] |
Wu ZW, Lu HF, Wu J, Zuo J, Chen P, Sheng JF, Zheng SS, Li LJ. Assessment of the fecal lactobacilli population in patients with hepatitis B virus-related decompensated cirrhosis and hepatitis B cirrhosis treated with liver transplant. Microb Ecol 2012; 63(4): 929–937
CrossRef
Pubmed
Google scholar
|
[27] |
Xing HC, Li LJ, Xu KJ, Shen T, Chen YB, Sheng JF, Yu YS, Chen YG. Intestinal microflora in rats with ischemia/reperfusion liver injury. J Zhejiang Univ Sci B 2005; 6(1): 14–21
CrossRef
Pubmed
Google scholar
|
[28] |
Xie Y, Luo Z, Li Z, Deng M, Liu H, Zhu B, Ruan B, Li L. Structural shifts of fecal microbial communities in rats with acute rejection after liver transplantation. Microb Ecol 2012; 64(2): 546–554
CrossRef
Pubmed
Google scholar
|
[29] |
Lu H, He J, Wu Z, Xu W, Zhang H, Ye P, Yang J, Zhen S, Li L. Assessment of microbiome variation during the perioperative period in liver transplant patients: a retrospective analysis. Microb Ecol 2013; 65(3): 781–791
CrossRef
Pubmed
Google scholar
|
[30] |
Groschwitz KR, Hogan SP. Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 2009; 124(1): 3–20, quiz 21–22
CrossRef
Pubmed
Google scholar
|
[31] |
Jiang JW, Ren ZG, Chen LY, Jiang L, Xie HY, Zhou L, Zheng SS. Enteral supplementation with glycyl-glutamine improves intestinal barrier function after liver transplantation in rats. Hepatobiliary Pancreat Dis Int 2011; 10(4): 380–385
CrossRef
Pubmed
Google scholar
|
[32] |
Ren ZG, Liu H, Jiang JW, Jiang L, Chen H, Xie HY, Zhou L, Zheng SS. Protective effect of probiotics on intestinal barrier function in malnourished rats after liver transplantation. Hepatobiliary Pancreat Dis Int 2011; 10(5): 489–496
CrossRef
Pubmed
Google scholar
|
[33] |
Fasano A, Shea-Donohue T. Mechanisms of disease: the role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol 2005; 2(9): 416–422
CrossRef
Pubmed
Google scholar
|
[34] |
Baumgart DC, Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care 2002; 5(6): 685–694
CrossRef
Pubmed
Google scholar
|
[35] |
Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR. Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res 2008; 150(2): 304–330
CrossRef
Pubmed
Google scholar
|
[36] |
Ren Z, Cui G, Lu H, Chen X, Jiang J, Liu H, He Y, Ding S, Hu Z, Wang W, Zheng S. Liver ischemic preconditioning (IPC) improves intestinal microbiota following liver transplantation in rats through 16s rDNA-based analysis of microbial structure shift. PLoS One 2013; 8(10): e75950
CrossRef
Pubmed
Google scholar
|
[37] |
Xie Y, Chen H, Zhu B, Qin N, Chen Y, Li Z, Deng M, Jiang H, Xu X, Yang J, Ruan B, Li L. Effect of intestinal microbiota alteration on hepatic damage in rats with acute rejection after liver transplantation. Microb Ecol 2014; 68(4): 871–880
CrossRef
Pubmed
Google scholar
|
[38] |
Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, Collins MD, Doré J. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 1999; 65(11): 4799–4807
Pubmed
|
[39] |
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol 2008; 26(10): 1135–1145
CrossRef
Pubmed
Google scholar
|
[40] |
Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World J Gastroenterol 2015; 21(3): 803–814
CrossRef
Pubmed
Google scholar
|
[41] |
Oh PL, Martínez I, Sun Y, Walter J, Peterson DA, Mercer DF. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am J Transplant 2012; 12(3): 753–762
CrossRef
Pubmed
Google scholar
|
[42] |
Lee JR, Muthukumar T, Dadhania D, Toussaint NC, Ling L, Pamer E, Suthanthiran M. Gut microbial community structure and complications after kidney transplantation: a pilot study. Transplantation 2014; 98(7): 697–705
CrossRef
Pubmed
Google scholar
|
[43] |
Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, Liu C, West ML, Singer NV, Equinda MJ, Gobourne A, Lipuma L, Young LF, Smith OM, Ghosh A, Hanash AM, Goldberg JD, Aoyama K, Blazar BR, Pamer EG, van den Brink MRM. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. J Exp Med 2012; 209(5): 903–911
CrossRef
Pubmed
Google scholar
|
[44] |
Ren Z, Jiang J, Lu H, Chen X, He Y, Zhang H, Xie H, Wang W, Zheng S, Zhou L. Intestinal microbial variation may predict early acute rejection after liver transplantation in rats. Transplantation 2014; 98(8): 844–852
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |