Comparison of reference values for immune recovery between event-free patients receiving haploidentical allografts and those receiving human leukocyte antigen-matched sibling donor allografts
Xuying Pei, Xiangyu Zhao, Yu Wang, Lanping Xu, Xiaohui Zhang, Kaiyan Liu, Yingjun Chang, Xiaojun Huang
Comparison of reference values for immune recovery between event-free patients receiving haploidentical allografts and those receiving human leukocyte antigen-matched sibling donor allografts
To establish optimal reference values for recovered immune cell subsets, we prospectively investigated post-transplant immune reconstitution (IR) in 144 patients who received allogeneic stem cell transplantation (allo-SCT) and without showing any of the following events: poor graft function, grades II‒IV acute graft-versus-host disease (GVHD), serious chronic GVHD, serious bacterial infection, invasive fungal infection, or relapse or death in the first year after transplantation. IR was rapid in monocytes, intermediate in lymphocytes, CD3+ T cells, CD8+ T cells, and CD19+ B cells, and very slow in CD4+ T cells in the entire patient cohort. Immune recovery was generally faster under HLA-matched sibling donor transplantation than under haploidentical transplantation. Results suggest that patients with an IR comparable to the reference values display superior survival, and the levels of recovery in immune cells need not reach those in healthy donor in the first year after transplantation. We suggest that data from this recipient cohort should be used as reference values for post-transplant immune cell counts in patients receiving HSCT.
immune reconstitution / hematopoietic stem cell transplantation / event-free patients / reference range
[1] |
Bosch M, Khan FM, Storek J. Immune reconstitution after hematopoietic cell transplantation. Curr Opin Hematol 2012; 19(4): 324–335
CrossRef
Pubmed
Google scholar
|
[2] |
Lum LG. The kinetics of immune reconstitution after human marrow transplantation. Blood 1987; 69(2): 369–380
Pubmed
|
[3] |
Chang YJ, Zhao XY, Huo MR, Xu LP, Liu DH, Liu KY, Huang XJ. Immune reconstitution following unmanipulated HLA-mismatched/haploidentical transplantation compared with HLA-identical sibling transplantation. J Clin Immunol 2012; 32(2): 268–280
CrossRef
Pubmed
Google scholar
|
[4] |
Bosch M, Dhadda M, Hoegh-Petersen M, Liu Y, Hagel LM, Podgorny P, Ugarte-Torres A, Khan FM, Luider J, Auer-Grzesiak I, Mansoor A, Russell JA, Daly A, Stewart DA, Maloney D, Boeckh M, Storek J. Immune reconstitution after anti-thymocyte globulin-conditioned hematopoietic cell transplantation. Cytotherapy 2012; 14(10): 1258–1275
CrossRef
Pubmed
Google scholar
|
[5] |
Azevedo RI, Soares MVD, Albuquerque AS, Tendeiro R, Soares RS, Martins M, Ligeiro D, Victorino RMM, Lacerda JF, Sousa AE. Long-term immune reconstitution of naive and memory T cell pools after haploidentical hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19(5): 703–712
CrossRef
Pubmed
Google scholar
|
[6] |
Zhao XY, Chang YJ, Huang XJ. Conflicting impact of alloreactive NK cells on transplantation outcomes after haploidentical transplantation: do the reconstitution kinetics of natural killer cells create these differences? Biol Blood Marrow Transplant 2011; 17(10): 1436–1442
CrossRef
Pubmed
Google scholar
|
[7] |
Huang XJ, Liu DH, Liu KY, Xu LP, Chen H, Han W, Chen YH, Zhang XH, Lu DP. Treatment of acute leukemia with unmanipulated HLA-mismatched/haploidentical blood and bone marrow transplantation. Biol Blood Marrow Transplant 2009; 15(2): 257–265
CrossRef
Pubmed
Google scholar
|
[8] |
Wang Y, Chang YJ, Xu LP, Liu KY, Liu DH, Zhang XH, Chen H, Han W, Chen YH, Wang FR, Wang JZ, Chen Y, Yan CH, Huo MR, Li D, Huang XJ. Who is the best donor for a related HLA haplotype-mismatched transplant? Blood 2014; 124(6): 843–850
CrossRef
Pubmed
Google scholar
|
[9] |
Wang Y, Fu HX, Liu DH, Xu LP, Zhang XH, Chang YJ, Chen YH, Wang FR, Sun YQ, Tang FF, Liu KY, Huang XJ. Influence of two different doses of antithymocyte globulin in patients with standard-risk disease following haploidentical transplantation: a randomized trial. Bone Marrow Transplant 2014; 49(3): 426–433
CrossRef
Pubmed
Google scholar
|
[10] |
Kong Y, Chang YJ, Wang YZ, Chen YH, Han W, Wang Y, Sun YQ, Yan CH, Wang FR, Liu YR, Xu LP, Liu DH, Huang XJ. Association of an impaired bone marrow microenvironment with secondary poor graft function after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2013; 19(10): 1465–1473
CrossRef
Pubmed
Google scholar
|
[11] |
Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED. 1994 Consensus Conference on Acute GVHD Grading. Bone Marrow Transplant 1995; 15(6): 825–828
Pubmed
|
[12] |
Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ, Martin P, Chien J, Przepiorka D, Couriel D, Cowen EW, Dinndorf P, Farrell A, Hartzman R, Henslee-Downey J, Jacobsohn D, McDonald G, Mittleman B, Rizzo JD, Robinson M, Schubert M, Schultz K, Shulman H, Turner M, Vogelsang G, Flowers ME. National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. Biol Blood Marrow Transplant 2005; 11(12): 945–956
CrossRef
Pubmed
Google scholar
|
[13] |
Servais S, Lengline E, Porcher R, Carmagnat M, Peffault de Latour R, Robin M, Sicre de Fontebrune F, Clave E, Maki G, Granier C, Xhaard A, Dhedin N, Molina JM, Toubert A, Moins-Teisserenc H, Socie G. Long-term immune reconstitution and infection burden after mismatched hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2014; 20(4): 507–517
CrossRef
Pubmed
Google scholar
|
[14] |
Robin M, Porcher R, De Castro Araujo R, de Latour RP, Devergie A, Rocha V, Larghero J, Adès L, Ribaud P, Mary JY, Socié G. Risk factors for late infections after allogeneic hematopoietic stem cell transplantation from a matched related donor. Biol Blood Marrow Transplant 2007; 13(11): 1304–1312
CrossRef
Pubmed
Google scholar
|
[15] |
Calandra T, Cohen J; International Sepsis Forum Definition of Infection in the ICU Consensus Conference. The international sepsis forum consensus conference on definitions of infection in the intensive care unit. Crit Care Med 2005; 33(7): 1538–1548
CrossRef
Pubmed
Google scholar
|
[16] |
Hoenigl M, Strenger V, Buzina W, Valentin T, Koidl C, Wölfler A, Seeber K, Valentin A, Strohmeier AT, Zollner-Schwetz I, Raggam RB, Urban C, Lass-Flörl C, Linkesch W, Krause R. European Organization for the Research and Treatment of Cancer/Mycoses Study Group (EORTC/MSG) host factors and invasive fungal infections in patients with haematological malignancies. J Antimicrob Chemother 2012; 67(8): 2029–2033
CrossRef
Pubmed
Google scholar
|
[17] |
Storek J, Geddes M, Khan F, Huard B, Helg C, Chalandon Y, Passweg J, Roosnek E. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol 2008; 30(4): 425–437
CrossRef
Pubmed
Google scholar
|
[18] |
DeCook LJ, Thoma M, Huneke T, Johnson ND, Wiegand RA, Patnaik MM, Litzow MR, Hogan WJ, Porrata LF, Holtan SG. Impact of lymphocyte and monocyte recovery on the outcomes of allogeneic hematopoietic SCT with fludarabine and melphalan conditioning. Bone Marrow Transplant 2013; 48(5): 708–714
CrossRef
Pubmed
Google scholar
|
[19] |
Chakrabarti S, Brown J, Guttridge M, Pamphilon DH, Lankester A, Marks DI. Early lymphocyte recovery is an important determinant of outcome following allogeneic transplantation with CD34+ selected graft and limited T-cell addback. Bone Marrow Transplant 2003; 32(1): 23–30
CrossRef
Pubmed
Google scholar
|
[20] |
Kim DH, Kim JG, Sohn SK, Sung WJ, Suh JS, Lee KS, Lee KB. Clinical impact of early absolute lymphocyte count after allogeneic stem cell transplantation. Br J Haematol 2004; 125(2): 217–224
CrossRef
Pubmed
Google scholar
|
[21] |
Savani BN, Mielke S, Rezvani K, Montero A, Yong AS, Wish L, Superata J, Kurlander R, Singh A, Childs R, Barrett AJ. Absolute lymphocyte count on day 30 is a surrogate for robust hematopoietic recovery and strongly predicts outcome after T cell-depleted allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2007; 13(10): 1216–1223
CrossRef
Pubmed
Google scholar
|
[22] |
Chang YJ, Zhao XY, Huo MR, Xu LP, Liu DH, Liu KY, Huang XJ. Clinical impact of absolute lymphocyte count on day 30 after unmanipulated haploidentical blood and marrow transplantation for pediatric patients with hematological malignancies. Am J Hematol 2011; 86(2): 227–230
CrossRef
Pubmed
Google scholar
|
[23] |
Powles R, Singhal S, Treleaven J, Kulkarni S, Horton C, Mehta J. Identification of patients who may benefit from prophylactic immunotherapy after bone marrow transplantation for acute myeloid leukemia on the basis of lymphocyte recovery early after transplantation. Blood 1998; 91(9): 3481–3486
Pubmed
|
[24] |
Bayraktar UD, Milton DR, Guindani M, Rondon G, Chen J, Al-Atrash G, Rezvani K, Champlin R, Ciurea SO. Optimal threshold and time of absolute lymphocyte count assessment for outcome prediction after bone marrow transplantation. Biol Blood Marrow Transplant 2016; 22(3): 505–513
CrossRef
Pubmed
Google scholar
|
[25] |
Kim HT, Armand P, Frederick D, Andler E, Cutler C, Koreth J, Alyea EP 3rd, Antin JH, Soiffer RJ, Ritz J, Ho VT. Absolute lymphocyte count recovery after allogeneic hematopoietic stem cell transplantation predicts clinical outcome. Biol Blood Marrow Transplant 2015; 21(5): 873–880
CrossRef
Pubmed
Google scholar
|
[26] |
Bühlmann L, Buser AS, Cantoni N, Gerull S, Tichelli A, Gratwohl A, Stern M. Lymphocyte subset recovery and outcome after T-cell replete allogeneic hematopoietic SCT. Bone Marrow Transplant 2011; 46(10): 1357–1362
CrossRef
Pubmed
Google scholar
|
[27] |
Storek J, Gooley T, Witherspoon RP, Sullivan KM, Storb R. Infectious morbidity in long-term survivors of allogeneic marrow transplantation is associated with low CD4 T cell counts. Am J Hematol 1997; 54(2): 131–138
CrossRef
Pubmed
Google scholar
|
[28] |
Bartelink IH, Belitser SV, Knibbe CAJ, Danhof M, de Pagter AJ, Egberts TCG, Boelens JJ. Immune reconstitution kinetics as an early predictor for mortality using various hematopoietic stem cell sources in children. Biol Blood Marrow Transplant 2013; 19(2): 305–313
CrossRef
Pubmed
Google scholar
|
[29] |
Berger M, Figari O, Bruno B, Raiola A, Dominietto A, Fiorone M, Podesta M, Tedone E, Pozzi S, Fagioli F, Madon E, Bacigalupo A. Lymphocyte subsets recovery following allogeneic bone marrow transplantation (BMT): CD4+ cell count and transplant-related mortality. Bone Marrow Transplant 2008; 41(1): 55–62
CrossRef
Pubmed
Google scholar
|
[30] |
Kim DH, Sohn SK, Won DI, Lee NY, Suh JS, Lee KB. Rapid helper T-cell recovery above 200 × 106/L at 3 months correlates to successful transplant outcomes after allogeneic stem cell transplantation. Bone Marrow Transplant 2006; 37(12): 1119–1128
CrossRef
Pubmed
Google scholar
|
[31] |
Koehl U, Bochennek K, Zimmermann SY, Lehrnbecher T, Sörensen J, Esser R, Andreas C, Kramm C, Grüttner HP, Falkenberg E, Orth A, Bader P, Schwabe D, Klingebiel T. Immune recovery in children undergoing allogeneic stem cell transplantation: absolute CD8+ CD3+ count reconstitution is associated with survival. Bone Marrow Transplant 2007; 39(5): 269–278
CrossRef
Pubmed
Google scholar
|
[32] |
Giannelli R, Bulleri M, Menconi M, Casazza G, Focosi D, Bernasconi S, Favre C. Reconstitution rate of absolute CD8+ T lymphocyte counts affects overall survival after pediatric allogeneic hematopoietic stem cell transplantation. J Pediatr Hematol Oncol 2012; 34(1): 29–34
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |